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Abstract
Hybrid languages are modal languages that have special symbols for naming individual states in models. Their history
can be traced back to work of Arthur Prior in the fifties. The subject has recently regained interest, resulting in many
new results and techniques. This chapter contains a modern overview of the field. We sketch its history, and survey
the basic properties of various hybrid languages, focussing on model theory (completeness, expressivity, definability,
interpolation), decidability and complexity, and proof theory. We also discuss a number of connections with other fields.
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This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are extensions of
standard modal logics, involving symbols that name individual states in models. The first results that are
nowadays considered as part of the field date back to the early work of Arthur Prior in 1951. Since then,
hybrid logic has gone through a number of revivals and reinventions. Nowaways, it is a field of research in its
own right, with a wealth of results, techniques, and applications.

Our main aim, in this chapter, is to provide a coherent picture of the current state of affairs in the field
of hybrid logic. Rather than a comprehensive summary, we will try to give the reader a taste for the type of
results and techniques that we consider hallmarks of the field. In some cases, we will only state results, with
pointers to relevant literature, while in other cases we will provide full proofs.

In Section 1, we give an intuitive introduction to hybrid logics, with examples of the extra expressive
power offered by the hybrid operators. This section also contains the basic definitions of syntax and semantics
that are used throughout the chapter. In Section 2 we provide a short history of the field, discussing the work
of Prior in the 50s, of the Sofia School in the 80s, and the work on very expressive hybrid languages in the
90s. Sections 3 and 4 form the core of the chapter. They contain the most important techniques and results
in the field, with respect to completeness, expressive power, frame definability, interpolation and complexity.
In Section 5 we briefly present proof systems for hybrid languages (sequents, natural deduction, tableaux, and
resolution), and we discuss some issues concerning the development of automated provers based on them.
In Section 6 we comment on connections with related areas (some of which are discussed in detail in other
chapters of this handbook). Section 7 finishes the chapter with a summary and general perspectives.

1 What are Hybrid Logics?

In their simplest form, hybrid languages are modal languages that have special symbols to name individual
states in models. These new symbols, which are called nominals, enter the stage gracefully: we simply add a
new sort of atomic symbols NOM = {i, j, k, . . .} disjoint from the set PROP of propositional variables and
let them combine freely in formulas. For example, if i is a nominal and p and q are propositional variables,
then

3(i ∧ p) ∧3(i ∧ q) → 3(p ∧ q), (1)

is a well formed formula. Now for the important twist: since nominals name individual states in the model,
they denote singleton sets. In other words, they are true at a unique point in the model. Once this step has been
taken, the whole landscape changes. For example, (1) becomes a validity: let M be a model, m a state in the
domain of M, and suppose M,m |= 3(i ∧ p) ∧3(i ∧ q). Then some successor state m′ of m satisfies i ∧ p,
and some successor state m′′ of m satisfies i∧ q. Since i is a nominal, it is true at a unique point in M. Hence
m′ = m′′ and we have M,m |= 3(p ∧ q). Note that (1) could be falsified if i were an ordinary propositional
variable.

When we realize the potential that nominals have, an interesting idea suggests itself: to introduce, for each
nominal i, an operator @i that allows us to jump to the point named by i. The formula @iϕ (read “at i, ϕ”)
moves the point of evaluation to the state named by i and evaluates ϕ there. These operators satisfy many
nice logical properties. For a start, each @i is a normal modal operator: it satisfies the distributivity axiom
(@i(ϕ → ψ) → (@iϕ → @iψ)) and the necessitation rule (if ϕ is valid, then @iϕ is also valid). Moreover,
it is self-dual: @iϕ is equivalent to ¬@i¬ϕ. In an intuitive sense, the @i operators provide a bridge between
semantics and syntax by internalizing the satisfaction relation ‘|=’ into the logical language:

M, w |= ϕ iff M |= @iϕ, where i is a nominal naming w.

For this reason, these operators are usually called satisfaction operators.
Aiming to make full use of the flexibility provided by direct reference to specific points in the model

naturally leads to further enrichment of the language. One possibility would be to have not only names for
individual states but also variables ranging over states, with corresponding quantifiers. We would then be able
to write formulas like

∀y.3y. (2)
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The first-order translation of this formula is ∀y.∃z.(R(x, z)∧z = y) or, simply, ∀y.R(x, y), forcing the current
state to be related to all states in the domain. The ∀ quantifier is very expressive. As discussed in [32], even the
basic modal language extended with state variables and this universal quantifier is undecidable. Moreover, ∀
and @ together give us already full first-order expressive power (cf. Section 3.2). Nevertheless, the ∀ quantifier
is historically important. The earliest treatments are probably those of [117,118,46].

The ∀ quantifier is very “classical.” If we think modally, and remember that evaluation of modal formulas
takes place at a given point, a different kind of binder suggests itself. The ↓ binder binds variables to points
but, unlike ∀, it binds to the current point. In essence, it enables us to create a name for the here-and-now, and
refer to it later in the formula. For example, the formula

↓y.3y (3)

is true at a statem iffm is related to itself. The intuitive reading of (3) is quite straightforward: the formula says
“call the current state y and check that y is reachable.” The difference between ∀ and ↓ is subtle, but important.
∀ is global, in the sense that formulas containing ∀ are not preserved under generated submodels [32]. On the
other hand, ↓ is intrinsically local and, as we will show in Theorems 3.13 and 3.15, it can be characterized in
terms of the operation of taking generated submodels.

Like ∀, the ↓ binder has been invented independently on several occasions. For example, in [122], ↓ is
introduced as part of an investigation into temporal semantics and temporal databases, [131] uses it to aid
reasoning about automata, and [52] employs it as part of his treatment of indexicality. However, none of the
systems just mentioned allows the free syntactic interplay of variables with the underlying propositional logic;
that is, they make use of ↓, but in languages that are not fully hybrid. The earliest paper to introduce it into a
fully hybrid language seems to be [78].

Note that satisfaction operators work in perfect coordination with ↓. Whereas ↓ “stores” the current point
of evaluation (by binding a variable to it), the satisfaction operators enable us to “retrieve” stored information
by shifting the point of evaluation in the model. By using the “storing and retrieving” intuition it is easy to
define complex properties. For example, Kamp’s temporal until operator U (with semantics: U(ϕ,ψ) is true
at a state m if there is a future state m′ where ϕ holds, such that ψ holds in all states between m and m′) can
be defined as follows:

U(ϕ,ψ) := ↓x.3↓y.(ϕ ∧@x2(3y → ψ)).

Let us see how this work. First, we name the current state x using ↓, and use the 3 operator to find a suitable
successor state, which we call y, where ϕ holds. Without the @ operator we would be stuck in that successor
state, but we can use @ to go back to x and demand that in all successors of x having y as a successor, ψ holds.

Summarizing the above discussion, we can say that the term hybrid logic refers to a family of extensions of
the basic hybrid language with devices that, in one way or another, allow for explicit reference to individual
states of the Kripke model. But, why are hybrid logics called hybrid?

One explanation comes from the work of Arthur Prior in the 1950s. As we will discuss more in detail
in Section 2, Prior was interested in the relation between what McTaggart called the A-series and B-series of
time [109]. Following McTaggart’s analysis of time in terms of the A-series of past, present and future and the
B-series of earlier and later, Prior discusses two logical systems: the I-calculus aims to capture the properties
of the B-series and takes variables ranging over instants as primitive, while the T -calculus examines tenses
and takes variables ranging over propositions. In [117, Chapter V.6], Prior proposes a way to develop the
I-calculus inside the T -calculus, and for this he allows instant-variables to be used together with propositional
variables. He will call this step “the third grade of tense-logical involvement” in [118, Chapter XI], where
instant-variables are treated as representing (special) propositions. From this perspective, the terms hybrid
applies to the “confusion” of terms (the variables over instants) with formulas (the propositional variables).

There is another sense in which hybrid logics are hybrid, namely that, both in terms of expressive power and
in terms of the techniques used to analyze them, hybrid languages lie in between the basic modal language and
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first-order logic. While having a distinctly modal flavor, hybrid logics enjoy features which are of a clear first-
order nature. As we discussed above, the more expressive hybrid languages include binders and variables over
elements of the domain, traditional hallmarks of first-order languages, while nominals are nothing else than
first-order constants. The nominals and satisfaction operators also introduce a restricted form of equality: a
statem in a model can satisfy a nominal i if and only if it is equal to the denotation of i, and a modelM satisfies
@ij if and only if the denotations of i and j coincide. In other words, nominals introduce equality between the
point of evaluation and a named state, while satisfaction operators enable us to express equality between named
states. Concerning first-order techniques which can be used for hybrid languages, we will see in Section 3.1
for example, that nominals can be used as ‘witnesses’ in a classical Henkin-style completeness proof for
hybrid languages, and classical first-order notions like potential isomorphisms are useful for characterizing
the expressive power of hybrid languages. And in Section 3.3, we will see a very general interpolation result,
the proof of which relies on the fact that shared nominals can be “bound away” using ↓, in the same way that
shared constants can be replaced by existentially quantified variables in first-order logic.

For a more detailed introduction, including further intuitive examples using the different hybrid languages,
the reader is referred to [26]. The Hybrid Logic Web Pages [3] provides further information and a broad on-
line bibliography. We now move on to the basic definitions of syntax and semantics that will be used through
the chapter.

1.1 Basic Definitions

The simplest hybrid language is H, which extends the basic modal language with nominals only. Further
extensions will be named by listing the additional operators. The most expressive system we will discuss
in detail is H(E,@, ↓), with the existential modality E, @-operators, and the ↓ binder (when considering
languages containing the ↓ binder, it is implicitly understood that the language also contains state variables).
At various points, we will briefly mention other hybrid languages as well (e.g., hybrid extensions of temporal
and dynamic logics).

The following two definitions give the syntax and semantics of H(E,@, ↓). The corresponding definitions
for sublanguages of H(E,@, ↓) can be obtained by leaving out irrelevant clauses.

Definition 1.1 Let REL = {R1, R2, . . .} (the relational symbols), PROP = {p1, p2, . . .} (the propositional
variables), NOM = {i1, i2, . . .} (the nominals), and SVAR = {x1, x2, . . .} (the state variables) be pairwise
disjoint, countably infinite sets of symbols. By a state symbol, we will mean any element of NOM ∪ SVAR.
The well-formed formulas of the hybrid language H(E,@, ↓) in the signature 〈REL,PROP,NOM,SVAR〉 are
given by the following recursive definition:

FORMS ::= > | p | s | ¬ϕ | ϕ1 ∧ ϕ2 | 〈R〉ϕ | Eϕ | @sϕ | ↓x.ϕ,

where p ∈ PROP, s ∈ NOM ∪ SVAR, x ∈ SVAR, R ∈ REL and ϕ,ϕ1, ϕ2 ∈ FORMS.

Given a set of formulas Γ ⊆ FORMS, we will use PROP(Γ), NOM(Γ) and SVAR(Γ) to denote, respectively,
the set of propositional variables, nominals, and state variables occurring in formulas in Γ. Also, for ϕ a
formula, SF(ϕ) will be the set of subformulas of ϕ.

Note that the above syntax is simply that of ordinary (multi-modal) propositional modal logic extended
with clauses for the state symbols and for Eϕ, @sϕ and ↓xj .ϕ. Also, note that, like propositional variables,
nominals and state variables can be used as atomic formulas. The difference between nominals and state
variables is analogous to the difference between constants and variables in first-order logic: nominals cannot
be bound by ↓, and their interpretation is specified by the model, whereas state variables are interpreted by
assignment functions, and they can be bound by the ↓-binder.

The notions of free and bound state variable are defined as in first-order logic, with ↓ as the only binding
operator. Similarly, other syntactic notions (such as substitution, and a state symbol t being substitutable for x
in ϕ) are defined as in first-order logic. A sentence is a formula containing no free state variables. Furthermore,
a formula is pure if it contains no propositional variables, and nominal-free if it contains no nominals.
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In the remainder of the chapter we will assume fixed a signature 〈REL,PROP,NOM, SVAR〉. Now for the
semantics.

Definition 1.2 A (hybrid) model M is a triple M = 〈M, (RM)R∈REL, V 〉 such that M is a non-empty set,
each RM is a binary relation on M , and V : PROP ∪ NOM → ℘(M) is such that for all nominals i ∈ NOM,
V (i) is a singleton subset of M . We usually write M (roman letters) for the domain of a model M, and call
the elements of M states, worlds or points. Each RM is an accessibility relation, and V is the valuation. A
frame is defined in the usual way: as a model without a valuation. If F = 〈M, (RF )R∈REL〉 is a frame and
V is a valuation on M , then M = 〈F , V 〉 is the model 〈M, (RF )R∈REL, V 〉. In this case we, say that M is
based on F , and that F is the underlying frame of M.

An assignment g for M is a mapping g : SVAR → M . Given an assignment g : SVAR → M , a state
variable x ∈ SVAR, and a state m ∈ M , we define gx

m (an x-variant of g) by letting gx
m(x) = m and

gx
m(y) = g(y) for all y 6= x.

Let M = 〈M, (RM)R∈REL, V 〉 be a model, m ∈ M , and g an assignment for M. For any state symbol
s ∈ NOM ∪ SVAR, let [s]M,g be the state denoted by s (i.e., for i ∈ NOM, [i]M,g is the unique m ∈ M such
that V (i) = {m}, and for x ∈ SVAR, [x]M,g = g(x)). Then the satisfaction relation is defined as follows:

M, g,m |= >

M, g,m |= p iff m ∈ V (p) for p ∈ PROP

M, g,m |= s iff m = [s]M,g for s ∈ NOM ∪ SVAR

M, g,m |= ¬ϕ iff M, g,m 6|= ϕ

M, g,m |= ϕ1 ∧ ϕ2 iff M, g,m |= ϕ1 and M, g,m |= ϕ2

M, g,m |= 〈R〉ϕ iff there is a state m′ such that RM(m,m′) and M, g,m′ |= ϕ

M, g,m |= Eϕ iff there is a state m′ ∈M such that M, g,m′ |= ϕ

M, g,m |= @sϕ iff M, g, [s]M,g |= ϕ for s ∈ NOM ∪ SVAR

M, g,m |= ↓x.ϕ iff M, gx
m,m |= ϕ.

The first six clauses in the definition of the satisfaction relation are similar to the ones for the basic modal
language, except that they are relativized to an additional assignment function. Recall that nominals and state
variables can be used as atomic formulas, in which case they act as propositional variables that are true at a
unique state. The ↓ binder binds state variables to the state where evaluation is being performed (the current
world), and @s shifts evaluation to the state named by s. As in first-order logic, if ϕ is a sentence (i.e., a
formula with no free state variables), the truth of ϕ at a state in a model does not depend on the assignment.
Hence, in this case we will write M,m |= ϕ instead of M, g,m |= ϕ.

A formula ϕ is said to be globally true in a model M under an assignment g (notation: M, g |= ϕ), if
M, g,m |= ϕ for all m ∈ M . A formula ϕ is satisfiable if there is a model M, an assignment g on M, and
a world m ∈ M such that M, g,m |= ϕ. A formula ϕ is valid (notation: |= ϕ) if for all models M and
assignments g, M, g |= ϕ. A formula ϕ is a local consequence of a set of formulas Σ if for all models M,
assignments g, and pointsm ∈M ,M, g,m |= Σ impliesM, g,m |= ϕ. A formula ϕ is a global consequence
of a set of formulas Σ if for all models M and assignments g, M, g |= Σ implies M, g |= ϕ. We denote local
consequence by Σ |=loc ϕ and global consequence by Σ |=glo ϕ. As in ordinary propositional modal logic,
local consequence is strictly stronger than global consequence.

Definitions 1.1 and 1.2 specify the syntax and semantics of the most expressive hybrid language we are go-
ing to discuss in detail, H(E,@, ↓). Two important fragments of this language are H(@, ↓), which is obtained
by dropping the clauses for the existential modality E, and H(@), which is obtained by dropping in addition
the state variables and the ↓-binder. In other words, H(@) is simply the extension of the basic modal language
with nominals and satisfaction operators. The languages H(@) and H(@, ↓) will receive most attention in
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this chapter. In sublanguages of H(E,@, ↓) not containing ↓, variables and assignments play no role and are
dropped from the above definitions.

2 History

In this section we will provide an overview of the historical development of hybrid languages, starting with
the pioneering work of Prior, through the “revival” in the late eighties and early nineties in Sofia, and ending
with the work of Blackburn and Seligman in the late nineties.

2.1 The Foundational Work of Prior

The work of Prior in modal logic and in particular in the modal analysis of time is well known, to the point that
he is usually regarded as the inventor of temporal logic. For a detailed discussion of Prior’s contributions to
this field, together with some biographical information, see [111]. The following discussion is based on [51],
a short but very good overview. See also [27], especially Section 4.

