
The Modal Logics of the Poison Game

Francesca Za�ora Blando

ú
Krzysztof Mierzewski

ú
Carlos Areces

†

Abstract
The poison game is a two-player zero-sum game played on directed graphs,

first introduced by Duchet and Meyniel [1993] in the context of graph theory,
where one of the players travels along the edges of a graph, while the other mod-
ifies the underlying structure by marking vertices. In this paper, we investigate
the poison game from the perspective of modal logic, as a natural case study of
the use of modal languages equipped with model-changing operators to describe
evolving relational structures. In particular, to model the poison game, we con-
sider three memory logics of decreasing expressive power but increasing fit with
the game. We begin with MLÿ, the basic memory logic restricted to the initial
class of models with an empty memory (see [Areces et al., 2011]). We then iden-
tify two fragments of MLÿ, which we respectively denote as PML and PSL, and
whose modal operators capture operations on models that mimic more closely
the moves of both players. We show that these logics form a chain in expressive
power with PSL < PML < MLÿ, and we introduce suitable notions of bisimu-
lation for the two new logics presented in this paper. We then show that model
checking for both PML and PSL is PSPACE-complete. The construction also
establishes that determining the existence of a winning strategy in the poison
game is PSPACE-hard. We conclude by proving that PML, while strictly less
expressive than MLÿ, nonetheless has an undecidable satisfiability problem.

1 Introduction
Logic and games have gone hand in hand for quite some time. As noted by Hodges

[2013], one can already find connections between logic and argumentation games in

Aristotle’s work on syllogisms. Nowadays, logical games are used in a multitude of

settings. There are games for model comparison [Fraïssé, 1954; Ehrenfeucht, 1961],

úDepartment of Philosophy, Stanford University and Logical Dynamics Lab, Center for the Study
of Language and Information, Stanford, California, USA.

†Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba
and CONICET, Córdoba, Argentina.

1

argumentation and dialogue [Lorenzen, 1955], model checking [Hintikka, 1973], as well

as for building models for a given formula [Hodges, 2006].

A more recent strand of research tackles the opposite direction: in addition to us-

ing game-theoretic tools in logic, one can also focus on the use of logical languages

for analysing games (see [van Benthem, 2014]). For instance, games of imperfect in-

formation may be naturally modelled within epistemic or doxastic logic, and certain

common computational tasks might be ‘gamifiable’, which then facilitates their anal-

ysis from the perspective of modal logic. An example of this latter application is the

sabotage game introduced by van Benthem [2005], a two-player zero-sum game played

on graphs. In a sabotage game, one player tries to get from one vertex to another

fixed set of vertices, while the other player tries to prevent this by deleting edges in the

graph. In other words, a sabotage game is a version of the graph reachability problem

involving an edge-deleting (or sabotaging) player, whose goal is rendering the target

vertices inaccessible.

In order to model this game, van Benthem [2005] introduces a modal calculus,

sabotage modal logic, which di�ers from the basic modal language, in that it is equipped

with a transition-deleting modality which modifies the underlying model. This means

that sabotage modal logic, as opposed to standard modal logic, can express changes of

transition systems, on top of the usual properties of static models.

1

In this paper, we consider another two-player zero-sum game played on graphs

called the poison game—first introduced by Duchet and Meyniel [1993]—from a modal

perspective. While the sabotage game is a logic-inspired graph game, the poison game

comes from graph theory: studying the poison game is therefore a good way of testing

whether methods from modal logic can be fruitfully extended to a wider domain.

Let (G, R) be a directed graph (with no double edges) and s œ G a distinguished

starting vertex. The poison game proceeds as follows: the two players—Traveller and

Poisoner—alternate their moves and, at each step, choose a vertex that is a successor

of the vertex previously chosen by the other player. The game begins at the starting

vertex s.

2
Poisoner makes the first move by choosing a successor s

Õ
of s (that is, a

point s

Õ œ G such that (s, s

Õ) œ R), which she then poisons with a poison that a�ects

exclusively Traveller. This means that Poisoner’s move renders vertex s

Õ
inaccessible to

Traveller, but not to Poisoner. Then, Traveller has to choose a non-poisoned successor

of s

Õ
, and so on. The winning conditions are as follows. Traveller wins the poison game

if either (i) she manages to keep choosing non-poisoned successors no matter what

vertices Poisoner selects, or (ii) she begins her turn at a vertex with no successors, or

1For a detailed discussion of sabotage modal logic and other relation-changing logics, see, for
instance, [Löding and Rohde, 2003a,b; Aucher et al., 2015, 2017; Areces et al., 2015].