Prior is considered one of the most important promoters of the application of modal syntax to the formal-
isation of a wide variety of phenomena. Less well known is the fact that Prior, in collaboration with Carew
Meredith, devised a version of possible worlds semantics roughly at the same time as, but independently of,
the work of Carnap on modal semantics and several years before Kripke published his first paper on the topic.
Interestingly, this part of Prior’s work is already closely related to hybrid logic.

Nowadays, the view that modal logic can be seen as a fragment of first-order or second-order logic is com-
monplace. This is fairly straightforwards once we observe the possible worlds semantics of modal operators.
When reading the earlier work of Prior, however, we should keep in mind that, at that time, most modal intu-
itions came solely from axiomatics. Nevertheless, in Prior’s (unpublished) second book “The Craft of Formal
Logic” (completed in 1951) we can find the following passage:

For the similarity in behaviour between signs of modality and signs of quantity, various explanations may be
offered. It may be, for example, that signs of modality are just ordinary quantifiers operating upon a peculiar
subject-matter, namely possible states of affairs. . . It would not be quite accurate to describe theories of this
sort as “reducing modality to quantity.” They do reduce modal distinctions to distinctions of quantity, but the
variables to which the quantifiers are attached retain something modal in their signification — they signify
“possibilities”, “chances”, “possible states of affairs”, “possible combinations of truth-values”, or the like.

Two things should be noticed in this passage. Firstly, the reference to “possible states of affairs” and even
“possible combinations of truth-values,” is a very early reference to possible worlds semantics. Secondly,
Prior’s strong reservations concerning “reducing modality to quantity”. This early intuition on the foundational
nature of modality later grew into a mature philosophy in Prior’s view that quantification over possible worlds
and instants was to be interpreted in terms of modality and tense — which constituted primitive notions — and
not vice versa (although he did recognized that the study of both quantity and modality could benefit of each
other).

Three years later, in 1954 at the New Zealand Congress of Philosophy, Prior presented a paper (not pub-
lished until much later as [116]) in which his philosophical position is made more explicit. Working already
in the framework of temporal logic, he introduces in this paper the I-calculus (which he will later call the
U -calculus). In the I-calculus, propositions of the tense calculus are treated as predicates expressing prop-
erties of dates (which are represented by variables). The formula px should be read as “p at x,” and I is a
binary relation taking dates as arguments where Ixy is read as “y is later than x.” Using an arbitrary date x
to represent the time of utterance, Fp (intuitively, “the proposition p happens in the future”) is equated with
∃y.(Ixy ∧ py) (i.e., “p at some time later than x”) and similarly for Pp, “the proposition p happens in the
past.” Prior mentions already that, by imposing various conditions on the relation I , analogues of the axioms
of the tense calculus can be derived in the I-calculus.

Later in the same paper, Prior includes a detailed warning against regarding this interpretation of the tense
calculus within the I-calculus as “a metaphysical explanation of what we mean by is, has been and will be”; he
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stresses that the I-calculus is not “metaphysically fundamental.” He explains that F (Socrates is sitting down)
means “It is now the case that it will be the case that Socrates is sitting down,” and there is no genuine way
of representing the indexical now in the I-calculus (he says that the free variable x is “a complete sham”).
He continues: “If there is to be any ‘interpretation’ of our calculi in the metaphysical sense, it will probably
need to be the other way round; that is, the I-calculus should be exhibited as a logical construction out of the
PF -calculus rather than vice versa.” This idea of the primacy of the tense calculus over the I-calculus — or,
as he was later to put it, of McTaggart’s A-series over the B-series, see [109] — was to become a central and
distinctive tenet of his philosophy. These issues form the theme of his final, unfinished, book [119], but they
already appear in some earlier articles.

But of course, the reconstruction of the I-calculus within the tense calculus is impossible, as the I-calculus
is strictly more expressive than the tense calculus. Prior recognized this fact and investigated ways to extend
the expressive power of the tense calculus to permit the reconstruction. This directly led to what we call
today very expressive hybrid languages (i.e., hybrid languages including the ∀ binder). In [117, Chapter V.6],
he actually proposes a way to develop the I-calculus inside the tense calculus, and for this he allows instant
variables to be used together with propositional variables. He will call this step “the third grade of tense-logical
involvement” in [118, Chapter XI], where instant variables are treated as representing (special) propositions.

We see, then, that Prior’s development of hybrid languages was rooted in his philosophical convictions,
and was instrumental in the implementation of some of his very early intuitions on time and tense. Prior’s
death in 1969 put an end to these investigations. Notice though, that Prior was never fully satisfied with his
solution. It was technically correct (and actually quite bold and ingenious) but he was concerned that, in
managing to “upgrade” the tense calculus to full first-order expressivity, the language had lost its claim to a
metaphysical fundamentality. Robert Bull, a student of Prior, pushed the ideas of hybridization further in [46],
where he provides an axiomatization and completeness result for a logic containing variables for paths on a
model, which he calls “history-propositional” variables.

2.2 The Sofia School

As we saw, the roots of hybrid logic go back to Prior and Bull. About fifteen years later in Sofia, Bulgaria,
nominals were re-discovered by Gargov, Passy and Tinchev in their investigations on Boolean modal logic
and propositional dynamic logic. One of the issues that led them into these investigations was the following
asymmetry in the expressive power of the modal language. The union of two accessibility relations is definable
in the basic modal language, in the sense that the formula

〈T 〉p↔ 〈R〉p ∨ 〈S〉p

is valid on a frame precisely if the accessibility relation interpreting 〈T 〉 is the union of the accessibility rela-
tions interpreting 〈R〉 and 〈S〉. Moreover, when added to the basic modal language, this formula completely
axiomatizes the modal logic of the relevant class of frames.

Surprisingly, intersection of accessibility relations is not definable in the same way: it follows from the
Goldblatt-Thomason theorem [77] that there is no formula in the basic modal language that is valid on a frame
precisely if the accessibility relation of 〈T 〉 is the intersection of the accessibility relation of 〈R〉 and 〈S〉. And
even though the axiom scheme 〈T 〉p→ 〈R〉p∧〈S〉p (together with the standard axioms and rules for the basic
polymodal logic) completely axiomatizes the logic of this frame class, it is valid on the larger class where the
accessibility relation of 〈T 〉 is contained in the intersection of the accessibility relation of 〈R〉 and 〈S〉.

Now, Gargov, Passy and Tinchev showed in [75] that intersection can be defined using nominals. Indeed,
for i a nominal, the axiom scheme

〈T 〉i↔ 〈R〉i ∧ 〈S〉i

defines intersection in the above sense, and exactly axiomatizes the logic of the relevant class of frames (when
added to an appropriate base axiomatization) 1 . The same story goes for complementation: there is no formula

1 Note that this implies that the Goldblatt-Thomason theorem, in its usual form, does not hold for hybrid languages.
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of the basic modal language that is valid on a frame precisely if the accessibility relation of 〈R〉 is the com-
plement of the accessibility relation of S, but such a formula exists when nominals are added to the language:
〈R〉i↔ ¬〈S〉i.

This form of capturing the Boolean operations (together with an alternative based on the “sufficiency oper-
ator” �) was investigated by Gargov, Passy and Tinchev in [75]. In that paper, the first complete axiomatization
of the minimal hybrid language is given. Following [76], recursively define 2- and 3-forms as follows: 1) $
is both a 2- and a 3-form (where $ is a fixed symbol not occurring in the language); 2) If L is a 2-form and ϕ
a formula, then (ϕ→ L) and 2L are also 2-forms; and 3) If M is a 3-form and ϕ is a formula, then (ϕ∧M)
and (3M) are also 3-forms. For F a 2- or 3-form and ϕ a formula, let F (ϕ) be the formula obtained by
replacing the unique occurrence of $ in F by ϕ. Now, Gargov, Passy and Tinchev showed that any complete
axiomatization of the basic modal language, extended with the axioms

M(i ∧ ϕ) → L(i→ ϕ) for i a nominal, L a 2-form and M a 3-form

completely axiomatizes the hybrid logic (in the language H) of the class of all frames.
Besides the minimal hybrid language H, Gargov, Passy and Tinchev also studied a richer hybrid language,

obtained by extending propositional dynamic logic (PDL, cf. Chapter ?? of this handbook) with nominals.
Intersection of accessibility relations is particularly interesting in this setting, as it can be interpreted as par-
allelism, or concurrency of programs. Passy and Tinchev [113] propose an extension of PDL with nominals
and the universal modality, which they call Combinatory PDL (CPDL). The paper contains an axiomatization
of CPDL(∩, ,̄⊂,−1), combinatory PDL extended with program intersection, complementation, subprograms
and inverse, shown in Figure 1. Note that this axiomatization contains an infinitary rule (R2), i.e., an inference
rule with infinitely many premises.

Besides the standard axioms and rules of PDL, and the axioms for the universal program ν, notice the def-
initions of union (A8), intersection (A9), complement (A10), subprogram (A11) and inverse program (A12).
Notice also how the presence of the universal program ν helps defining the behaviour of nominals in ax-
ioms (A1) and (A2). Finally, notice the “Gabbay-Burgess-style rule” (R1) [68], which ensures that models
are named, i.e., each state in the model is the denotation of some nominal (this also implies that the models
are countable). Axiomatizations for sublanguages of CPDL(∩, ,̄⊂,−1) are obtained by dropping the corre-
sponding definitions of the absent operators. In particular CPDL, “core” combinatory PDL, is axiomatized by
axioms (A1) to (A8), (A13) to (A15) and rules (R1) to (R4) 2 .

Passy and Tinchev proved a number of interesting properties of CPDL (see [115] for further details). For
example, they observed that named models (i.e., models in which each state is named by a nominal) can
be completely described by a set of formulas of the form (¬)@ip, (¬)@i3j or (¬)@ij. Clearly, this property
only depends on the expressive power of nominals and @, and hence holds already forH(@). This observation
provides the theoretical basis for automated theorem proving and model building via the definition of Herbrand
models (i.e., a model can be represented by the set of elementary formulas which are true in it, see [17]).

With respect to (un)decidability results, naturally the negative results concerning the undecidability of both
global and local consequence in PDL [86] transfers to CPDL. Passy and Tinchev provide some (un)decidability
results for satisfiability of languages related to CPDL in [115], while Gargov provides in [72] a finitary axiom-
atization of CPDL and proves the finite model property and decidability of the satisfiability problem for CPDL.
Actually, the complexity of satisfiability in CPDL coincides with the one in PDL, EXPTIME-complete [56,55].

Theorem 2.1 For Γ ∪ {ϕ} a decidable set of CPDL formulas, deciding whether Γ |=glo ϕ and Γ |=loc ϕ is
Π1

1-complete. On the other hand, satisfiability of CPDL formulas is EXPTIME-complete.

Gargov’s axiomatizability result mentioned above uses Segerberg’s axiom ϕ ∧ [α∗](ϕ → [α]ϕ) → [α∗]ϕ to
replace the (R2) rule and shows that the (R1) rule is redundant, but infinitary rules cannot always be eliminated.
For example, satisfiability of CPDL(̄ ) is highly undecidable (Σ1

1-complete) from which it follows that no

2 Actually, in [115], the infinitary version of (R1) “If ` [α]¬i for all i ∈ NOM then ` [α]⊥” is discussed, which is necessary for
completeness in some extensions of CPDL.

8



Axiom Schemes:

(A0) All propositional tautologies
(A1) 〈ν〉i
(A2) 〈ν〉(i ∧ ϕ) → [ν](i→ ϕ)
(A3) ϕ→ 〈ν〉ϕ
(A4) 〈ν〉〈ν〉ϕ→ 〈ν〉ϕ
(A5) ϕ→ [ν]〈ν〉ϕ
(A6) 〈α〉ϕ→ 〈ν〉ϕ
(A7) 〈αβ〉ϕ→ 〈α〉〈β〉ϕ
(A8) 〈α ∪ β〉i↔ 〈α〉i ∨ 〈β〉i
(A9) 〈α ∩ β〉i↔ 〈α〉i ∧ 〈β〉i
(A10) 〈ᾱ〉i↔ [α]¬i
(A11) α ⊂ β ↔ [α ∩ β̄]⊥
(A12) 〈ν〉(i ∧ 〈α−1j〉) ↔ 〈ν〉(j ∧ 〈α〉i)
(A13) 〈ϕ?〉ψ ↔ ϕ ∧ ψ
(A14) 〈α∗〉ϕ↔ ϕ ∨ 〈α〉〈α∗〉ϕ
(A15) [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

Rules:

(R1) If ` [α]¬i for some i not in α, then ` [α]⊥.
(R2) If ` [β][αi]ϕ for all i ∈ IN, then ` [β][α∗]ϕ.
(R3) If ` ϕ, then ` [ν]ϕ.
(R4) If ` ϕ and ` ϕ→ ψ, then ` ψ

Where ϕ, ψ are formulas, α, β programs, ν the universal program and i, j nominals.

Fig. 1. Axiomatization of CPDL(∩, ,̄⊂,−1)

finitary axiomatization can be complete. Passy and Tinchev [115] discuss the issue of eliminability of the
infinitary rules in detail (cf. also [98] for more recent results on infinitary axiomatizations of hybrid logics).

We now move into more expressive hybrid languages similar to those used by Prior and Bull. Chapter
III of [115] is devoted to CDL, Combinatory Dynamic Logic which allows quantification over state variables.
Interestingly, the authors seem to present CDL as an alternative to quantified modal logic, stating that replacing
classical quantification (over the domains in each state of the model) by hybrid quantification (over the states
themselves) leads to a better behaved system. While this is true, it also leads to a system which does not
resemble quantified modal logic! In any case, it is interesting to see that, once nominals have been discovered,
explicit quantification over states becomes a natural extension.

The following complete axiomatization of CDL is given in [115]:

All axioms and rules of CPDL minus (R1), plus
(A16) ∃c.c
(A17) ∀c.ϕ→ ϕ[c/d]
(A18) ∀c.[α]ϕ→ [α]∀c.ϕ for c with no free occurrences in α.
(R5) If ` ϕ, then ` ∀c.ϕ.

The Sofia tradition in hybrid logics continues with the work of Goranko. In [73], Gargov and Goranko in-
vestigate the basic modal language extended first with nominals and the universal and existential modalities
(H(E)), and then with the difference operator D (ML(D)) 3 . They prove that both languages are equivalent

3 The semantic condition for the difference operator D is M, w |= Dϕ iff there is a w′ 6= w such that M, w′ |= ϕ.
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with respect to frame definability, and then provide characterizations of frame definability for these languages.
The work of Gargov and Goranko is historically relevant because, within the Sofia school, it marks the

start of research on hybrid logics as such, and not as part of their research on extensions of PDL. Around
the same time, but independently, Blackburn was studying simple hybrid languages over a Prior-style tense
logic [21,22]. These two lines of research can be considered the origins of the current perspective on hybrid
logics.

Goranko is also the first to investigate the ↓ binder in the context of hybrid logic. In [78], he extends the
basic modal language with the universal modality and the ↓ binder with only a single state variable (though
using a slightly different notation). Goranko provides an axiomatization for this logic, and illustrations of
its high expressivity (sufficient, for example, to define Kamp’s U(p, q) and S(p, q) and Stavi’s U ′(p, q) and
S′(p, q) temporal operators and to simulate Prior’s instant variables), and shows that the satisfiability problem
for this language is undecidable. He mentions in the same paper that introducing multiple state variables would
be possible, and investigates the resulting language in more detail in [79].

In [80], Goranko uses hybrid binders to design CTLrp (CTL with reference pointers), a computation tree
logic for finitely branching ω+-trees, and defines syntactic and semantic interpretations between CTL∗ and
CTLrp . In particular, this yields a complete axiomatization for the translations of all valid CTL∗-formulas, a
step forwards in the search for a complete direct axiomatization of CTL∗, a long standing open problem finally
solved in [121].

With this we conclude our (necessarily brief) overview of the work on hybrid logics done by the Sofia
School. It is interesting to note that most of the languages studied by the Sofia school included the universal
modality. In the following years and mainly through the work of Blackburn and Seligman, research in hybrid
languages deals with, on the one hand, weak languages containing only nominals (e.g., [23,33]) and, on the
other hand, very expressive languages containing binders (e.g., [31,35,37]).

2.3 Very Expressive Hybrid Languages

In the mid-nineties, Blackburn and Seligman [31] studied a number of very expressive hybrid languages,
obtained by means of various state variable binders. We will review a few of these binders here, most of which
will not return in the remainder of the chapter.

Up to now, we have introduced two hybrid binders, the “classical” ∃ and the “more modal” ↓. Let us review
their semantic definitions. Given a model M = 〈M, (RM)R∈REL, V 〉, an assignment g in M and m ∈M :

M, g,m |= ∃x.ϕ iff M, gx
m′ ,m |= ϕ for some m′ ∈M .

M, g,m |= ↓x.ϕ iff M, gx
m,m |= ϕ.

Both quantifiers let us change the value assigned to x, without changing the point of evaluation. In [31]
Blackburn and Seligman investigate two other binders which, besides changing the value of the bound variable,
also change the point of evaluation:

M, g,m |= Σx.ϕ iff M, gx
m′ ,m′ |= ϕ for some m′ ∈M.

M, g,m |= ⇓x.ϕ iff M, gx
m,m

′ |= ϕ for some m′ ∈M.

It is not hard to see that Σx.ϕ is equivalent to E↓x.ϕ, whereas ⇓x.ϕ is equivalent to ↓x.Eϕ. The Standard
Translation (cf. Chapter ?? of this handbook) may be extended to these hybrid languages, in which case the
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appropriate clauses for these operators would be as follows (we provide also the clause for E for comparison):

ST x(Eϕ) = ∃z.ST z(ϕ) (z a variable not in ϕ)

ST x(∃y.ϕ) = ∃y.ST x(ϕ)

ST x(↓y.ϕ) = ∃y.(y = x ∧ STx(ϕ))

ST x(Σy.ϕ) = ∃y.ST y(ϕ)

ST x(⇓y.ϕ) = ∃z.∃y.(y = x ∧ ST z(ϕ)) (z a variable not in ϕ).

The main result in [31] is that these binders form an expressive hierarchy. If we let < stand for the relation
“is strictly less expressive than” then we have that H(↓) < H(∃) < H(⇓) and H(E) < H(Σ) < H(⇓). The
expressivity inclusions are proved using the following equivalences:

↓x.ϕ ≡ ∃x.(x ∧ ϕ)

∃x.ϕ ≡ ⇓z.⇓x.(z ∧ ϕ) (z a variable not in ϕ)

Eϕ ≡ Σz.ϕ (z a variable not in ϕ)

Σx.ϕ ≡ ⇓z.⇓x.(x ∧ ϕ) (z a variable not in ϕ).

Moreover, the equivalence ⇓x.ϕ ≡ ↓x.Eϕ shows that H(⇓) ≤ H(↓,E) and hence any language containing
an operator from each of the two “branches” in the hierarchy is expressively equivalent to ⇓. The strictness
of the hierarchy is proved in [31] using different variants of bisimulations, preserving truth of formulas of the
various languages.

In [141,142], Tzakova explores some examples of very expressive hybrid languages with binding operators
in more detail, both axiomatically and by means of tableaux systems.

We turn now from motivation and historical remarks to recent developments and the current state of the
field.

3 Model Theory

Many different hybrid languages were introduced in the previous sections. In this section, we will discuss
two languages in more detail, namely H(@) and H(@, ↓). These two hybrid languages have received most
attention in recent literature, and the proofs of the results we will discuss can usually be adapted to other hybrid
languages.

3.1 Completeness

One of the most important motivations for the study of hybrid logics has been that the addition of nominals
to the modal language makes it possible to prove very general completeness results, using a straightforward
adaptation of the Henkin construction for first-order logic.

Definition 3.1 The logic KH(@,↓) is the smallest set of H(@, ↓) formulas that includes all axioms, and is
closed under the rules, given in Figure 2. Given a set Σ of H(@, ↓) formulas, KH(@,↓) + Σ is the logic
obtained by adding all formulas in Σ as axioms to KH(@,↓), and closing again under the rules in Figure 2.
Given a set of H(@)-formulas Σ, KH(@) and KH(@) +Σ are defined analogous to KH(@,↓) and KH(@,↓) +Σ,
except without the DA axiom scheme (note that this is the only axiom or rule in which ↓ occurs).

One note should be made, concerning the substitution rule (Subst). By this rule, one cannot only replace
propositional variables uniformly by arbitrary formulas, but one can also replace nominals uniformly by other
nominals (note that substituting nominals by formulas does not preserve validity in general).
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Axioms:

(CT) All classical tautologies
(K2) ` [R](ϕ→ ψ) → [R]ϕ→ [R]ψ
(K@) ` @i(ϕ→ ψ) → @iϕ→ @iψ
(Selfdual@) ` @iϕ↔ ¬@i¬ϕ
(Ref@) ` @ii
(Agree) ` @i@jϕ↔ @jϕ
(Intro) ` i→ (ϕ↔ @iϕ)
(Back) ` 〈R〉@iϕ→ @iϕ
(DA) ` @i(↓x.ϕ↔ ϕ[x/i])

Rules:

(MP) If ` ϕ and ` ϕ→ ψ then ` ψ
(Subst) If ` ϕ then ` ϕσ, for σ a substitution
(Gen@) If ` ϕ then ` @iϕ
(Gen2) If ` ϕ then ` [R]ϕ
(Name) If ` @iϕ and i does not occur in ϕ, then ` ϕ
(BG) If ` @i〈R〉j → @jϕ, j 6= i and j does not occur in ϕ, then ` @i[R]ϕ

Fig. 2. Axioms and rules for KH(@,↓)

We call an axiomatization complete with respect to a class of frames, if for all formulas ϕ of the relevant
language, ϕ is derivable in the axiomatization iff ϕ is valid on the given frame class. An axiomatization is
strongly complete with respect to a frame class if for every set of formulas Σ and formula ϕ of the relevant
language, Σ |=loc ϕ iff there are ψ1, . . . , ψn ∈ Σ such that ψ1 ∧ · · · ∧ ψn → ϕ is derivable.

The following completeness result is taken from [34], but slight variations of it can be found already in [37].
Recall that a formula is pure if it contains no propositional variables (but may possibly contain nominals).

Theorem 3.2 (Pure completeness)

(i) Let Σ be any set of pure H(@)-formulas. Then KH(@) + Σ is strongly complete for the class of frames
defined by Σ.

(ii) Let Σ be any set of pureH(@, ↓)-formulas. Then KH(@,↓)+Σ is strongly complete for the class of frames
defined by Σ.

By the frame class defined by Σ, we mean the class of frames on which each formula in Σ is valid. Many frame
properties can be defined using pure hybrid formulas, including properties such as irreflexivity, that cannot be
defined in the basic modal language. A precise characterization of frame properties definable by pure formulas
will be given in Section 3.2.3.

The proof of Theorem 3.2 trades heavily on the presence of the (Name) and (BG) rules. In [34], Blackburn
and ten Cate show that, in the case of H(@, ↓), these rules (which are non-orthodox in the sense that they
involve syntactic side conditions) can be replaced by

(Name↓) ` ↓s.(s→ ϕ) → ϕ provided that s does not occur in ϕ

(BG↓) ` @i[R]↓s.@i〈R〉s
(Gen↓) If ` ϕ then ` ↓s.ϕ.

and an axiomatization with only orthodox rules is obtained, for which Theorem 3.2 still holds. In the case of
H(@), on the other hand, the (Name) and (BG) rule cannot be eliminated. More precisely, every axiomatization
for H(@) that is complete for arbitrary pure extensions contains either infinitely many rules or rules with side
conditions [34].
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Part of the present section will be devoted to a proof of Theorem 3.2. However, before we start, we will
mention some other, complementary completeness results.

Theorem 3.2 resembles in spirit the Sahlqvist completeness theorem for modal logic (cf. Chapter ?? of
this handbook). This raises the question of how pure formulas and Sahlqvist formulas relate, both in terms of
expressive power and in terms of proof theoretic behaviour. As it turns out, for every modal Sahlqvist formula
ϕ there is a pure sentence ψ ofH(@, ↓) that defines the same frame class as ϕ, and, moreover, ψ can be picked
such that ϕ → ψ is provable in KH(@,↓)

4 . It follows from this observation that every extension of KH(@,↓)
with modal Sahlqvist axioms is complete.

However, there are frame properties that can be defined by modal Sahlqvist formulas but not by pureH(@)-
formulas. For example, no set of pure H(@)-formulas defines the same frame class as the modal Sahlqvist
formula (CR) 32p→ 23p. This makes the following result, proved in [140], interesting.

Theorem 3.3 (Sahlqvist completeness) Let Σ be any set of modal Sahlqvist formulas. Then KH(@) + Σ is
strongly complete for the class of frames defined by Σ.

Completeness does not hold for arbitrary combinations of pure formulas and modal Sahlqvist formulas. Con-
sider the Sahlqvist axiom (CR) given above and the pure formula (NoGrid) 3(i ∧ 3j) → 2(3j → i). The
incompleteness of KH(@) + {(CR), (NoGrid)} is proved in [140] using a general frame argument.

It should be noted that, when converse modalities are added to the language (as in the basic tense logic),
modal Sahlqvist formulas can be translated into pureH(@) formulas. And, indeed, in this case axiomatizations
combining pure formulas and modal Sahlqvist formulas are always strongly complete for the relevant frame
class [81,136].

There are a number of well known complete modal logics that cannot be axiomatized by means of Sahlqvist
formulas, including PDL, GL and Grz. One might ask what happens when nominals and satisfaction operators
are added to these logics. The following result, proved in [20,136], provides a partial answer. It shows that, un-
der certain condition, a complete axiomatization of a modal logic can be turned into a complete axiomatization
of the corresponding hybrid logic (in the language H(@)). Recall that a modal logic has a master modality if
there is a modality [∗] that satisfies the S4 axioms, such that [∗]p → [R]p is derivable for all other modalities
[R] in the language (see also Chapter ?? and ?? of this handbook). Furthermore, recall the notion of admitting
filtration defined in Chapter ?? of this handbook. Informally, a logic defined over a class of frames K admits
filtration if each formula ϕ can be associated with a set of formulas Σϕ (the “filtration set” of ϕ) such that for
each model M based on a frame in K, and for each formula ϕ, there is a filtration of M over Σϕ of which the
underlying frame is in K.

Theorem 3.4 Let Σ be any set of modal formulas such that the modal logic K+Σ is complete, admits filtration
and has a master modality. Then KH(@) + Σ is also complete.

GL, Grz and PDL all meet the requirements of Theorem 3.4. Incidentally, a similar transfer result cannot
exist for H(@, ↓). Indeed, the H(@, ↓)-logic of the frame class defined by GL (i.e., the class of transitive and
conversely well-founded frames) is not recursively axiomatizable [136].

We now prove Theorem 3.2 using a technique similar to that used in a standard, Henkin-style completeness
proof for first-order logic [58]. The general argument runs as follows: we will show that every consistent set
of formulas can be extended to a maximal consistent set satisfying certain properties. Next, we will construct
out of each such maximal consistent set a model, whose domain consists of equivalence classes of nominals.
Finally, we show that the constructed model satisfies the original set of formulas, and that the underlying frame
satisfies the relevant frame conditions.

The proof of the following lemma is straightforward.

Lemma 3.5 The following formulas and rule are derivable in KH(@) + Σ.

4 This essentially follows from the proof by substitutions of the Sahlqvist correspondence theorem (cf. Chapter ?? of this hand-
book), since the substitutions used only involve a bounded form of quantification. See Section 3.2 for more information on the tight
relationship between bounded quantification and H(@, ↓).
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(i) ` @jk → (@jψ ↔ @kψ)

(ii) ` @j(ψ1 ∧ ψ2) ↔ @jψ1 ∧@jψ2

(iii) ` @j¬ψ ↔ ¬@jψ

(iv) ` @j@kψ ↔ @kψ

(v) ` @j〈R〉k ∧@kψ → @j〈R〉ψ
(vi) If ` @i〈R〉j ∧@jϕ→ ψ then ` @i〈R〉ϕ→ ψ, provided i 6= j and j does not occur in ϕ or ψ.

We can now prove a Lindenbaum Lemma that shows how to extend any consistent set of formulas to a maxi-
mally consistent set, but in addition we will ensure that all diamonds are “witnessed” by nominals.

Lemma 3.6 Every KH(@,↓) + Σ-consistent set Γ can be extended to a maximal KH(@,↓) + Σ-consistent set
Γ+ such that

(i) One of the elements of Γ+ is a nominal;

(ii) For all @i〈R〉ϕ ∈ Γ there is a nominal j such that @i〈R〉j ∈ Γ and @jϕ ∈ Γ.

Proof. By expanding the language with countably many nominals, we can ensure that there are infinitely
many nominals that do not occur in Γ, while preserving consistency of Γ. Let (in)n∈N be an enumeration of
the nominals of the extended language, and let (ϕn)n∈N be an enumeration of all H(@, ↓)-formulas of the
extended language. We will construct Γ+ as the limit of an infinite sequence Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · .

Let Γ0 denote Γ ∪ {i}, for some nominal i not occurring in Γ. Then Γ0 is consistent, for suppose not.
Then there are ϕ1, . . . , ϕn such that `KH(@,↓)+Σ i → ¬(ϕ1 ∧ · · · ∧ ϕn). By the (Gen@) rule and the (K@)
axiom, it follows that `KH(@,↓)+Σ @ii → @i¬(ϕ1 ∧ · · · ∧ ϕn). By the (Ref@) axiom and the (MP) rule,
`KH(@,↓)+Σ @i¬(ϕ1 ∧ · · · ∧ ϕn), and hence, by the (Name) rule, `KH(@,↓)+Σ ¬(ϕ1 ∧ · · · ∧ ϕn). But this
contradicts the fact that Γ is consistent.

For k ∈ N, define Γk+1 as follows:

(i) Γk+1 = Γk if Γk ∪ {ϕk} is KH(@,↓) + Σ-inconsistent,

(ii) otherwise
(a) Γk+1 = Γk ∪ {ϕk} if ϕk is not of the form @i〈R〉ψ.
(b) Γk+1 = Γk ∪ {ϕk,@i〈R〉im,@imψ} if ϕk is of the form @i〈R〉ψ, where im is the first nominal that

does not occur in Γk or ϕk.

Each step preserves consistency: if Γk is KH(@,↓) + Σ-consistent, then so is Γk+1. The only non-trivial case
is (ii.b), and we will prove that also in this case, consistency is preserved.

Let Γk ∪ {ϕk} be KH(@,↓) + Σ-consistent, let ϕk be of the form @i〈R〉ψ, and suppose for the sake
of contradiction that Γk+1 = Γk ∪ {ϕk,@i〈R〉im,@imψ} is not KH(@,↓) + Σ-consistent. Then there are
ϕ1, . . . , ϕn ∈ Γk such that `KH(@,↓)+Σ (ϕk ∧@i〈R〉im ∧@imψ) → ¬(ϕ1 ∧ · · · ∧ ϕn). It follows by the last
clause of Lemma 3.5 that `KH(@,↓)+Σ ϕk → ¬(ϕ1 ∧ · · · ∧ϕn). But this contradicts the fact that Γ+ ∪ {ϕk} is
KH(@,↓) + Σ-consistent. We conclude that Γk is consistent.

Since KH(@,↓) +Σ-consistency is preserved at each stage, it follows that Γ+ =
⋃

n∈IN Γn is KH(@,↓) +Σ-
consistent. It is easy to see that Γ+ also satisfies the other requirements in Lemma 3.6. 2

We can proceed with the proof of Theorem 3.2.

Proof of Theorem 3.2. We first treat the case ofH(@, ↓). Let Γ be a KH(@,↓) +Σ consistent set ofH(@, ↓)-
formulas and Γ+ a maximal KH(@,↓) + Σ-consistent set of H(@, ↓)-formulas extending Γ, satisfying the
conditions of Lemma 3.6. For i ∈ NOM, let [i] = {j | @ij ∈ Γ+}.

Define the hybrid model M = 〈W, (RM)R∈REL, V 〉, where W = {[i] | i is a nominal occurring in Γ+},
RM = {([i], [j]) | @i〈R〉j ∈ Γ+}, V (p) = {[i] | @ip ∈ Γ+} and V (i) = {[i]}.

Now, for all H(@, ↓)-formulas ϕ and nominals i, M, [i] |= ϕ iff @iϕ ∈ Γ+. This truth lemma can be
proved by a straightforward induction on ϕ, using the properties of Γ+ and Lemma 3.5. For the inductive step
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for formulas of the from ↓x.ψ, we use the fact that Γ+ contains all substitution instances of the (DA) axiom.
It follows that M, [i] |= Γ+, for i ∈ Γ+ (recall that one of the elements of Γ+ is a nominal). Since M is a

named model (i.e., every point is named by a nominal) and Γ+ contains all substitution instances of elements
of Σ, all formulas in Σ are valid on the underlying frame of M. We conclude that Γ is satisfiable on the class
of frames defined by Σ.