2Here we treat the starting position as being given. In the original formulation of the game [Duchet
and Meyniel, 1993], Traveller makes the first move by choosing a starting vertex s œ G.

2

(iii) Poisoner begins her turn at a vertex with no successors. If at least one of (i)-(iii)

obtains, Traveller survives the game. Poisoner, on the other hand, wins the poison game

if she manages to poison a vertex that (a) has at least one successor and (b) all of whose

successors have already been poisoned (we then say that Traveller gets poisoned, as she

would be forced to move to a poisoned vertex in the next round).

The landscape of modal logics is rich and varied. When designing a modal system

to model a graph game like the poison game, one is immediately confronted with

the question of which language is best suited for capturing the game, and of which

minimal requirements a logic should meet in order to qualify as a plausible contender.

For instance, it should be possible, within the logic, to talk about the moves of both

players and to express, at least approximately, the existence of winning strategies.

In this modal setting, where we evaluate formulas at individual vertices in the

graph, we are particularly interested in describing games from a local perspective. In

the poison game, the players construct a path through the graph, moving from vertex

to vertex: modal languages are singularly well-suited to describe the current stage of

the game, step-by-step, by capturing local (and possibly dynamic) properties of the

graph as seen from the vantage point of the vertex being currently occupied. From

this perspective, a good fit between the logic and the game also means that the logic

should not be excessively expressive: i.e., it should not be possible to express (too

many) global properties that have no natural counterpart in the poison game.

Since, by poisoning a vertex in a graph, Poisoner is basically marking that vertex,

signalling in this way that it is no longer accessible for Traveller, memory logics [Areces,

2007; Mera, 2009] seem a natural starting point, for they have the ability to store

states into a memory. In particular, in this paper we consider three memory logics of

decreasing expressive power but increasing fit with the poison game. The first one is

the basic memory logic restricted to the initial class of models with an empty memory,

which we denote as MLÿ (see [Areces et al., 2011]). The other two are syntactic

fragments of MLÿ, which we respectively denote as PML and PSL.

We analyse the expressive power of these languages, define notions of bisimulation

that are appropriate for PML and PSL, respectively, and prove that PSL is strictly

less expressive than PML and PML is strictly less expressive than MLÿ. We also

show that model checking for both PML and PSL is PSPACE-complete. In estab-

lishing this, we also provide a lower bound on the complexity of the poison game itself:

determining the existence of a winning strategy for Traveller is shown to be PSPACE-

hard. It is known that the satisfiability problem for MLÿ is undecidable. Here, we

prove that the satisfiability problem for PML is undecidable, too. We leave it as an

open question whether PSL satisfiability is decidable or not.

The present paper extends and improves on some previous work [Mierzewski and

Za�ora Blando, 2016] by the first two authors. The logic PML was also independently

3

investigated by Grossi and Rey [2019] in the context of abstract argumentation theory

(specifically, to study credulously admissible arguments3
).

2 MLÿ

The simplest memory logic extends the basic modal language with two operators: •k
and •r . A model for this logic is a tuple M = (W, R, V, M), where (W, R, V) is a

standard relational structure, and M ™ W is the memory of the model. The semantics

of the new operators is then given by:

M, w |= •k i� w œ M,

M, w |= •r Ï i� M[w], w |= Ï where M[w] = (W, R, V, M fi {w}).

The •k operator allows to check whether the current state has been memorised, while

the •r operator elicits the memorisation of the current state and the subsequent eval-

uation of Ï there.

To model the poison game, it is reasonable to focus on the class of initial models

where M = ÿ, as no vertices are poisoned at the beginning of the game. We will refer

to the memory logic restricted to this class of initial models as MLÿ. In this language,

we can use formulas of the form ^•r Ï to model Poisoner’s moves and formulas of the

form ^¬•k to model Traveller’s moves.