For KH(@) + Σ, the same argument applies. Note that the (DA) axiom was only used in the truth lemma,
for the inductive step for formulas of the form ↓x.ϕ. 2

In the above completeness proof, the role of the non-orthodox rules (Name) and (BG) is to ensure the existence
of a named model. Named models have played a crucial role in the development of the model theory of hybrid
languages. As we commented in Section 2.2, they were already used by the Sofia school in their axiomatic
investigations for combinatory PDL. They are closely related to the notion of a discrete general frame, and
with the work of Venema [144] completeness for modal logics containing the difference operator D.

3.2 Expressive Power and Characterization

In this section, we investigate the expressive power of the hybrid languages H(@) and H(@, ↓), both on the
level of models and on the level of frames, and we compare it to the basic modal language and the first-order
correspondence language. For further details on the results discussed in this section see [8,136].

3.2.1 Correspondence language and standard translations
¿From the point of view of first-order logic, nominals are nothing more than constants: they designate elements
of the domain of the model. The first-order correspondence language of hybrid logic is therefore most naturally
defined as follows.

Definition 3.7 The first-order correspondence language for hybrid logic is the first-order language with equal-
ity that contains a unary predicate P for each propositional variable p ∈ PROP, a binary relation symbol for
each modality R ∈ REL and a constant for each nominal i ∈ NOM.

Any hybrid model M = 〈M, (RM)R∈REL, V 〉 can be regarded as a model for the first-order correspondence
language. The accessibility relations RM are used to interpret the binary relation symbols, unary predicates
are interpreted as the subsets that V assigns to the corresponding propositional variables, and constants are
interpreted as the worlds that the corresponding nominals name. In what follows, we will not distinguish
between hybrid models and models for the first-order correspondence language, and we will use the notation
M = 〈M, (RM)R∈REL, V 〉 for both.

The Standard Translation from modal logic into the first-order correspondence language (cf. Chapter ??
of this handbook) can be extended to hybrid languages. The translation for the hybrid language H(E,@, ↓) is
given in Figure 3 (left column), where s, t ∈ NOM∪SVAR, p ∈ PROP, and R ∈ REL. Here, we conveniently
identify the state variables of hybrid logic with the variables of the first-order correspondence language.

Proposition 3.8 (ST preserves truth) For all hybrid formulas ϕ, hybrid models M, states w ∈ M and
assignments g, M, g,m |= ϕ iff M, gx

m |= ST x(ϕ), where x is a variable not occurring in ϕ.

As it turns out, there is also a converse translation, mapping formulas of the first-order correspondence lan-
guage to formulas of H(E,@, ↓). It is given in the right column in Figure 3.

Proposition 3.9 (HT preserves truth) Let ϕ be a formula of the first-order correspondence language. Then
for every model M, assignment g and for any state w, M, gx

w |= ϕ iff M, g, w |= ↓x.HT (ϕ).

It follows that H(E,@, ↓) is as expressive as the first-order correspondence language. In fact, the satisfaction
operators can be defined in terms of E (namely, @iϕ is equivalent to E(i∧ϕ)), and thereforeH(E, ↓) is already
as expressive as the first-order correspondence language 5 . This leaves the question open of what is the range

5 A similar translation can be given for H(@, ∀), see [32].
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ST t(>) = >
ST t(s) = (t = s)
ST t(p) = P (t)
ST t(¬ϕ) = ¬ST t(ϕ)
ST t(ϕ ∧ ψ) = ST t(ϕ) ∧ ST t(ψ)
ST t(〈R〉ϕ) = ∃y.(R(t, y) ∧ ST y(ϕ))
ST t(Eϕ) = ∃y.STy(ϕ)
ST t(@sϕ) = ST s(ϕ)
ST t(↓z.ϕ) = ∃z.(z = t ∧ ST t(ϕ))
where y a variable distinct from the term
t and not occurring in ϕ

HT (>) = >
HT (R(s, s′)) = @s〈R〉s′
HT (P (s)) = @sp
HT (s = t) = @st
HT (¬ϕ) = ¬HT (ϕ)
HT (ϕ ∧ ψ) = HT (ϕ) ∧HT (ψ)
HT (∃x.ϕ) = E↓x.HT (ϕ)

Fig. 3. Standard Translation ST and Hybrid Translation HT

of ST for languages weaker than H(E,@, ↓), i.e., which formulas of the first-order correspondence language
are (equivalent to) translations of formulas of these hybrid languages? We will discuss this issue in the next
section.

3.2.2 Characterizing expressivity on models
In this section, we address in detail the question of which formulas of the first-order correspondence language
are equivalent to (standard translations of) hybrid formulas.

First, let us generalize the notion of bisimulation to hybrid languages.

Definition 3.10 Let M = 〈M, (RM)R∈REL, V 〉 and N = 〈N, (SN )S∈REL, U〉 be hybrid models. A hybrid
bisimulation between M and N is a non-empty binary relation Z ⊆ M ×N such that the following clauses
hold

(atom) If Z(m,n), then m ∈ V (p) iff n ∈ U(p), for p ∈ PROP ∪ NOM.

(nom) If V (i) = {m} and U(i) = {n} then Z(m,n), for i ∈ NOM.

(forth) If Z(m,n) and RM(m,m′), then there is an n′ ∈ N such that SN (n, n′) and Z(m′, n′).

(back) If Z(m,n) and SN (n, n′), then there is an m′ ∈M such that RM(m,m′) and Z(m′, n′).

A formula ϕ(x1, . . . , xn) of the first-order correspondence language is said to be invariant for bisimulations if
for all bisimulationsZ between hybrid modelsM andN and for all assignments g and hwithZ(g(xk), h(xk))
for k = 1 . . . n, it is the case that M, g |= ϕ iff N , h |= ϕ.

Theorem 3.11 A formula ϕ of the first-order correspondence language with at most one free variable x is
equivalent to the standard translation of an H(@)-formula iff ϕ is invariant under hybrid bisimulations.

The proof is a straightforward generalization of the one for the basic modal language. As a corollary of
Theorem 3.11, we obtain the following syntactic characterization.

Corollary 3.12 A formula ϕ of the first-order correspondence language with at most one free variable x is
equivalent to the standard translation of an H(@)-formula iff ϕ is equivalent to a formula generated by the
following recursive definition, where t is a term (constant or variable), c is a constant, and x is a variable
distinct from t:

ϕ ::= > | P (t) | t = c | ¬ϕ | ϕ ∧ ψ | ∃x.(R(t, x) ∧ ϕ).

Proof. One direction of the claim follows from the fact that ST (ϕ) is of the given form, for each H(@)-
formula ϕ. As for the other direction, a straightforward induction shows that every first-order formula of
the given form is invariant under hybrid bisimulations, and hence every such formula with at most one free
variable is equivalent to (the standard translation of) an H(@)-formula. 2
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Let us now consider the language H(@, ↓). First, we will give a syntactic characterization (see [8] for details).
Call a first-order formula bounded if it is built up from atomic formulas using the Boolean connectives and
bounded quantification of the form ∃x.(R(s, x) ∧ ·) or ∀x.(R(s, x) → ·), where s is a term distinct from the
variable x.

Theorem 3.13 A formula ϕ of the first-order correspondence language with one free variable is equivalent to
the standard translation of a H(@, ↓) sentence iff ϕ is equivalent to a bounded formula.

Proof. The standard translation of an H(@, ↓) sentence is always a bounded formula of the correspondence
language. Conversely, we can extend the translation HT given in Figure 3 with the following clause for
bounded quantification:

HT (∃x.(R(s, x) ∧ ψ)) = @s〈R〉↓x.HT (ψ).

In this way, we obtain, for each bounded formula ϕ of the first-order correspondence language, an H(@, ↓)-
formula HT (ϕ). Moreover, a straightforward inductive argument shows that HT (ϕ) is equivalent to ϕ, in the
sense of Proposition 3.9. Recall that the formula ϕ in the statement of the Theorem contains at most one free
variable x, and let ϕ′ be any bounded formula equivalent to ϕ. It follows that ϕ′ (and hence ϕ) is equivalent to
STx(↓x.HT (ϕ′)). 2

In other words, H(@, ↓) corresponds to the bounded fragment of first-order logic. By means of the notion of
generated submodels, we can semantically characterize this fragment.

Definition 3.14 Let M = 〈M, (RM)R∈REL, V 〉 and N = 〈N, (RN )R∈REL, V
′〉 be hybrid models. Then N

is a generated submodel of M if N ⊆ M and for all w, v ∈ M and relation Ri, if w ∈ N and Ri(w, v)
then v ∈ N , while R′i and V ′ are the restrictions of Ri and V to N respectively. A formula ϕ is invariant
for generated submodels if for all models M, N such that N is a generated submodel of M, and for all
N -assignments g, M, g |= ϕ if and only if N , g |= ϕ.

Theorem 3.15 A formula ϕ of the first-order correspondence language is invariant under generated submod-
els iff ϕ is equivalent to a bounded formula.

Proof. Suppose a first-order formula ϕ is invariant under generated submodels. For convenience, we assume
that ϕ is a sentence (free variables can be replaced by new constants). Let c1, . . . , ck be the constants and
R1, . . . , Rm be the binary relations occurring in ϕ, and let P be a new unary predicate. We will use R(s, t) as
a shorthand for

∨
1≤i≤mRi(s, t). Then the following holds:

{∀x.(Rn(cl, x) → P (x)) | 1 ≤ l ≤ k and n ∈ IN} |= ϕ↔ ϕP ,

whereRn(x, y) is a shorthand for a bounded formula which expresses that y can be reached from x in exactly n
steps alongR (i.e., ∃x1(R(x, x1)∧∃x2(R(x1, x2)∧· · · (· · ·∧xn = y) · · · ))) and ϕP is the result of relativising
all quantifiers in ϕ by P (that is, ∃x.ϕ becomes ∃x.(P (x) ∧ ϕ) and ∀x.ϕ becomes ∀x.(P (x) → ϕ)). By
compactness, it follows that there is an m ∈ IN such that

∀x.(
( ∨

1≤l≤k

R≤m(cl, x)
)
→ P (x)) |= ϕ↔ ϕP .

Let ϕ′ be the result of relativising all quantifiers in ϕ by the formula
( ∨

1≤l≤k(R
≤m(cl, x))

)
. It follows that

|= ϕ↔ ϕ′. Finally, ϕ′ is (modulo some simple syntactic manipulations) a bounded sentence. 2

This result was first proved in the sixties by Feferman and Kreisel [61,59], and was independently proved by
Areces, Blackburn and Marx [8] in the context of hybrid logic.

For any model M and world w, let Mw denote the smallest generated submodel of M containing w. In
fact, it is easy to see that the domain of M contains precisely those worlds that are reachable in finitely many
steps from w or from a world named by a nominal. As a corollary of the above results, we know that M, w
andMw, w agree on all sentences ofH(@, ↓). If we combine this with the fact that all first-order formulas are
invariant under potential isomorphisms, we obtain the following:
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Proposition 3.16 LetM andN be models, with corresponding statesw, v. If there is a potential isomorphism
between Mw and Nv connecting w to v, then M, w and N , v agree on all H(@, ↓)-sentences.

While the converse does not hold in general, it does hold on ω-saturated models. This means that “potential
isomorphisms between point-generated submodels” capture H(@, ↓)-indistinguishability in exactly the same
way that potential isomorphisms capture first-order indistinguishability.

3.2.3 Characterizing frame definability
Given a set of hybrid formulas Σ, we say that the frame class defined by Σ is the class of frames in which
every formula of Σ is valid. We say that a frame class is elementary (or first-order definable) if it is defined by
a first-order sentence, in the language with equality and a relation symbol for each R ∈ REL. The Goldblatt-
Thomasson theorem tells us that an elementary frame class is definable by a set of formulas of the basic modal
language iff the class is closed under disjoint unions, generated subframes, and bounded morphic images, and
its complement is closed under ultrafilter extensions (see Chapter ?? of this handbook for this result and for a
definition of the notions involved). In this section, we discuss analogues of this result for hybrid languages.

Due to the increased expressivity of hybrid languages, frame classes definable by hybrid formulas are in
general not closed under disjoint unions or bounded morphic images. For example, the class of irreflexive
frames, which is not closed under bounded morphic images, is defined in H(@) by the formula i → ¬3i,
and the class of frames that have exactly one element, which is not closed under disjoint unions, is defined by
the formula i. Nevertheless, frame classes definable in H(@) are closed under generated subframes, and their
complement is closed under ultrafilter extensions. In fact, a slightly stronger closure condition holds, involving
a restricted form of bounded morphisms.

Definition 3.17 Let F and G be frames, and let ueG be an ultrafilter extension of G. G is an ultrafilter morphic
image of F if there is a surjective bounded morphism f : F → ueG such that |f−1(u)| = 1 for all principal
ultrafilters u ∈ ueG.

Note first that whenever G is an ultrafilter morphic image of a frame F , ueG is a bounded morphic image of F .
It follows that the validity of modal formulas is preserved under taking ultrafilter morphic images. Secondly,
note that every frame is an ultrafilter morphic image of its ultrafilter extension. Hence, if a property of frames
is preserved under ultrafilter morphic images, its complement is preserved under taking ultrafilter extensions.

Proposition 3.18 All frame classes definable by a set of H(@)-formulas are closed under taking ultrafilter
morphic images.

Proof. Let ϕ be an H(@)-formula, let f : F → ueG be a surjective ultrafilter morphism, and suppose G 6|= ϕ.
We will show that F 6|= ϕ.

Let V be a valuation and w a world such that 〈G, V 〉, w 6|= ϕ. Define the valuation V ue on ueG such that
V ue(p) = {u | V (p) ∈ u} for all propositional variables p and V ue(i) = {u | V (i) ∈ u} for all nominals i.
It is easily seen that V ue assigns to each nominal a singleton set consisting of a principal ultrafilter, and hence
V ue is a well-defined hybrid valuation. Moreover, a standard argument [28, Proposition 2.59] shows that for all
worlds v and formulas ψ, 〈G, V 〉, v |= ψ iff 〈ueG, V ue〉, πv |= ψ, where πv is the principal ultrafilter generated
by v. It follows that 〈ueG, V ue〉, πw 6|= ϕ.

Next, define the valuation V ′ forF such that V ′(p) = {v | f(v) ∈ V ue(p)} for all propositional variables p
and V ′(p) = {v | f(v) ∈ V ue(i)} for all nominals i. Since f is injective on principal ultrafilters and nominals
denote principal ultrafilters in ueG, V ′(i) is a singleton for all nominals i, and hence 〈F , V ′〉 is a well-defined
hybrid model. Furthermore, a standard argument shows that (the graph of) f is a hybrid bisimulation between
ueG and F . Since f is surjective, there is a u ∈ F such that f(u) = πw. By invariance under hybrid
bisimulations, 〈F , V ′〉, u 6|= ϕ, and hence F 6|= ϕ 2

We can strengthen Proposition 3.18 to the following characterization of frame definability in H(@) [136].

Theorem 3.19 An elementary class of frames is definable by a set of H(@) formulas iff it is closed under
taking ultrafilter morphic images and generated subframes.
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Proof. The easy direction is already discussed above: every frame class defined by a set of H(@)-formulas is
closed under taking ultrafilter morphic images and generated subframes. We will now prove the hard direction.
Let K be any elementary frame class closed under taking ultrafilter morphic images and generated subframes,
and let Th(K) be the set ofH(@)-formulas valid onK. To show thatK isH(@)-definable, it suffices to show
that Th(K) itself defines K.

Suppose that F |= Th(K) for some frame F with domain W . For each subset A ⊆ W , introduce a
propositional variable pA, and for each w ∈ W , introduce a nominal iw. 6 Let ∆ be the set consisting of the
following formulas, for all A ⊆W , v ∈W and R ∈ REL.

p−A ↔ ¬pA

pA∩B ↔ pA ∧ pB

pR−1(A) ↔ 〈R〉pA where R−1(A) = {w ∈W | ∃v ∈ A such that wRv}
iv ↔ p{v}.

Let ∆F = {@iv [Ri1 ] · · · [Rin ]δ | v ∈ W, δ ∈ ∆, and Ri1 , . . . , Rin ∈ REL with n ∈ IN}. Intuitively, ∆F
provides a full description of the frame F . Clearly, ∆F is satisfiable on F under the natural valuation that
sends pA to A and iv to {v}. We claim that ∆F is satisfiable on K. By compactness (recall that K is
elementary), it suffices to show that every finite conjunction δ of elements of ∆F is satisfiable on K. But this
follows immediately: δ is satisfiable on F and F |= Th(K), hence ¬δ 6∈ Th(K), i.e., δ is satisfiable on K.