The logic MLÿ is very expressive. For instance, we can express the property that

Traveller can survive at least n rounds of a poison game by means of the following

inductive scheme:

fl1 := ⇤•r (⇤‹ ‚ ^¬•k)

fl

n

:= ⇤•r (⇤‹ ‚ ^(¬•k · fl

n≠1))

We can also express the property that the point of evaluation has a successor that

has itself as its only successor via the formula ^•r (^•k ·⇤•k). This implies that MLÿ

does not have the tree model property: the formula ^•r (^•k ·⇤•k) cannot be satisfied

at the root of a tree.

The property of having n non-poisoned successors, on the other hand, is not

expressible within MLÿ. To see why, consider the models M = (W, R, V, ÿ) and

N = (W Õ
, R

Õ
, V

Õ
, ÿ) below, where V (q) = V

Õ(q) = ÿ for all proposition letters q.

w

v u

M w

Õ

v

Õ

N

3See, for instance, [Vreeswijk and Prakken, 2000].

4

Note that it is possible to define a notion of bisimulation that is suitable for MLÿ

(see [Areces et al., 2011, Definition 3.4]). Now, although state w from model M has

two non-poisoned successors, while state w

Õ
from model N only has one, (M, w) and

(N , w

Õ) are MLÿ bisimilar. The basic intuition behind this observation is that, in

order to mark the successors of w and w

Õ
via the •r operator, one has to first move

there via the standard ^ modality. But then, from the perspective of states v, u and

v

Õ
, models M and N are completely indistinguishable.

A first worry raised by the use of MLÿ to model the poison game is that the •r
operator does not, by itself, naturally correspond to Poisoner’s moves, for it allows one

to memorise the current state, while Poisoner must always poison a successor of the

current state. In other words, MLÿ seems to be too expressive for the purpose of

faithfully modelling the poison game.

In addition, MLÿ is not computationally well-behaved:

Theorem 2.1 (Areces et al. [2011]). The satisfiability problem for MLÿ is undecidable.

In light of these considerations, a natural question is whether we can find a logic

that is closer to the poison game and with a better computational behaviour.

3 PML
As our first attempt, we shall focus on the fragment of MLÿ that extends the basic

modal language with two operators, •p and ÈpÍ, respectively defined as •p ¡ •k and

ÈpÍÏ ¡ ^•r Ï. We will refer to this logic as PML.

4

Expressive power. Since the ÈpÍ operator forces the poisoning move to occur one step

ahead of the point of evaluation, the following formula is a simple validity of PML:

ÈpÍ•p ¡ ^€

It is also worth noting that ÈpÍ and ^ agree on formulas that do not contain •p :

i.e., ÈpÍÏ ¡ ^Ï is valid when Ï is a formula not containing •p . This no longer holds

in the presence of •p . For instance, consider the formula ÈpÍ•p ¡ ^•p and the model

M = (W, R, V, ÿ) below, where V (q) = ÿ for all proposition letters q.

w vM
4We use •p instead of •k simply because the former is more suggestive of the poison game. Also

note that PML models are of course exactly the same as MLÿ models, except that we will write P

instead of M to denote the set of poisoned states. PML stands for poison memory logic.

5

Here, we have that M, w |= ÈpÍ•p , but M, w ”|= ^•p .

As in the case of MLÿ, the following inductive scheme allows to express the property

that Traveller can survive at least n rounds of a poison game:

fl1 := [p](⇤‹ ‚ ^¬•p)

fl

n

:= [p](⇤‹ ‚ ^(¬•p · fl

n≠1))

Note that the MLÿ formula ^•r (^•k · ⇤•k) from the previous section—which,

as we saw, forces non-tree models in MLÿ—falls within PML (we can write it as

ÈpÍ(^•p · ⇤•p)). Hence, PML lacks the tree model property, too.