Let 〈G, V 〉 |= ∆F with G ∈ K. Since K is closed under generated subframes, we may assume that G
is generated by the set of points that are named by a nominal. It then follows that the model 〈G, V 〉 globally
satisfies ∆. Let 〈G∗, V ∗〉 be an ω-saturated elementary extension of 〈G, V 〉 (such elementary extensions are
known to exist even in the case of uncountable vocabularies). By elementarity, G∗ ∈ K and 〈G∗, V ∗〉 globally
satisfies ∆.

It can be shown that ueF is an ultrafilter morphic image of G∗, where the ultrafilter morphism f is given
by f(v) = {A ⊆ W | 〈G∗, V ∗〉, v |= pA}. See [136] for further details. Since K is closed under ultrafilter
morphic images, we conclude that F ∈ K. 2

As we already discussed earlier, there is a particular interest in frame conditions definable by pure formulas,
since these immediately yield complete axiomatizations. It would be worth having a characterization of the
properties of frames that can be defined using pure formulas only. Details for such results can be found
in [136], here we only state one theorem.

Definition 3.20 We say that a bisimulationZ between framesF = 〈F, (RF )R∈REL〉 and G = 〈G, (RG)R∈REL〉
respects a set X of elements of G if for all x ∈ X ,

(i) Z(w, x) and Z(v, x) implies w = v, and

(ii) Z(w, x) and Z(w, v) implies v = x.

A bisimulation system from F to G is a function f that assigns to each finite subsetX ⊆ G a total bisimulation
f(X) ⊆ F ×G respecting X .

Theorem 3.21 A class of frames is defined by a pure H(@)-formula iff it is elementary and closed under
taking images of bisimulation systems.

An example of a frame condition that is not preserved under taking images of bisimulation systems is the
Church-Rosser property.

Proposition 3.22 The frame condition ∀xyz.(R(x, y) ∧R(x, z) → ∃u.(R(y, u) ∧R(z, u))) is not preserved
under images of bisimulation systems.

6 Technically, this might involve adding uncountably many propositional variables and nominals to the language. However, this will
not cause any problems below. Of course, individual formulas can only contain finitely many propositional variables and nominals.
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Fig. 4. Church-Rosser is not definable by pure formulas

Proof. Consider the two frames F1 = 〈F1, R
F1〉 and F2 = 〈F2, R

F2〉 shown in Figure 4. Notice that F1 is
identical to F2, except for the additional point u (and its incoming and outgoing arrows). For any finite set
X ⊆ F2, let f(X) = {(w,w) | w ∈ F1} ∪ {(u,wk), (u, vl)}, for some wk, vl 6∈ X (note that such wk and
vl always exist). As is not hard to see, f is a bisimulation system. However, F1 satisfies the frame condition,
while F2 does not. 2

It follows that the Church-Rosser property cannot be defined by pure formulas of H(@). A similar example is
the class of transitive and atomic frames (where atomicity means that ∀x.∃y.(R(x, y) ∧ ∀z.(R(y, z) → z =
y))). This class of frames is defined by the modal formula (33p → 3p) ∧ (23p → 32p), but it cannot be
defined by means of pure H(@)-formulas, since it is not closed under images of bisimulation systems.

Finally, let us consider the language H(@, ↓). Interestingly, here the difference in frame definable power
between pure formulas and arbitrary formulas is much smaller. In fact, every elementary frame property that
can be defined by a set of H(@, ↓)-sentences can already be defined by means of a single pure H(@, ↓)-
sentence. A precise characterization is given in the following theorem.

Definition 3.23 A frame F is a finitely generated subframe of a frame G, if there is a finite set X of elements
of the domain of G, such thatF is the submodel of G generated byX (i.e., such thatF is the smallest generated
submodel of G whose domain contains all elements of X).

We say that a frame class K reflects finitely generated subframes whenever it is the case for all frames F
that, if every finitely generated subframe of F is in K, then F ∈ K.

Theorem 3.24 Let K be an elementary frame class. Then the following are equivalent:

(i) K is defined by a set of H(@, ↓) sentences.

(ii) K is defined by a single pure H(@, ↓) sentence.

(iii) K is closed under taking generated subframes, and reflects finitely generated subframes.

This result can be extended to formulas containing only a limited number of nominals: let us say that
a frame class K reflects n-point generated subframes whenever it is the case for all frames F that, if every
subframe of F generated by at most n elements is in K, then F ∈ K. Then Theorem 3.24 can be refined to
the following result [8,136].

Theorem 3.25 Let K be an elementary frame class and n ∈ IN. Then the following are equivalent:

(i) K is defined by a set of H(@, ↓) sentences containing (all together) at most n nominals.

(ii) K is defined by a single pure H(@, ↓) sentence containing at most n nominals.

(iii) K is closed under taking generated subframes, and reflects (n+ 1)-generated subframes.

Note that every modally definable frame class is closed under generated subframes and reflects point-
generated subframes. It follows by the above result that every elementary modally definable frame class (in
particular, every frame class defined by a modal Sahlqvist formula), is defined by a nominal-free pure sentence
of H(@, ↓).
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Language Frame classes defined by arbitrary formulas Frame classes defined by pure formulas

H closed under ultrafilter morphic images, and if
every point-generated subframe of a frame F is
a proper generated subframe of a frame in the
class, then F is in the class

closed under images of bisimulation systems,
and if every point-generated subframe of a frame
F is a proper generated subframe of a frame in
the class, then F is in the class

H(@) closed under ultrafilter morphic images and gen-
erated subframes

closed under images of bisimulation systems
and generated subframes

H(E) closed under ultrafilter morphic images closed under images of bisimulation systems

H(@, ↓) closed under generated subframes and reflecting
finitely generated subframes.

closed under generated subframes and reflecting
finitely generated subframes.

Fig. 5. Elementary frame classes definable in H, H(@), H(E) and H(@, ↓)

The most important results of this section are summarized in Figure 5 which also contains analogous results
for the languages H and H(E). Again, full details can be found in [136].

3.3 Interpolation and Beth Definability

We will now turn to the properties of interpolation and Beth definability. The results in this section are mainly
based on [8,136].

Recall that the modal logic of a class for frames K has interpolation if whenever ϕ → ψ is valid in K,
then there exists a formula θ (called the interpolant) such that ϕ → θ and θ → ψ are valid in K, and all
propositional variables occurring in θ occur both in ϕ and in ψ 7 . This definition can be generalized to hybrid
logics in two ways, depending on whether only the propositional variables or also the nominals occurring in
the interpolant are required to occur both in ϕ and in ψ. We will say that a hybrid logic has interpolation over
propositional variables or over propositional variables and nominals to distinguish between these definitions.

The basic hybrid language H(@) lacks interpolation over nominals [8], as can be seen by the valid impli-
cation i ∧3i → (j → 3j). An interpolant to this implication (which should express that the actual world is
related to itself) is not allowed to contain any nominals. It is easily seen, using a bisimulation argument, that
no such interpolant exists. Interpolation over proposition variables does hold. In fact, it holds relative to many
frame classes [140,136]:

Theorem 3.26 H(@) has interpolation over propositional variables relative to any frame class definable by
a set of first-order universal Horn sentences.

For H(@, ↓), we have better results: it has interpolation over proposition variables and nominals relative to
many frame classes [8,136]:

Theorem 3.27 H(@, ↓) has interpolation over propositional variables and nominals relative to any frame
class definable by a set of nominal-free H(@, ↓) sentences. Moreover, H(@, ↓) has interpolation over propo-
sition variables relative to any frame class definable by a set of H(@, ↓)-sentences (possibly containing nom-
inals).

Theorem 3.27 covers many frame classes. Indeed, we saw in the previous section that every modally definable
elementary frame class can be defined by a nominal-free sentence of H(@, ↓). It was shown in [30] that
the interpolants can be effectively computed from a tableau proof (see also Section 5.3) 8 . The interpolation
algorithm presented in [30] is conservative: on purely modal input it computes interpolants in which the hybrid
syntactic machinery does not occur.

7 This is sometimes called local interpolation or arrow interpolation, and in particular we are presenting it in its semantic version.
We will not discuss global interpolation.
8 Theorem 3.27 is related to a result by Feferman and Kreisel [61,59] who proved that the bounded fragment of first-order logic has
interpolation by means of a cut free sequent calculus.

21



Given that H(@) lacks interpolation over nominals and H(@, ↓) has it, and given that H(@, ↓) has an
undecidable satisfiability problem (as we will see in the next section), it is natural to ask whether there is any
decidable hybrid language with interpolation over nominals. The answer is negative [135]: every extension of
the minimal hybrid language H (satisfying certain regularity conditions such as allowing substitution of one
nominal by another) either lacks interpolation or is undecidable. Moreover, H(@, ↓) is the least expressive
extension of H(@) (satisfying the same regularity conditions) with interpolation over nominals.

The following can be seen as a weak version of this result. The proof is illustrative.

Theorem 3.28 If H(@) has interpolation over nominals on a frame class K, then H(@) is expressively com-
plete for H(@, ↓) on K (i.e., for each formula ϕ ∈ H(@, ↓), there exist a formula ϕ′ ∈ H(@) such that ϕ and
ϕ′ are equivalent on K).

Proof. Assume that H(@) has interpolation over nominals on K. We will show that every H(@, ↓) sentence
ϕ is equivalent (on K) to an H(@)-formula, proceeding by induction on the length of ϕ. The only interesting
case here is when ϕ is of the form ↓x.ψ(x). Let i and j be nominals not occurring in ↓x.ψ(x). By induction,
we know that ψ(i) and ψ(j) are equivalent toH(@)-formulas ψ′(i) and ψ′(j) respectively. Now, the following
implication is valid:

K |= i ∧ ψ′(i) → (j → ψ′(j)).

Any interpolant θ for this valid implication is equivalent to ↓x.ψ(x). For, consider any model M and world
w such that M, w |= ↓x.ψ(x). Let M[i/w] be the model that differs from M only in the fact that w is the
denotation of i. Since i does not occur in ↓x.ψ(x), we have that M[i/w], w |= ↓x.ψ(x), hence M[i/w], w |=
i ∧ ψ(i). It follows that M[i/w], w |= θ. Since i does not occur in θ, it follows that M, w |= θ. Conversely,
suppose M, w |= θ. Let M[j/w] be the model that differs from M only in the fact that j denotes w. Since
j does not occur in θ, we have that M[j/w], w |= θ. It follows that M[j/w], w |= j → ψ(j), and hence
M[j/w], w |= ↓x.ψ(x). Since j does not occur in ↓x.ψ(x), it follows that M, w |= ↓x.ψ(x). 2

To conclude our discussion on interpolation, we consider the notion of uniform interpolants. As is discussed
in Chapter ?? of this handbook, the modal logics K, S5, Grz and GL enjoy a very special form of interpolation,
called uniform interpolation. For any formula ϕ, let PROP(ϕ) be the set of propositional variables occurring
in ϕ. Then a modal logic has uniform interpolation if for every formula ϕ and for any P ⊆ PROP(ϕ), there is
a formula ϕP (called a uniform interpolant) such that for any formula ψ, if PROP(ψ) ∩ PROP(ϕ) ⊆ P and
ϕ→ ψ is derivable, then ϕP → ψ is derivable.

We can generalize the definition to hybrid logics, and say that a hybrid logic has uniform interpolation
over propositional variables if for every formula ϕ and for any P ⊆ PROP(ϕ), there is a formula ϕP such
that for any formula ψ, if PROP(ψ) ∩ PROP(ϕ) ⊆ P , and all nominals occurring in ψ occur in ϕ, then
ϕ→ ψ is valid iff ϕP → ψ is valid. Note the requirement imposed on nominals in this definition. It turns out
that the H(@)-logics of the frame classes corresponding to the modal logics K, S5, Grz and GL have uniform
interpolation over propositional variables [20,136].

Finally, to close this section we turn to the Beth definability property. Recall that a logic is said to have
the Beth Definability property if, intuitively, every implicit definition can be made explicit. More precisely, let
Γ(p) be any set of formulas containing the proposition variables p and possibly other propositional variables
and nominals. Γ(p) defines p implicitly if in all models in which both Γ(p) and Γ(p′) are true at every state,
also p ↔ p′ is true at every state (here, p′ is a propositional variable not occurring in Γ(p), and Γ(p′) is
obtained from Γ(p) by replacing all occurrences of p by p′). In other words, Γ(p) defines p implicitly if
Γ(p) ∪ Γ(p′) |=glo p ↔ p′, where |=glo denotes global entailment. The Beth property states that whenever
Γ(p) defines p implicitly, there exists a formula θ in which p does not occur, such that Γ(p) |=glo p ↔ θ 9 .
Clearly, θ is an explicit definition of p, relative to the theory Γ(p).

The Beth definability property for a logic is typically established as a corollary of the interpolation property
for propositional variables. In particular, the following theorem can be shown using the above interpolation
results.

9 This is sometimes called the global Beth property. We will not discuss the local Beth property here.
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Theorem 3.29 H(@, ↓) has the Beth definability property relative to any frame class defined by a set of
H(@, ↓) sentences, and H(@) has the Beth definability property relative to any frame class defined by a set of
first-order universal Horn formulas.

Surprisingly, the minimal hybrid languageH lacks the Beth property relative to the class of all frames [20].

4 Decidability and Complexity

In this section, we will review the complexity of the satisfiability problem for various hybrid logics. First,
let us consider the language H(@). We start with some good news: the satisfiability problem of H(@) is
PSPACE-complete [6]. We provide a game based argument for the upper bound.

Theorem 4.1 H(@)-satisfiability on the class of all frames is PSPACE-complete.

Proof. We only discuss the mono-modal case (the multi-modal case is a simple extension). The lower bound
follows from the PSPACE-hardness of classical modal logic. We show the upper bound by defining, given a
formula ϕ, the notion of a ϕ-game between two players. We will show that the existential player has a winning
strategy for the ϕ-game iff ϕ is satisfiable. Moreover, every ϕ-game stops after at most as many rounds as
the modal depth of ϕ and the information on the playing board is polynomial in the length of ϕ. This implies
that a PSPACE algorithm exists. Fix a formula ϕ and let k be the number of different nominals appearing in
ϕ. A ϕ-Hintikka set is a maximal consistent set of subformulas of ϕ. We denote the set of subformulas of ϕ
by SF(ϕ). The ϕ-game is played as follows. There are two players, ∀belard (male) and ∃loise (female). She
starts the game by playing a collection {X0, . . . , Xk} of Hintikka sets and specifying a relation R on them.
∃loise loses immediately if one of the following conditions is false:

(i) X0 contains ϕ, and all others Xl contain at least one nominal occurring in ϕ.

(ii) no nominal occurs in two different Hintikka sets.

(iii) for all Xl, for all @iψ ∈ SF(ϕ), @iψ ∈ Xl iff {i, ψ} ⊆ Xk, for some k.

(iv) for all 3ψ ∈ SF(ϕ), if R(Xl, Xk) and 3ψ 6∈ Xl, then ψ 6∈ Xk.

Now ∀belard may choose an Xl and a “defect-formula” 3ψ ∈ Xl. ∃loise must respond with a Hintikka set Y
such that

(i) ψ ∈ Y and for all 3θ ∈ SF(ϕ), 3θ 6∈ Xl implies that θ 6∈ Y .

(ii) for all @iψ ∈ SF(ϕ), @iψ ∈ Y iff {i, ψ} ⊆ Xk, for some k.

(iii) if i ∈ Y for some nominal i, then Y is one of the Hintikka sets she played at the start. In this case the
game stops and ∃loise wins.

If ∃loise cannot find a suitable Y , the game stops and ∀belard wins. If ∃loise does find a suitable Y (one
that is not covered by the halting clause in item (iii) above) then Y is added to the list of played sets, and
play continues. ∀belard must now choose a defect 3ψ from the last played Hintikka set with the following
restriction: in round k he can only choose defects 3ψ such that the modal depth of 3ψ is less than or equal to
the modal depth of ϕ minus k. ∃loise must respond as before. She wins if she can survive all his challenges
(in other words, he loses if he reaches a situation where he cannot choose any more defects).

The ϕ-game stops after at most modal depth of ϕ many rounds. The information on the board is at any
stage of the game polynomial in the length of ϕ. We claim that ∃loise has a winning strategy iff ϕ is satisfiable.

The right-to-left direction is clear: ∃loise has a winning strategy if ϕ is satisfiable, for she need simply
play by reading the required Hintikka sets off the model. For the other direction, suppose ∃loise has a winning
strategy for the ϕ-game. We create a model M for ϕ as follows. The domain M is built in steps by following
her winning strategy. M0 consists of her initial move {X0, . . . , Xn}. Suppose Mj is defined. Then Mj+1

consists of a copy of those Hintikka sets she plays when using her winning strategy for each of ∀belard’s
possible moves played in the Hintikka sets from Mj (except when she plays a Hintikka set from her initial
move, then of course we do not make a copy). Let M be the disjoint union of all Mj for j smaller than the
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modal depth of ϕ. Set R(m,m′) iff for all 3ψ ∈ SF(ϕ), 3ψ 6∈ m ⇒ ψ 6∈ m′ holds, and set V (p) = {m ∈
M | p ∈ m}. The rules of the game guarantee that nominals are interpreted as singletons.

We claim that the following truth-lemma holds. For all m ∈M which she plays in round j (i.e., m ∈Mj),
for all ψ of modal depth less than or equal to the modal depth of ϕ minus j, M,m |= ψ if and only if ψ ∈ m.
We only discuss the case of 3, if 3ψ ∈ m, then ∀belard challenged this defect, so ∃loise could respond with
an m′ containing ψ. Since for all 3ψ ∈ SF(ϕ), 3ψ 6∈ m ⇒ ψ 6∈ m′ holds, we have R(m,m′) and by
induction hypothesis M,m |= 3ψ. If 3ψ 6∈ m but R(m,m′) holds, then by our definition of R, ψ 6∈ m′, so
again M,m 6|= 3ψ. Since ∃loise plays a Hintikka set containing ϕ in the first round, M satisfies ϕ. 2

Since satisfiability of basic modal formulas on the class of all frames is already PSPACE-complete, we can
conclude that, in this case, the addition of nominals does not increase the complexity of the satisfiability
problem (up to a polynomial). This is not always the case:

Proposition 4.2 H-satisfiability on the class of symmetric frames is EXPTIME-complete.

Proof. For any modal formula ϕ, let ϕ′ = i ∧3¬i ∧223i ∧2(¬i→ ϕ¬i), where i is any nominal and ϕ¬i

is obtained from ϕ by relativising all modalities with ¬i (that is, 3ϕ becomes 3(¬i ∧ ϕ) and 2ϕ becomes
2(¬i→ ϕ)). It can be easily seen that if ϕ′ holds at a world w in a symmetric modelM then ϕ holds globally
in the submodel of M generated by w, minus the world w itself. Conversely, a symmetric model on which ϕ
holds globally can easily be turned into a model for ϕ′. It follows that, on symmetric frames, ϕ′ is satisfiable
iff ϕ is globally satisfiable.

The global satisfiability problem for modal formulas on the class of symmetric frames is known to be
EXPTIME-complete [50]. Hence, the satisfiability problem for H on the class of symmetric frames is EXP-
TIME-hard. That the problem is inside EXPTIME will follow from Theorem 4.7. 2

Note that the proof uses only a single nominal. The satisfiability problem for the modal logic of the class
of symmetric frames, KB, is only PSPACE-complete [50]. Hence, assuming PSPACE 6= EXPTIME, adding a
single nominal already makes the satisfiability problem more complex. A similar blowup holds for tense logic:
the satisfiability problem of the basic temporal logic is PSPACE, but the addition of a single nominal moves
the complexity to EXPTIME. The complexity drops though when considering linear or branching time models
(to NP-complete in the first case and to PSPACE-complete in the second) [7].

Adding nominals can even result in logics that are undecidable and lack the finite model property, as was
first observed in the context of description logics [100,103]. The example below is taken from [20]. Consider
the bi-modal language with modalities 〈R1〉 and 〈R2〉, and let KB23 be the frame class defined by the following
modal Sahlqvist formulas:∧

1≤k≤3〈R1〉pk →
∨

1≤k<l≤3〈R1〉(pk ∧ pl) (at most 2 R1-successors)∧
1≤k≤4〈R1〉〈R1〉pk →

∨
1≤k<l≤4〈R1〉〈R1〉(pk ∧ pl) (at most 3 two-step R1-successors)

p→ [R2]〈R2〉p (R2 is symmetric).

Proposition 4.3 The modal logic of KB23 has the finite model property and is decidable.

Proof. First, consider the mono-modal logic axiomatized by the first two axioms. This logic is complete for a
class of frames that is closed under taking subframes, and it has the bounded width property: no point has more
than two successors. It follows that this logic has the finite model property and is decidable. Second, consider
the mono-modal logic given by the last axiom. This logic, which is complete for the class of symmetric
frames, has the finite model property [49] and its satisfiability problem is complete for PSPACE [50]. Since
decidability and the finite model property are preserved under taking fusions [70], the result follows. 2

Proposition 4.4 The H-logic of KB23 is undecidable and lacks the finite model property.

Proof. For any mono-modal formula ϕwith modality 〈R1〉, let ϕ∗ = i∧〈R2〉¬i∧ [R2][R1]〈R2〉i∧ [R2](¬i→
ϕ¬i). Here again ϕ¬i is obtained from ϕ by relativising all modalities with ¬i as above. By the same argument
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Nr. of successors H(@, ↓) First-order correspondence language

κ = 1 NP-complete NExpTime-complete

κ = 2 NP-complete Non-elementary decidable

3 ≤ κ < ω NExpTime-complete Π0
1-complete (co-r.e., not decidable)

κ = ω Σ0
1-complete (r.e., not decidable) Σ1

1-complete (highly undecidable)

κ > ω Π0
1-complete (co-r.e., not decidable) Π0

1-complete (co-r.e., not decidable)

Fig. 6. Complexity of the satisfiability problem on mono-modal models with bounded out-degree

as in the proof of Proposition 4.2, ϕ′ is satisfiable on KB23 iff ϕ is globally satisfiable on the class of (mono-
modal) frames in which each point has at most two successors and at most three two-step successors. Global
satisfiability of modal formulas on the latter frame class is undecidable [133]. It follows that the H-logic of
KB23 is also undecidable, and hence, since it is recursively enumerable (as follows from the elementarity of
KB23), it lacks the finite model property. 2

Next, let us consider the language H(@, ↓). As was observed in [6], H(@, ↓) is a conservative reduction class
of first-order logic. Following [39], we call a fragment of first-order logic a conservative reduction class if
there is a computable translation τ mapping first-order formulas to formulas in the fragment, such that for all
formulas α, τ(α) is satisfiable iff α is, and τ(α) has a finite model iff α has. Every conservative reduction
class has an undecidable (in fact Π0

1-complete) satisfiability problem, as well as an undecidable (in fact Σ0
1-

complete) finite satisfiability problem [39].

Theorem 4.5 H(@, ↓) is a conservative reduction class.

Proof. The class of first-order formulas with equality in a single binary relation is known to be a conservative
reduction class [39]. Now, consider the following translation from this first-order language to H(@, ↓), where
i is a fixed nominal:

(R(x, y))∗ = @x〈R〉y
(x = y)∗ = @xy

(¬ϕ)∗ = ¬ϕ∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

(∃x.ϕ)∗ = @i〈R〉↓x.(ϕ∗).

Clearly, (·)∗ is a computable function. Moreover, a first-order sentence ϕ is satisfiable (in a finite model) iff
ϕ∗ is satisfiable (in a finite model). First, suppose M |= ϕ. Let M′ be the model obtained from M by adding
a new state w, labelled with nominal i, extending the relation R such that (w, v) ∈ R for all states v in the
domain of M . Then, clearly, M′ |= ϕ∗. Moreover, M′ is finite if M is. Conversely, suppose M, w |= ϕ∗.
Let v be the state in M labelled by the nominal i, and let M′ be the submodel of M whose domain consists
of all successors of v. Then, clearly, M′ |= α. Moreover, M′ is finite if M is. 2

Even though the satisfiability problem for H(@, ↓) is undecidable, in certain cases H(@, ↓) is still computa-
tionally more attractive than the full first-order language. For instance, the satisfiability problem for H(@, ↓)
becomes decidable if we restrict the out-degree of the nodes in the model [139]. Figure 6 lists the results for
mono-modal formulas. Here, for a given κ, we consider the class of frames were every node has strictly less
than κ successors. In particular, if κ = ω, then each state can only have finitely many successors, and if κ = 1,
the relation is the empty relation.

The undecidability of H(@, ↓) does not depend on the presence of nominals or propositional variables:
even without these, the satisfiability problem is undecidable. Similarly, the undecidability does not depend on
nested occurrences of ↓. One successful way to syntactically restrict the language in order to obtain decidabil-
ity, is to restrict the interaction between ↓ and the modalities [105,139]. In particular, it was proved in [139]
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that decidability is regained when formulas of the form · · ·2(· · · ↓x.(· · ·2 · · · ) · · · ) · · · are excluded. In other
words, the undecidability of H(@, ↓) is caused by formulas that, when put in negation normal form, contain
a ↓-binder that is both in the scope of a box operator and that contains in its scope a box operator. This result
was shown to be tight [139].

To round off this section, we will discuss two useful complexity result that can be used to prove upper bounds
for the complexity of various hybrid logics: the loosely ∀-bounded fragment with constants and the hybrid
µ-calculus.

Consider any first-order language not containing function symbols, but possibly containing constants. A
formula of such a language is called loosely ∀-guarded if it is built up from possibly negated atomic formulas
using conjunction, disjunction, existential quantification and loosely guarded universal quantification, i.e.,
universal quantification of the form ∀x(ϕ → ψ), where x is a sequence of variables and ϕ is an atomic
formula containing all free variables of ψ.

Theorem 4.6 ([83,138]) The satisfiability problem for loosely ∀-guarded first-order formulas is 2EXPTIME-
complete. It is EXPTIME-complete when there is a uniform bound on the number of variables occurring in the
formula (but not necessarily on the number of constants).

Many hybrid logics can be translated into the loosely ∀-guarded fragment using only a limited number of
variables. For such logics, Theorem 4.6 provides an EXPTIME upper bound.

The hybrid µ-calculus [124] extends the modal µ-calculus (cf. Chapter ?? of this handbook) with nominals,
converse operators and the universal modality. It expressively subsumes many propositional dynamic and
temporal logics, such as (hybrid) PDL and CTL. Sattler and Vardi [124] showed by means of automata that the
satisfiability problem for the hybrid µ-calculus is EXPTIME-complete. Beside the fact that this result singles
out a very expressive hybrid language that is still decidable in EXPTIME, it is interesting because the proof is
based on tree automata. For any formula ϕ, an automaton Aϕ on infinite trees is given that accepts precisely
the “tree models” of ϕ. Checking whether ϕ is satisfiable then reduces to solving the emptiness problem for
Aϕ. The catch, in the case of the hybrid µ-calculus, is that the standard tree model property fails for this
language. The key idea in the proof is that a model of a hybrid µ-formula ϕ can be transformed into a forest
by properly choosing points to witness diamond formulas. See [124] for details.

Below, we will give instead an alternative proof by providing a polynomial time satisfiability preserving
translation of the full hybrid µ-calculus into its nominal-free fragment. But first, let us review the syntax and
semantics of the language. The hybrid µ-calculus makes use of set variables, which we will write as x, y, . . .,
and which should not be confused with the state variables of hybrid languages such as H(@, ↓). The syntax is
defined by the following inductive definition 10 :

ϕ ::= p | i | x | ¬ϕ | ϕ ∧ ψ | 〈R〉ϕ | 〈R̄〉ϕ | Eϕ | µx.ϕ,

where p ∈ PROP, i ∈ NOM, R ∈ REL and where x is a set variable occurring only positively in ϕ (i.e., under
an even number of negation signs). Since the language contains set variables, the semantics is defined with the
help of assignments. Here, an assignment will be a function g that assigns to each set variable a subset of the
domain of the model. The semantics, then, is given by the following truth definition.

10 Our notation is slightly different from the one used in [124].
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M, g, w |= p iff w ∈ V (p) for p ∈ PROP ∪ NOM

M, g, w |= x iff w ∈ g(x)
M, g, w |= ¬ϕ iff M, g, w 6|= ϕ

M, g, w |= ϕ ∧ ψ iff M, g, w |= ϕ and M, g, w |= ψ

M, g, w |= 〈R〉ϕ iff there is a v ∈W such that R(w, v) and M, g, v |= ϕ

M, g, w |= 〈R̄〉ϕ iff there is a v ∈W such that R(v, w) and M, g, v |= ϕ

M, g, w |= Eϕ iff there is a v ∈W such that M, g, v |= ϕ

M, g, w |= µx.ϕ iff for all W ′ ⊆W , if {v ∈W | M, gx
W ′ , v |= ϕ} ⊆W ′ then w ∈W ′.

Theorem 4.7 ([124]) The satisfiability problem for the hybrid µ-calculus is EXPTIME-complete.

Proof. We define a polynomial time satisfiability preserving translation from the full hybrid µ-calculus to its
nominal-free fragment, i.e., the modal µ-calculus with converse operators and the existential modality. Since
the latter language is EXPTIME complete [143,48], the result follows.

Consider any formula ϕ of the hybrid µ-calculus containing nominals i1, . . . , in. For each nominal ik,
introduce a new distinct propositional variable qk. In the translation we will define, each nominal will be
uniformly replaced by the corresponding propositional variable. Clearly, we cannot force these propositional
variables to denote singleton sets. We can, however, ensure that the formula in question does not distinguish
between states named by the same nominal. To this end, we will use 〈≡〉ψ as a shorthand for the formula
µx.(ψ ∨

∨
k≤n(qk ∧E(qk ∧ x))), which says that ψ holds either at the current state, or at a state satisfying the

same nominal as the current state, or in general at any state reachable from the current world in finitely many
steps along the “satisfies the same nominal” relation. Now, define ϕ∗ inductively, as follows:

(ik)∗ = 〈≡〉qk
p∗ = 〈≡〉p

x∗ = 〈≡〉x

(¬ψ)∗ = ¬ψ∗

(ψ ∧ χ)∗ = ψ∗ ∧ χ∗

(〈R〉ψ)∗ = 〈≡〉〈R〉〈≡〉ψ

(〈R̄〉ψ)∗ = 〈≡〉〈R̄〉〈≡〉ψ

(Eψ)∗ = Eψ∗

(µx.ψ)∗ = µx.ψ∗.

Finally, let ϕ+ = ϕ∗ ∧
∧

k≤n Epk. Note that ϕ+ does not contain any nominals, and is only polynomially
longer than ϕ. We will now show that ϕ and ϕ+ are equi-satisfiable. One direction is trivial: if M, w |= ϕ,
then, assigning to each qk the same (singleton) denotation as ik, we obtain that M, w |= ϕ+ (note that, in this
case, ≡ is the identity relation). Conversely, suppose M, w |= ϕ+, with M = 〈W, (RM)R∈REL, V 〉. Let ≡
be the smallest equivalence relation on W such that v ≡ u whenever v and u both satisfy qk for some k ≤ n.
Let M̂ = 〈W/≡, (R

cM)R∈REL, V
′〉, where W/≡ is the set of ≡-equivalence classes of W ,

R
cM([v], [u]) iff there are v′ ∈ [v] and u′ ∈ [u] such that RM(v′, u′),

[v] ∈ V ′(p) iff there is a v′ ∈ [v] such that v′ ∈ V (p), and

[v] ∈ V ′(ik) iff there is a v′ ∈ [v] such that v′ ∈ V (qk).

By construction, V ′(ik) is a singleton set for each k ≤ n. Moreover, it follows directly from the definition of
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(I)
ϕ,Γ ` ∆, ϕ

(NL)
a, b,Γ[a] ` ∆[a]
a, b,Γ[b] ` ∆[b]

(¬L)
Γ ` ∆, ϕ
¬ϕ,Γ ` ∆

(¬R)
ϕ,Γ ` ∆

Γ ` ∆,¬ϕ

(∨L)
ϕ,Γ ` ∆ ψ,Γ ` ∆

(ϕ ∨ ψ),Γ ` ∆
(∨R)

Γ ` ∆, ϕ, ψ
Γ ` ∆, (ϕ ∨ ψ)

(〈r〉L)1
〈r〉a,@aϕ,Γ ` Γ
〈r〉ϕ,Γ ` ∆

(〈r〉R)
Γ ` ∆,@aϕ Γ ` ∆, 〈r〉a

Γ ` ∆, 〈r〉ϕ

(↓L)
a, ϕ[x/a],Γ ` ∆
a, ↓x.ϕ,Γ ` ∆

(↓R)
a,Γ ` ∆, ϕ[x/a]
a,Γ ` ∆, ↓x.ϕ

(∨@L)
a, ϕ,Γ ` ∆
a,@aϕ,Γ ` ∆

(∨@R)
a,Γ ` ∆, ϕ
a,Γ ` ∆,@aϕ

(∧@L)
a,@aϕ,Γ ` ∆
a, ϕ,Γ ` ∆

(∧@R)
a,Γ ` ∆,@aϕ

a,Γ ` ∆, ϕ

(name)2
a,Γ ` ∆
Γ ` ∆

(term)3
a,Γ ` ∆
Γ ` ∆

(term−)3
Γ ` ∆
a,Γ ` ∆

Restrictions:
1 if a does not occur in ϕ,Γ,∆.
2 if a does not occur in Γ,∆.
3 if all formulas in Γ,∆ are @-prefixed.