It is possible to define a notion of bisimulation that fits PML by adding the

following clauses to the standard ones for the basic modal language. Let Z below

denote a bisimulation between models M = (W, R, V, P) and N = (W Õ
, R

Õ
, V

Õ
, P

Õ):
Non-empty: there are w œ W and w

Õ œ W

Õ
with (P, w)Z(P Õ

, w

Õ);

Agree: if (S, u)Z(S Õ
, u

Õ), then

(1) M, u |= q if and only if N , u

Õ |= q for any proposition letter q, and

(2) u œ S if and only if u

Õ œ S

Õ
;

ZigÈpÍ: if (S, u)Z(S Õ
, u

Õ) and there exists v œ W with (u, v) œ R, then there exists

v

Õ œ W

Õ
with (uÕ

, v

Õ) œ R

Õ
and (S fi {v}, v)Z(S Õ fi {v

Õ}, v

Õ);

ZagÈpÍ: if (S, u)Z(S Õ
, u

Õ) and there exists v

Õ œ W

Õ
with (uÕ

, v

Õ) œ R

Õ
, then there

exists v œ W with (u, v) œ R and (S fi {v}, v)Z(S Õ fi {v

Õ}, v

Õ).
In the Agree, ZigÈpÍ and ZagÈpÍ clauses above, we use S and S

Õ
instead of P and P

Õ

because the ÈpÍ modality allows to add new states to the initial memories of the models

M and N .

This notion of PML bisimulation is correct, in that it implies PML equivalence:

Proposition 3.1. Let M = (W, R, V, P) and N = (W Õ
, R

Õ
, V

Õ
, P

Õ) be two PML
models, w œ W and w

Õ œ W

Õ. If Z is a bisimulation linking (P, w) and (P Õ
, w

Õ), then,
for any Ï œ PML,

M, w |= Ï i� N , w

Õ |= Ï.

Proof. The proof is by induction on Ï and the only non-standard cases are the ones

involving •p and ÈpÍ. First of all, we have that

M, w |= •p i� w œ P by the semantics of •p ,

i� w

Õ œ P

Õ
by the Agree condition,

i� N , w

Õ |= •p by the semantics of •p .

6

Now, suppose M, w |= ÈpÍÏ. Then, there is v œ W with (w, v) œ R and M[v], v |= Ï.

Since (P, w)Z(P Õ
, w

Õ) and there is v œ W with (w, v) œ R, the ZigÈpÍ condition gives

us that there exists v

Õ œ W

Õ
with (wÕ

, v

Õ) œ R

Õ
and (P fi {v}, v)Z(P Õ fi {v

Õ}, v

Õ). Now,

since (P fi {v}, v)Z(P Õ fi {v

Õ}, v

Õ) and M[v], v |= Ï, the induction hypothesis implies

that N [vÕ], v

Õ |= Ï. Hence, N , w

Õ |= ÈpÍÏ. The other direction is analogous, except

that it relies on the ZagÈpÍ condition. ⇤

Now, how does PML compare with MLÿ in terms of expressive power? We will

show that PML is strictly less expressive than MLÿ.

Definition 3.2. Let L and LÕ be two logics. We say that LÕ is at least as expressive as

L (in symbols, L Æ LÕ) if there is a translation T : L æ LÕ such that, for every model
M, every w in M and every Ï œ L,

M, w |=L Ï i� M, w |=LÕ
T(Ï),

where M is seen as an L model on the left-hand side and as an LÕ model on the right-
hand side, and, in each case, we use the appropriate semantic relation (|=L and |=LÕ,
respectively). Logic LÕ is strictly more expressive than logic L (in symbols, L < LÕ) if
L Æ LÕ but LÕ ⇥ L.

We will appeal to the notion of PML bisimulation defined above to show that PML
is indeed strictly less expressive than MLÿ:

Proposition 3.3. PML < MLÿ.

Proof. Since PML is a syntactic fragment of MLÿ, we trivially have that PML Æ
MLÿ. To show that MLÿ ⇥ PML, consider the models M = (W, R, V, ÿ) and

N = (W Õ
, R

Õ
, V

Õ
, ÿ) below, where V (q) = V (qÕ) = ÿ for all proposition letters q.

w

v

M

w

Õ
v

Õ
u

Õ

N

We have that (M, w) and (N , w

Õ) are PML bisimilar. However, M, w |=MLÿ •r^^•k ,

while N , w

Õ ”|=MLÿ •r^^•k . ⇤

Since it is a fragment of MLÿ, the logic PML is evidently a fragment of first-order

logic [Areces, 2007; Mera, 2009]. A direct translation into first-order logic is given

below.

Proposition 3.4. There is an e�ective meaning-preserving translation from PML
into first-order logic.