Fig. 7. Rules for the Sequent Calculus SH(@,↓)

(·)∗ and M̂ that, for all formulas ψ of the hybrid µ-calculus, and for all worlds v ∈W ,

M̂, [v] |= ψ iff M, v |= ψ∗

In particular, M̂, [w] |= ϕ. 2

5 Proof Theory

In this section we discuss proof methods for hybrid logics, and show examples of how to use them. We
will first present two “classical” proof systems (a sequent calculus and a natural deduction calculus), and
then two others (a tableau calculus and a resolution calculus), which are usually considered more suitable for
implementations. We will focus on the languages H(@) and H(@, ↓).

5.1 Sequent Calculus

The first modern results on proof theory for hybrid logics can be found in the work of Seligman in the area
of Situation Theory [128,129]. This work deals with strong (∀-based) systems, but many of the key ideas
underlying hybrid deduction (in particular, the deductive significance of @) were first explored in these papers.

The calculus SH(@,↓) in Figure 7 is from [130] where a sound and complete sequent calculus for hybrid
logics is developed from a sequent calculus for first-order logics by a series of transformations. In the figure,
Γ ` ∆ is a sequent where Γ and ∆ are sets of hybrid formulas and ϕ,Γ is taken to be {ϕ}∪Γ. The techniques
used are quite general and can be applied to a wide range of hybrid and modal logics. Notice that the calculus
is cut free. It can be proved that the cut rule is admissible.

An interesting feature of SH(@,↓) is that the calculus is not restricted to @-formulas, as the other calculus
we are going to discuss in the following sections. Intuitively, an @-prefixed sequent calculus can be general-
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ized to deal with all formulas by using nominals as follows. A single nominal a on the left side of a sequent is
enough to anchor all non @-prefixed formulas to the same element and so removes the need for them to share
an @ prefix. The price to pay for this is that the calculus does not have a subformula property, as a proof may
contain any number of @-prefixes which are not present in the end sequent (introduced using the ∧@ rules).
But it is easy to prove that only “one layer” of prefixes is needed in any proof, and define a version of the
subformula property that takes this into account.

The presence of nominals and the @ operator in the calculus above is crucial. When the underlying modal
logic is temporal logic, more flexibility is possible: Demri [57] presents a sequent system for nominal tense
logic, which does not contains @.

Example 5.1 We prove the sequent ↓x.〈R〉(x ∧ p) ` p in SH(@,↓):

b,@a〈R〉b, a, p ` p
(I)

b,@a〈R〉b, a, p ` @ap
(∨@R)

b,@a〈R〉b, a ∧ p ` @ap
(¬L), (¬R), and (∨R)

b,@a〈R〉b,@b(a ∧ p) ` @ap
(∨@L)

@a〈R〉b,@b(a ∧ p) ` @ap
(term)

a,@a〈R〉b,@b(a ∧ p) ` @ap
(term−)

a, 〈R〉b,@b(a ∧ p) ` p
(∧@L) and (∧@R)

a, 〈R〉(a ∧ p) ` p (〈R〉L)

a, ↓x.〈R〉(x ∧ p) ` p (↓L)

↓x.〈R〉(x ∧ p) ` p (name)

5.2 Natural Deduction Calculus

Seligman proposed also a natural deduction system (again, not restricted to @-formulas) in [129]. However,
the paper only proves soundness and completeness and does not discuss whether the calculus is normalizing.
Braüner introduced in [42] an @-prefixed natural deduction calculus for H(@, ↓,∀) and its sublanguages and
established normalization. Figure 8 shows the rules corresponding to the H(@, ↓) fragment.

The system NDH(@,↓) can be extended in a complete way with additional inference rules corresponding
to first-order conditions on the accessibility relations expressed by geometric theories 11 . And as we said, the
system NDH(@,↓) enjoys normalization (even when extended with rules for geometric theories), and a suitable
version of the subformula property that takes into account the use of @-formulas. See [42], for further details.
In [43] Braüner compares his system with Seligman’s (actually, a slight variation of Seligman’s to ensure
closure under substitutions), providing translations of proofs in both directions. These translations allows us
to transfer reduction rules between Braüner’s and Seligman’s calculus, but they are not sufficient to ensure
normalization of the latter. Hence, the normalization problem for Seligman’s calculus is still open.

Example 5.2 We prove that ↓x.〈R〉(x ∧ p) → p is a tautology in NDH(@,↓):

11 A first-order formula is geometric if it is built out of atomic formulas of the form R(x, y) and x = y using only the connectives ⊥,
∧, ∨ and ∃. A geometric theory is a finite set of closed first-order formulas each having the form ∀x̄(ϕ → ψ) where the formulas ϕ
and ψ are geometric.
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(∧I)
@aϕ @aψ

@a(ϕ ∧ ψ) (∧E1)
@a(ϕ ∧ ψ)

@aϕ
(∧E2)

@a(ϕ ∧ ψ)
@aψ

(→I)

[@aϕ]....
@aψ

@a(ϕ→ ψ) (→E)
@a(ϕ→ ψ) @aϕ

@aψ

(⊥1)1

[@a¬ϕ]....
@a⊥
@aϕ

(⊥2)
@a⊥
@c⊥

(@I)
@aϕ

@c@aϕ
(@E)

@c@aϕ

@aϕ

([r]I)2

[@a〈r〉c]....
@cϕ

@a[r]ϕ ([r]E)
@a[r]ϕ @a〈r〉c

@cϕ

(↓I)3

[@ac]....
@cϕ[x/c]
@a↓x.ϕ

(↓E)
@a↓x.ϕ @ac

@cϕ[x/c]

(Ref) @aa
(Nom1)4

@ac @aϕ

@cϕ
(Nom2)

@ac @a〈r〉b
@c〈r〉b

Restrictions:
1 ϕ is a propositional variable.
2 c is not free in @a[r]ϕ or in any undischarged assumptions other than the specified occurrences of @a〈r〉c.
3 c is not free in @a↓x.ϕ or in any undischarged assumptions other than the specified occurrences of @ac.
4 ϕ is a propositional variable or a nominal.

Fig. 8. Rules for the natural deduction calculus NDH(@,↓)

[@y(↓x.〈R〉(x ∧ p))]1 @yy
(Ref)

@y〈R〉(y ∧ p)
(↓E)

[@y¬p]2

[@z(y ∧ p)]3

@zy
(∧E1)

[@z(y ∧ p)]3

@zp
(∧E2)

@yp
(Nom1)

@y⊥
(→E)

@z⊥
(⊥2)

@z¬(y ∧ p) (→I)3

@y[R]¬(y ∧ p) ([R]E)

@y⊥
(→E)

@yp
(⊥1)2

@y((↓x.〈R〉(x ∧ p)) → p)
(→I)1

5.3 Tableau Calculus

In Figure 9 the rules for a tableau calculus for H(@, ↓) are given. This calculus was introduced in [29], where
tableau calculi for a family of quantified hybrid logics are presented (these are extensions of the propositional
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Constant Rules: (¬⊥)
¬@s⊥
>

(¬>)
¬@s>
⊥

Negation Rules: (@)
@s¬ϕ
¬@sϕ

(¬@)
¬@s¬ϕ

@sϕ

Conjunctive rules:
(∧)

@s(ϕ ∧ ∨)
@sϕ
@sψ

(¬∨)
¬@s(ϕ ∨ ψ)
¬@sϕ
¬@sψ

(¬ →)
¬@s(ϕ→ ψ)

@sϕ
¬@sψ

Disjunctive rules: (∨)
@s(ϕ ∨ ψ)
@sϕ | @sψ

(¬∧)
¬@s(ϕ ∧ ψ)
¬@sϕ | ¬@sψ

(→)
@s(ϕ→ ψ)
¬@sϕ | @sψ

Diamond Rules:
(〈r〉) @s〈r〉ϕ

@s〈r〉t
@tϕ

for t new in branch

(¬[r])
¬@s[r]ϕ
@s〈r〉t
¬@tϕ

for t new in branch

Box Rules: ([r])
@s[r]ϕ @s〈r〉t

@tϕ
(¬〈r〉) ¬@s〈r〉ϕ @s〈r〉t

¬@tϕ

@ rules: (@)
@s@tϕ

@tϕ
(¬@)

¬@s@tϕ

¬@tϕ

(Ref)
[s on the branch]

@ss
(Nom)

@st @sϕ

@tϕ
(Bridge)

@st @u〈r〉s
@u〈r〉t

Downarrow Rules: (↓) @s↓x.ϕ
@sϕ[s/x]

(¬↓) ¬@s↓x.ϕ
¬@sϕ[s/x]

Fig. 9. Rules for the tableau calculus TH(@,↓)

calculus defined in [25]). As in the case of natural deduction, the calculus is @-based: to prove the unsatis-
fiability of ϕ, apply the rules in Figure 9 to @iϕ for i a nominal not in ϕ. If a closed tableau is found (i.e.,
a tableau in which each branch contains a pair of formulas @jψ and @j¬ψ), then the original formula is
unsatisfiable.

Completeness of the tableau calculus is proved for frame classes that can be axiomatized by pure, nominal
free hybrid sentences 12 . Moreover, the tableau calculus can be used for effectively computing interpolants for
a pair of formulas ϕ, ψ such that ϕ → ψ is a validity. The following result is proved in [30] using Fitting’s
argument for proving the same property for first-order logic [64].

Theorem 5.3 Given a closed hybrid tableau for ϕ → ψ using the rules of TH(@,↓), the interpolant can be
computed effectively.

In a slightly different direction, Tzakova [142] presents a general approach to hybrid tableaux using Fitting-
style prefix calculi. Such tableau use nominals both as part of the object language and as meta-logical labels.

Tableau methods have played a crucial role in modern automated reasoning for modal logics, and the
best state-of-the-art provers for modal-like logics (such as the description logics provers RACER [85,84] or
FACT [90,89]) are based on tableaux (see Chapter ?? of this handbook for further details). A variation of the
hybrid tableau calculus of Figure 9 has been equipped with heuristics to ensure termination in [38]. The ideas
used are related to the techniques used for terminating tableaux for the description logic SHOIQ [92].

Example 5.4 We prove that ↓x.(〈R〉(x ∧ p) → p) is a tautology in TH(@,↓):

12 The completeness proof is interesting: a valid hybrid sentence is translated into a valid first-order sentence in the correspondence
language for which first-order closed tableau should exist; the tableau proof is then translated back into a hybrid tableau proof.
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1. ¬@i(↓x.(〈R〉(x ∧ p) → p)) Negation of the input formula

2. ¬@i(〈R〉(i ∧ p) → p) (¬↓) in 1

3. @i(〈R〉(i ∧ p) (¬ →) in 2

4. ¬@ip (¬ →) in 2

5. @i〈R〉j (〈R〉) in 3

6. @j(i ∧ p) (〈R〉) in 3

7. @ji (∧) in 6

8. @jp (∧) in 6

9. @ip (Nom) in 7 and 8

× Clash between 4 and 9

5.4 Resolution Calculus

As we just mentioned, the most successful automated theorem proving implementations for modal logics
are based on the tableau method. Much of their outstanding performance is due to the heavy use of several
heuristics and optimizations [93]; however, a number of these techniques do not work when the underlying
logic allows some form of equality as in the case of hybrid logics. When nominals and satisfaction operators
are added, the performance of tableau-based theorem provers is affected. This motivated research on possible
alternatives, such as the resolution calculus. The best automated theorem provers for first-order logic are based
on resolution, and we have already seen many similarities between hybrid and first-order logics.

Resolution calculi for H(@, ↓) and its sublanguages were introduced in [10,11]. In a recent paper [14], the
calculus for H(@) was refined to include ordering and selection functions (see [17] for the definitions of these
standard notions). The rules are shown in Figure 10. In the figure, S(C) is a selection function and � is an
admissible order; furthermore, the main premise of each rules is on the right. The calculus works on formulas
in negation normal form (i.e., negation can only appear on atomic formulas), and hence an explicit rule for
negation is not required. To extend the calculus to H(@, ↓), simply add the rule

(↓) Cl ∪ {@t↓x.ϕ}
Cl ∪ {@tϕ[x/t]}

.

Given a formula ϕ (in negation normal form), let ClSet(ϕ) = {{@iϕ}}, where i is a nominal not occurring
in ϕ. Define ClSet∗(ϕ) — the saturated set of clauses for ϕ — as the smallest set that includes ClSet(ϕ) and
is saturated under the rules of Figure 10 (where saturation means that whenever there are sets matching the
antecedent of any rule in ClSet∗(ϕ) then also the sets in the consequent should be in ClSet∗(ϕ)). Then ϕ is
unsatisfiable if and only if {} ∈ ClSet∗(ϕ).

The calculus RH(@) is implemented in the automated theorem prover HyLoRes [15], which uses an or-
dering that ensures termination while preserving soundness and completeness.

Example 5.5 We prove that ↓x.〈R〉(x ∧ p) → p is a tautology in RH(@,↓). Consider the clause set corre-
sponding to the negation of the formula:
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(∧)
Cl ∪ {@t(ϕ1 ∧ ϕ2)}

Cl ∪ {@tϕ1}
Cl ∪ {@tϕ2}

(∨)
Cl ∪ {@t(ϕ1 ∨ ϕ2)}
Cl ∪ {@tϕ1,@tϕ2}

(RES)
Cl1 ∪ {@tϕ} Cl2 ∪ {@t¬ϕ}

Cl1 ∪ Cl2

([r])
Cl1 ∪ {@t〈r〉s} Cl2 ∪ {@t[r]ϕ}

Cl1 ∪ Cl2 ∪ {@sϕ}
(〈r〉) Cl ∪ {@t〈r〉ϕ}

Cl ∪ {@t〈r〉n}
Cl ∪ {@nϕ}

for n a new nominal
and ϕ 6∈ NOM

(@)
Cl ∪ {@t@sϕ}
Cl ∪ {@sϕ}

(REF)
Cl ∪ {@t¬t}

Cl

(SYM)
Cl ∪ {@st}
Cl ∪ {@ts} if t � s (PARAM)

Cl1 ∪ {@st} Cl2 ∪ {ϕ(s)}
Cl1 ∪ Cl2 ∪ {ϕ(s/t)}

if s � t and
ϕ(s) � @st

Restrictions: Let ϕ and ψ be the displayed formulas in each of the above rules:

• Let C = C ′ ∪ {ϕ} be the main premise, then either S(C) = {ϕ} or, otherwise, S(C) = ∅ and {ϕ} � C ′.

• Let D = D′ ∪ {ψ} be the auxiliary premise, then {ψ} � D′ and S(D) = ∅.

Fig. 10. Rules for the resolution calculus RH(@) with Order and Selection Functions

1. {@i((↓x.¬[R]¬(x∧p)) ∧ ¬p)} by (∧)

1. {@i↓x.¬[R]¬(x ∧ p)}, {@i¬p} by (↓)

2. {@i¬[R]¬(i ∧ p)}, {@i¬p} by (〈r〉)

3. {@i¬[R]¬j}, {@j(i∧p)}, {@i¬p} by (∧)

4. {@ji}, {@jp}, {@i¬p} by (PARAM)

5. {@ip}, {@i¬p} by (RES)

6. {}.

6 Relation with Other Fields

In various areas, hybrid logics has been proposed as a convenient extension of modal logics, either because
they give rise to smoother proof systems, or because of their greater expressive power. In this section we
briefly discuss a number of cases, and provide pointers to the literature.

Temporal Logic. As indicated in the work of Prior and Bull, hybrid languages allow us to make explicit refer-
ences to specific times (days, dates, years, etc.), and also to cope with temporal indexicals (such as yesterday,
today, tomorrow and now). In addition, many temporally relevant frame properties (such as irreflexivity, asym-
metry and trichotomy) that cannot be defined by means of modal formulas can be defined with nominals [28].
When nominals and satisfaction operators are added to an interval-based logic, the result is a Holds(t, ϕ)-
driven interval logic similar to those introduced in AI by James Allen [2] (where the satisfaction operators
play the role of Holds). By making explicit temporal references possible (combining nominals, satisfaction
operators and temporal modalities, one can directly express temporal relations between instants or intervals),
hybrid logics remove a serious obstacle to a modal analysis of temporal representation and reasoning.

Nominal tense logics have been studied in detail in [21]. The complexity of the satisfiability problem
for a number of hybrid temporal logics is investigated in [7,66]. The minimal hybrid tense logic H(〈R−1〉)

33



is EXPTIME over the class of all frames and the class of transitive frames, but the complexity drops to NP-
complete over the usual frames for linear time (strict total orders), and to PSPACE-complete over the usual
frames for branching time (transitive trees). In [7,110,66], results are also given for hybrid languages with the
Since and Until operators. Hybrid interval logics were recently studied in [95].

Indexicality and Direct Reference. Hybrid languages are also a powerful resource for studying indexicality
in natural language, as an alternative to the more classical use of multi-dimensional modal logic. In the
multi-dimensional modal approach, formulas are evaluated at sequences of points, where one point of the
sequence is thought of as the point of evaluation, while the others are used as memory locations to store
references [96,146,67,52,53]. Hybrid languages move multi-dimensional logic’s sequence of evaluation points
from the meta-language to the object language, with hybrid variables acting as names for indices (see [24]),
and allowing in this way a natural treatment of such indexicals as ‘today.’ Moreover, when equipped with the
@ operator, hybrid languages offer the ‘de-scoping’ behavior typical of such multi-dimensional operators as
here and there. There are also links between hybrid logic and mathematical aspects of multi-dimensional
modal logic, particularly the multi-dimensional modal perspective on cylindric algebra (cf. [106]), as ↓ and @
can be considered as explicit substitution devices.

Feature Logic. Most unification-based approaches to natural language grammar, such as PATR-II, use at-
tribute value matrices (AVMs) to represent feature structures, where re-entrance in the feature structures is
represented by “tags” in the AVMs [123]. There is a tight connection between AVMs and deterministic multi-
modal logic, except that there is no clear way to express re-entrance in modal logic. As it turns out, the tags
that are used to enforce re-entrance in AVMs correspond in a very natural way to nominals in hybrid logic.
Thus, adding nominals is enough to make re-entrance expressible.

Previous approaches to encoding re-entrance in modal logic used more complicated techniques. In partic-
ular, Kasper-Rounds logic is essentially a fragment of deterministic propositional dynamic logic with program
intersection, where the intersection is used to encoding re-entrance. See [33,23,120] for further details.

Dynamic Logic. As we discussed in Section 2.2, hybrid languages were rediscovered, many years after the
work of Prior and Bull, by a group of logicians at the Sofia University in Bulgaria. Gargov, Passy and Tinchev
were interested in neat axiomatizations of operators in PDL, and they realized that certain operators (e.g.,
union of programs) are easily captured, whereas others (e.g., program intersection or complement) require
extra expressive power. In [113] it is shown that adding nominals is enough to enable natural and succinct
characterization of these operators. Adding other kinds of “constants” to the language permits the represen-
tation of notions like determinism and looping [74]. In addition, the work of the Sofia school shows how
nominals can be used to simplify the construction of models during completeness proofs [114]. See [115] for
an excellent overview on combinatory dynamic logics.

For a modern discussion of PDL with nominals (in the framework of description logics) and some new
complexity results see [56,55].

Description Logics. Descriptions logics (DLs) are a family of formalisms that allow the representation of,
and reasoning about, conceptual knowledge, in a structured and semantically well-understood manner [16].
They evolved from the original knowledge maintenance system KL-ONE of Brachman and Schmolze [41].
Description logics are discussed in detail in Chapter ?? of this handbook.

In [125] Schild identifies a close connections between description logics and modal logics, and uses it
to transfer complexity and axiomatization results between the two areas. This connection is established at
the level of concepts: concepts in description logic are shown to correspond to formulas in modal logic.
Description logics, however, usually have two levels of representation. The first level is that of concepts,
which, like modal formulas, denote subsets of the domain. The second level is that of terminology boxes
(TBoxes) and assertion boxes (ABoxes). Using these, one can specify global conditions on models, such as
the ‘concept inclusion’ C v D, which requires that every individual satisfying the concept C should also
satisfy the concept D, and the ‘assertion’ a:C, which requires that the individual a satisfies the concept C.
The basic modal language is not rich enough to express such constructions. By lifting the correspondence to
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Converse PDL, Schild managed to account for inference with TBoxes. De Giacomo and Lenzerini [56,55]
further extended these results by encoding also ABoxes in Converse PDL.

While the embedding of DLs into Converse PDL have proved useful, it has two important disadvantages.
Complexity-wise, the satisfiability problem of Converse PDL is already EXPTIME-complete and, hence, opti-
mal complexity results cannot always be obtained with this technique. Moreover, the model theory of Converse
PDL is complicated, due to the presence of the Kleene star (which requires a weak form of induction). Using
the extended expressive power of hybrid languages, assertions can be encoded using satisfaction operators,
and concept inclusions can be expressed using the universal modality A. See [12,4,36] for detailed discussions
on the connections between hybrid and description logics.

Nominals have in fact been independently introduced in DLs. Very early systems like CLASSIC [40]
and LOOM [104] already included a form of nominals in the late 80s. Such systems allowed a concept
constructor called O (for “one-of”) which permitted enumeration of individuals in the domain of a model.
One-of expressions are in fact the same as disjunctions of nominals. The interest in the O operator dropped
during the following years because of complexity issues (as we have seen in Section 4, the presence of nominals
can lead to an increase in complexity, and even to undecidability, in the presence of other operators). However,
the topic has recently regained interest, as direct reference to individuals seems to be a must for languages for
the semantic web, one of the most important modern applications of DLs [94,91]. The O operator is now part
of the W3C-recommended web ontology language OWL [107].

Information Systems. Nominals have turned up in yet another setting, namely the Polish tradition of modal
logics for information systems initiated by Pawlak (see [112]). Themes in this tradition include the devel-
opment of modal logics of similarity (or relative similarity) and there are strong links with the tradition of
rough-set theory. Konikowska [97] has proposed adding nominals to such logics. Her work is motivated pri-
marily by proof-theoretical considerations: the ability to name states leads to simpler and more intuitive proof
systems.

Logics of Space. Nominals have found several applications in modal logics of space. In this chapter, we
have treated hybrid languages from a relational perspective, viewing them as language for describing rela-
tional structures. Another well known semantics for modal logics is in terms of topological spaces [108].
A topological space is a tuple 〈X,Ω〉 where X is a nonempty set and Ω is a collection of subsets of X
satisfying three conditions: X and ∅ are elements of Ω, every union of elements of Ω is in Ω, and ev-
ery intersection of finitely many elements of Ω is in Ω. A topological model for the basic modal lan-
guage, now, consists of a topological space 〈X,Ω〉 and a valuation V : PROP → ℘(X). The truth def-
inition for modal formulas with respect to such topological models is similar to the one for Kripke mod-
els, except that the modal operator 2 is interpreted as follows (where m ∈ X): 〈X,Ω, V 〉,m |= 2ϕ iff
∃O ∈ Ω such that m ∈ O and for all m′ ∈ O, 〈X,Ω, V 〉,m′ |= ϕ. This topological semantics is useful for
spatial reasoning [19,1] and modelling knowledge [54]. As in the relational semantics, we can study notions
such as validity of a modal formula on a topological space, and modally definable properties of topological
spaces. It turns out that, as a language for defining properties of topological spaces, the basic modal language
is very weak. In particular, none of the familiar topological separation axioms is modally definable [71].

Nominals can be introduced in topological models in the same way as in Kripke models: they are simply
propositional variables whose valuation is always a singleton set. It was noted in [71] that, with the help of
nominals, more properties of topological spaces can be defined, including the separation axioms T0 and T1.
Sustretov [134] has recently proved a topological analogue of Theorem 3.19, characterizing the properties
of topological spaces that can be defined by means of H(@)- and H(E)-formulas. Heinemann [88,87] has
investigated hybrid extensions of the bi-modal logic of knowledge and effort presented in [54], in order to
obtain complete axiomatization of frame classes that, while relevant for applications, are not expressible in
the basic modal language. In [88], Heinemann provides an axiomatization of the class of linear set spaces,
using nominals that denote pairs in X×Ω. In [87], instead, two sorts of nominals are introduced, ranging over
elements ofX and Ω, respectively, and topological notions like separation and connectedness are axiomatized.

Nominals have also found applications in logics of metric spaces [101].
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Second Order Propositional Modal Logic. In [62], the extension of the basic modal language with propo-
sitional quantifiers ∃p and ∀p is studied. This language is called second order propositional modal logic
(SOPML). It was shown in [136,137] that there is a close connection between SOPML and H(@, ↓):

Theorem 6.1 Every nominal free H(@, ↓)-sentence is equivalent to a formula of SOPML. Conversely, if a
formula of SOPML has a first-order equivalent, then it is equivalent to a nominal free H(@, ↓)-sentence.

Theorem 6.1 shows that, in some sense, nominal-free H(@, ↓) is the intersection of SOPML and first-order
logic. This connection was used in [136,137] to transfer a number of expressivity and frame definability
results from H(@, ↓) to SOPML. For example, a first-order formula with one free variable is equivalent to a
SOPML-formula iff it is invariant under generated submodels; and an elementary class of frames is definable in
SOPML iff it is closed under generated submodels and reflects point-generated subframes (see Theorem 3.24).
For more information about SOPML, see Chapter ?? of this handbook.

Modal Predicate Logics. Nominals can also be added on top of a first-order modal basis (cf. Chapter ?? of
this handbook). Blackburn and Marx [29] investigate tableau systems for such first-order hybrid logics, while
Braüner [44] discusses natural deduction systems. As in the propositional case, the outcome seems to be a
better behaved logical system, that comes with general completeness results.

First-order hybrid logics also have advantages in relation to interpolation and Beth definability. Fine [63]
showed that interpolation and the Beth definability property fail for quantified S5 with varying domains, and
also for any quantified modal logic between K and S5 with constant domains. In [9] it is shown that these
properties are regained when state variables, satisfaction operators and ↓ are added to the language. Actually,
interpolation and the Beth property hold relative to any bounded fragment definable class of skeletons (the first-
order modal analogue of frames), with either varying, expanding, contracting or constant domains. Moreover,
the interpolant can be obtained constructively using the techniques of [30].

For further details on first-order hybrid logics, see Chapter ?? in this handbook.

Labeled Deduction. In [69] the notation l:ϕ is introduced, where the meta-linguistic symbol : associates
the meta-linguistic label l with the object language formula ϕ. Labeled deduction proceeds by manipulating
such expressions, using the labels to guide proof search. Labelled deduction has been successfully used to
provide complete and well behaved calculi for a wide range of logics, including non-classical logics where
the notion of “state” is usually crucial (see, e.g., [145]). For example, Simpson defines in [132] a family of
labeled natural deduction calculi for modal intuitionistic logics and shows that they have good proof theoretic
properties; while Kurtonina [99] uses labels to provide complete calculi for categorial type logics, for a variety
of frame classes.

One way to see why hybrid languages are proof-theoretically natural, is to observe that nominals and
satisfaction operators can capture the main ideas of labeled deduction. Hybrid languages “internalize” labeled
deduction into the object language: nominals are essentially object-level labels, and the formula @lϕ asserts
in the object language what l:ϕ asserts in the meta-language. Internalization in the particular case of tableaux
is discussed in [25], while the case of sequent calculus is presented in [130]. We have seen examples of such
calculi in Section 5. In a recent paper, Braüner and de Paiva discuss similar internalized calculi for hybrid
versions of intuitionistic modal logics [45].

Model Checking. In this chapter we take satisfiability and consequence as the main inference problems, but
other reasoning tasks are also relevant for many applications.

In [65] Franceschet and de Rijke investigate the following model checking problem for a number of hybrid
logics: given a model, or a model and an assignment in case of languages with binders, and a formula ϕ decide
whether there is a state in the model satisfying ϕ. They provide algorithms for model checking and investigate
their complexity. Their main results are summarized in Figure 11, where k is the length of the input formula,
n and m are the number of nodes and edges in the model, respectively, and r is the nesting degree of hybrid
binders. Names listed as DH(·) correspond to hybrid extensions of converse propositional dynamic logic. We
can see that the presence of binders makes model checking PSPACE-complete (as complex as model checking
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H(〈R−1〉,E,@) O(k · (n+m))
H(U, S,E,@) O(k · n ·m)
DH(E,@) O(k · (n+m))
H(↓) PSpace-complete
H(E,@, ↓) PSpace-complete
Hr(E,@, ↓) O(k · (n+m) · nr)
DHr(E,@, ↓) O(k · (n+m) · nr)
H(∃) PSpace-complete
H(E,@,∃) PSpace-complete
Hr(E,@,∃) O(k · (n+m) · n2r)
DHr(E,@,∃) O(k · (n+m) · n2r)

Fig. 11. Complexity of model checking different hybrid languages

full first-order logic), and it is, in general, exponential in the nesting level of binders. The paper discusses the
impact of these results in applications like querying and constraint evaluation over semistructured data.

In [66], a different kind of model checking is investigated, which is used in formal verification. There, a
Kripke structure typically represents a computational system, and paths through the structure denote different
possible computations. In linear time model checking, formulas are evaluated not on the Kripke structure
itself, but on the set of paths through it. Actually, two versions of the linear model checking problem can be
defined: the existential linear time model checking problem is to determine whether a given formula is satisfied
in some path of the model, while the universal linear time model checking problem asks whether the formula
is satisfied in all paths.

Unraveling a Kripke structure into a tree carries some complications in the presence of nominals: if the
original structure makes a nominal i true in a state which is involved in a cycle (i.e., the state is reachable from
itself), the “nominal” i will be true in more than one state after unraveling (actually, the denotation of i will
be an infinite set). The authors chose to allow such behavior: the only restriction they make is that nominals
denote a single state in the original structure, no other conditions are imposed. Under this interpretation,
the complexity of linear time model checking for temporal languages coincides with their hybrid extensions:
NP-complete (CONP-complete) for H(〈R−1〉,@) for existential (universal) linear time model checking, and
PSPACE for H(U, S,@).

The Bounded Fragment. We mentioned the bounded fragment of first-order logic in Section 3.2.2 and in
Theorem 3.13 we established its tight connection with H(@, ↓).

Bounded formulas have been considered in the literature for a long time. In set theory, where bounded
quantifiers are of the form ∃x.(x ∈ y ∧ ϕ) and ∀x.(x ∈ y → ϕ), the bounded fragment was introduced in
1965 by Levy [102], under the name ∆0. ∆0-formulas of set theory have the desirable property of being set-
theoretically absolute, meaning that whether a ∆0-formula ϕ(x1, . . . , xn) holds of sets a1, . . . , an is indepen-
dent of the universe of set theory in which a1, . . . , an reside (cf., for instance, [18]). Bounded formulas have
also been considered in the context of arithmetic, where bounded quantifiers are of the form ∃x.(x ≤ y ∧ ϕ)
and ∀x.(x ≤ y → ϕ). In fact, there is a field of research of its own called bounded arithmetic, which is
connected to complexity theory (in particular, to the polynomial hierarchy), propositional proof theory, and
the length of propositional proofs [47].

Around 1966, Feferman and Kreisel [61,60] characterized the bounded fragment as the generated submodel
invariant fragment of first-order logic. More precisely, they showed that a first-order formula is equivalent to a
bounded formula iff it is invariant under generated submodels. Moreover, it was shown in [60] by means of a
cut-free sequent calculus that the bounded fragment has interpolation.
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7 Discussion

Hybrid logics form a family of natural extensions of modal logic. The naturalness is confirmed by the fact that
nominals have been re-invented on several occasions. Hybrid logics offer two important advantages over modal
logics: increased expressive power (e.g., in temporal logic, irreflexivity becomes definable when nominals are
added to the language) and a simpler proof theory (there are many proof systems for hybrid logic, and they
come with powerful general completeness results). The general question, then, is:

How much do we gain by extending our language (e.g., how much extra expressive power), and what price
do we pay (e.g., what are the complexity theoretic consequences)?

For a number of hybrid languages, we have explored these question systematically in this chapter. In particular,
the expressivity of various hybrid languages has been characterized by means of analogues of the Van Benthem
theorem and the Goldblatt-Thomason theorem. Concerning complexity, we saw that nominals and satisfaction
operators often do not increase the complexity, although in exceptional cases, adding a single nominal can
already cause undecidability. For languages containing the ↓-binder, on the other hand, undecidability seems
to be the rule, rather than the exception.

We would like to close this chapter by observing that “hybridization”, as an operation on logical languages,
can be applied in many contexts. As we discussed, nominals have a natural interpretation not only in the
relational (Kripke) semantics, but also in topological and algebraic semantics. The hybrid machinery can be
added to the basic modal language, or on top of first-order or higher-order modal languages, and with either
a classical or an intuitionistic base. Some of these combinations have been investigated (for instance, several
recent papers study topological modal language containing nominals), other remain to be explored.
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