7

Proof. We define a translation ST

X

y

from PML formulas to first-order formulas, where

y is a variable and X a finite set of variables:

ST

X

y

(p) = Py

ST

X

y

(¬Ï) = ¬ST

X

y

(Ï)
ST

X

y

(Ï ‚ Â) = ST

X

y

(Ï) ‚ ST

X

y

(Â)
ST

X

y

(^Ï) = ÷z

1
Ryz · ST

X

z

(Ï)
2

ST

X

y

(ÈpÍÏ) = ÷z

1
Ryz · ST

Xfi{z}
z

(Ï)
2

ST

X

y

(•p) =
fl

xœX

y = x

Given a pointed model (M, w) and a finite set D = {d1, ..., d

n

} of states in M, it is

easy to prove by induction on PML formulas Ï and sets of variables X = {x1, ..., x

n

}
that

(M, w) |= Ï i� M |= ST

X

y

(Ï)[y := w, x1 := d1, ..., x

n

:= d

n

].

(Note that the set X in the above translation is used to keep track of the states that

have already been poisoned.) ⇤

Model checking. We now show that model checking for PML is PSPACE-complete.

That it is at most PSPACE is established by the first-order translation given in Proposi-

tion 3.4, which results in a polynomial increase in length and can be done in polynomial

time (alternatively, recall that PML is a fragment of the basic memory logic MLÿ).

For the lower bound, we provide a polynomial-time reduction from the true quantified

Boolean formula (QBF) problem. Given a QBF Ï, we build a graph in which Traveller

has a winning strategy in the poison game if and only if Ï is true, and for which the

existence of a winning strategy is expressible by a PML formula (where the size of

the graph and of the formula increase only linearly in the size of Ï). This also gives

a reduction of QBF to the problem of determining the existence of a winning strat-

egy in the poison game itself, and it thus provides a lower complexity bound for the

game. This method of reduction by games for modal logics originates in [Löding and

Rohde, 2003a] and [Rohde, 2005], where it was used in the study of the sabotage game:

the method is worth noting, as it can yield simple and useful model checking results

in dynamic modal logics more generally (see [van Benthem et al., 2019] for another

application).

Theorem 3.5. Model checking for PML is PSPACE-complete.

Proof. We reduce QBF to model checking for PML. Recall that a fully quantified

8

Boolean formula (QBF) is one of the form

Q1x1 ... Q

n

x

n

fi

1ÆiÆm

C

i

,

where each Q

j

œ {÷, ’} and each C

i

is a disjunction of literals ±x

j

(j Æ n). With-

out loss of generality, we can assume that Q1 = ÷. The QBF problem consists in

determining whether the formula is true when the quantifiers range over truth-value

assignments to the variables x

j

. For each given QBF Ï, we construct a pointed model

(M
Ï

, s) and a formula �
Ï

such that Ï is true if and only if M
Ï

, s |= �
Ï

. The model

M
Ï

is constructed from basic modules as depicted in Figure 1. We begin with the

initial module (Figure 1(a)), which contains the evaluation point s and corresponds

to the initial quantifier ÷x1. We then concatenate subsequent modules—each either a

’x

j

-module (Figure 1(c)) or a ÷x

j

-module (Figure 1(b))—for consecutive variables x

j

,

in the order corresponding to the order of quantifiers Q

j

in Ï.

Concatenating modules here simply amounts to identifying the last row of vertices

in each module (with labels a(x
j

), x

j

, ¬x

j

...) with the first row of vertices of the next

module: that is, for the top nodes of the j-th module we take the end nodes of the

(j ≠ 1)-th module. Once all n quantifier modules have been added in this fashion, we

append the final verification module (Figure 1(d)) in the same way. Each clause C

i

in

Ï is associated with exactly one node c

i

in the verification module—its clause vertex.

Each clause vertex c

i

has an outgoing edge to all and only the vertices a(¸), where

¸ = ±x

j

is a literal that makes C

i

true.

Consider now the poison game played on this graph. Traveller begins the game at s

and makes the first move. By choosing to go left or right, she forces Poisoner to poison

exactly one of the vertices labelled x1 or ¬x1. The same holds at each ÷x

j

-module:

Traveller has the power to determine which of x

j

or ¬x

j

will be poisoned. Similarly,

at ’x

j

-modules, Traveller makes the only available first move, after which it is Poisoner

who chooses which one between x

j

and ¬x

j

to poison (note that Poisoner never selects

the endpoints, marked by ‹, since endpoints in the graph are winning positions for

Traveller).

Observation. Traveller has a winning strategy for the poison game on (M
Ï

, s) if and
only if the initial QBF formula Ï is true.

In this setting, Traveller winning the poison game is equivalent to the ÷-player

winning the formula game on QBF formulas (see [Sipser, 2012]). A useful heuristic

for thinking about the game is as follows. Each passage through the graph all the

way until the final verification module corresponds to selecting a valuation: for each

j, exactly one of the vertices marked with x

j

or ¬x

j

is poisoned. The non-poisoned

vertices correspond to the selected valuation. Traveller aims at a final valuation that

9

s

x1 ¬x1
a(x1) a(¬x1)

(a) Initial module.

x

j≠1 ¬x

j≠1

a(x
j≠1) a(¬x

j≠1)

‹ ‹

x

j

¬x

j

a(x
j

) a(¬x

j

)

(b) ÷x

j

-module.

x

j≠1 ¬x

j≠1

a(x
j≠1) a(¬x

j≠1)

‹ ‹

x

j

¬x

j

a(x
j

) a(¬x

j

)

(c) ’x

j

-module.

x

n

¬x

n

a(x
n

) a(¬x

n

)

‹ ‹

c

i

c1 c

k

.

(d) Final verification module.

Figure 1: The four basic modules. In (b), (c) and (d), the top nodes labelled by x

j≠1
and ¬x

j≠1 (x

n

and ¬x

n

in (d)) are the end nodes of the previous module. In (d), each

clause vertex c

i

has an outgoing edge to all and only the vertices a(¸), where ¸ is a

literal ±x

i

that makes clause C

i

true.

makes the QBF formula true, while Poisoner tries to make the formula false. If Traveller

wants ±x

j

to be true at a ÷x

j

-module, she forces Poisoner to pass through ûx

j

, so that

the vertex ±x

j

is spared. Similarly, if Poisoner wishes to make ±x

j

false at a ’x

j

-

module, she makes sure to poison it. At the verification module, Poisoner selects a

clause node c

i

: at this point, either there is some vertex a(±x

j

) accessible from c

i

for

some non-poisoned ±x

j

that makes C

i

true, or ±x

j

is poisoned for every accessible

vertex a(±x

j

). In the former case, Traveller can move from c

i

to such a vertex a(±x

j

),
where ±x

j

is not poisoned. After any three more moves in the game, Traveller then

finds herself, at the beginning of her turn, at a point that sees an endpoint (marked

by ‹ on the graph). She travels to the endpoint and wins the game. If, on the other

10

hand, ±x

j

is poisoned for every ±x

j

that makes C

i

true, Traveller is compelled to move

to some a(±x

j

) where the vertex ±x

j

is poisoned. At her next turn, Traveller loses the

game, since she is forced to move to a poisoned vertex.

Lastly, we make sure that the existence of a winning strategy is expressible by a

PML formula. Recall the formula fl

k

expressing survival for at least k rounds, given

by the scheme

fl1 := [p](⇤‹ ‚ ^¬•p)

fl

k

:= [p](⇤‹ ‚ ^(¬•p · fl

k≠1))

Given a QBF Ï with n variables, take the PML formula

�
Ï

= ^(¬•p · fl

n+3)

Is is easy to see that Traveller has a winning strategy if and only if M
Ï

, s |= �
Ï

.

The formula states that Traveller can make a first move to a non-poisoned point, after

which she can survive for n + 3 rounds in the poison game. This is equivalent to

Traveller winning the poison game. Note that it takes exactly n rounds of the game to

reach the last row of vertices from which the clause nodes are accessible. The (n+1)-st
round starts with Poisoner selecting a clause vertex in the final verification module, and

Traveller responding by selecting some accessible vertex a(¸). If all accessible points

a(¸) have the vertex ¸ poisoned, then Traveller loses in the next, (n + 2)-nd round, and

�
Ï

fails. Otherwise, Traveller survives for one more round (and so �
Ï

holds), and now

she has a guaranteed victory by moving to an endpoint in the (n + 3)-rd round. The

reduction is polynomial in the size of Ï. Note that the size of the model M
Ï

grows

linearly in the number of variables, and so does the size of �
Ï

: when Ï has n variables

and m clauses, we have that |M
Ï

| Æ –(n + 1) + m, where – is the maximum size of a

quantifier module, and the number of edges is bounded above by —(n + 1) + m(n + 2),
where — is the maximum number of edges is a non-final module. ⇤

The construction just given reduces the truth of a QBF not only to the truth of a

PML formula in a model, but also to the existence of a winning strategy in a poison

game. Thus, the argument above gives us an immediate corollary:

Proposition 3.6. The existence of a winning strategy for Traveller in the poison game
is PSPACE-hard.

Thus, what falls out of this simple analysis of model checking is a lower bound on

the complexity of testing for the existence of a winning strategy in the poison game.

In fact, Zhang [2019] has independently shown that this problem is PSPACE-complete.

11

s

Ï = ÷x1’x2÷x3(C1 · C2 · C3)
where C1 = x1 ‚ x2 ‚ x3, C2 = ¬x1 ‚ ¬x3, and C3 = ¬x2 ‚ ¬x3

x1 ¬x1

a(x1) a(¬x1)

‹ ‹

x2 ¬x2

a(x2) a(¬x2)

‹ ‹

x3 ¬x3

a(x3) a(¬x3)

‹ ‹

c2c1 c3

Figure 2: An example. At each ÷x

j

-module,Traveller forces Poisoner to poison a node

labelled by the literal ±x

j

of Traveller’s choice. Each ’x

j

-module, on the other hand,

leaves the choice to Poisoner. In the final verification module, Poisoner forces Traveller

into some clause node c

i

. For each literal ±x

j

that makes the corresponding clause C

i

true, Traveller can move to the node a(±x

j

) above. In this example, Traveller has a

winning strategy which ensures that she can reach an endpoint ‹, where she wins.

12

Satisfiability. We conclude this section by considering the satisfiability problem for

PML. In spite of being strictly less expressive than MLÿ (Proposition 3.3), the

satisfiability problem for PML is undecidable, just like the one for MLÿ.

We begin by showing that PML does not have the finite model property. To do so,

we make use of the ‘spy-point technique’, first introduced by Blackburn and Seligman

[1995] in the context of hybrid logics.

Theorem 3.7. PML lacks the finite model property.

Proof. Consider the following formulas:

(Back) q · ¬s · ^€ · ⇤(¬q · s · ^€ · ⇤(¬q · ¬s · ⇤¬q)) · [p]⇤^•p · [p]⇤⇤(s æ •p)
(Spy) [p][p][p]

1
¬s æ ^(s · •p · ^(¬s · •p · ⇤(¬s æ ¬•p)))

2

(Irr) ⇤[p]⇤¬•p
(Succ) ⇤⇤^¬s

(No-3cyc) [p][p][p]
1
¬s æ [p](¬s æ ⇤(¬s æ ¬•p))

2

(Trans) [p][p]⇤
1
¬s æ [p]

1
¬s æ ^(s · •p · ^(¬s · •p · ^(¬s · •p)))

22

Now, let Inf be the formula (Back · Spy · Irr · Succ · No-3cyc · Trans). We

are going to show that, for any PML model M = (W, R, V, ÿ) and any w œ W , if

M, w |= Inf, then W must be infinite. So, suppose that M, w |= Inf. Then, by (Back),

we know that w has a successor, call it v, that satisfies s. Any such successor of w will

behave as a spy point. Now, (Back) ensures that w does not see itself, and that no spy

point can access w. Moreover, (Back) guarantees that (i) spy points have at least one

successor and that no spy point can see itself, (ii) all successors of a spy point can see

this spy point back, and (iii) all successors of a spy point see exactly one spy point.

(Spy) then ensures that all successors of a successor of a spy point see this spy point

back and are directly seen by it. By (Irr), all successors of a spy point are irreflexive

and, by (Succ), all successors of a spy point see a non-spy point (which cannot be w).

(Back), (Spy), (Irr) and (No-3cyc) together ensure that there are no 2-cycles and no

3-cycles among the successors of a spy point. Finally, (Trans)—together with (Back),

(Spy), (Irr), (Succ) and (No-3cyc)—guarantees that the relation R is transitive on the

set of successors of a spy point. Now, consider the spy point v: it follows from the

above reasoning that its set of successors is an unbounded strict partial order, which

entails that W is infinite. Lastly, the model depicted in Figure 3 establishes that (Inf)

is indeed satisfiable. ⇤

To prove undecidability, we will encode the Ê ◊ Ê tiling problem within our lan-

guage. In doing so, we shall once again employ a spy-point argument. To streamline

13

¬s, q

w

¬s,¬q ¬s,¬q ¬s,¬q ¬s,¬q

s, ¬q spy point

. . .

Figure 3: A model for Inf.

the presentation of the proof, we will at first help ourselves to three accessibility re-

lations: R

s

, R

u

and R

r

—where R

s

will be used to model transitions from/to the spy

point to/from the grid points, R

u

for upward transitions along the grid, and R

r

for

rightward transitions along the grid. We will thus show that the satisfiability problem

for PML(^
s

,^
u

,^
r

) is undecidable. After presenting this argument, we will then

explain how the proof of Theorem 3.8 below can be turned into a proof of the fact that

the satisfiability problem for PML, where only one accessibility relation is available,

is undecidable, too.

Theorem 3.8. The satisfiability problem for PML(^
s

,^
u

,^
r

) is undecidable.

Proof. Let T = {T1, ..., T

n

} be a finite set of tile types. Given a tile type T

i

, u(T
i

), r(T
i

),
d(T

i

) and l(T
i

) will represent the colours of the upper, right, lower and left edges of T

i

,

respectively. For each tile type T

i

, we fix a proposition letter t

i

that is going to encode

T

i

. We now define a formula ÏT such that ÏT is satisfiable if and only if T tiles Ê ◊ Ê.

Consider the following formulas:

(Back) q · ¬s · ^
s

€ · ⇤
s

(¬q · s · ^
s

€ · ⇤
s

(¬q · ¬s)) · [p]
s

⇤
s

^
s

(s · •p) ·
[p]

s

⇤
s

⇤
s

(s · •p)
(Spy) [p]

s

[p]
s

[p]
u

1
¬q · ¬s · ^

s

(s · •p · ^
s

(•p · ⇤
u

¬•p · ⇤
r

¬•p))
2

[p]
s

[p]
s

[p]
r

(¬q · ¬s · ^
s

(s · •p · ^
s

(•p · ⇤
r

¬•p · ⇤
u

¬•p))
2

(Grid) ⇤
s

⇤
s

(^
u

€ · ^
r

€)
(Func) ⇤

s

[p]
s

[p]
u

^
s

1
s · ^

s

(•p · ^
u

•p · ⇤
u

•p)
2

⇤
s

[p]
s

[p]
r

^
s

1
s · ^

s

(•p · ^
r

•p · ⇤
r

•p)
2

14

(UR-no-Cycle) ⇤
s

[p]
s

[p]
u

⇤
r

¬•p · ⇤
s

[p]
s

[p]
r

⇤
u

¬•p
(URU-no-Cycle) ⇤

s

[p]
s

[p]
u

[p]
r

⇤
u

¬•p
(Confl) ⇤

s

[p]
s

ÈpÍ
u

ÈpÍ
r

^
s

^
s

1
•p · ⇤

r

¬•p · ^
u

•p · ^
r

^
u

(•p · ⇤
r

¬•p)
2

(Unique) ⇤
s

⇤
s

Q

a
fl

1ÆiÆn

t

i

·
fi

1Æi<jÆn

(t
i

æ ¬t

j

)
R

b

(Vert) ⇤
s

⇤
s

fi

1ÆiÆn

Q

a
t

i

æ ^
u

fl

1ÆjÆn,u(Ti)=d(Tj)
t

j

R

b

(Horiz) ⇤
s

⇤
s

fi

1ÆiÆn

Q

a
t

i

æ ^
r

fl

1ÆjÆn,r(Ti)=l(Tj)
t

j

R

b

Now, let ÏT be the conjunction of all of the formulas above.

(∆) Suppose that M, w |= ÏT , for some PML(^
s

,^
u

,^
r

) model M = (W, R

s

, R

u

, R

r

,

V, ÿ) and w œ W . The formula (Back) and the two (Spy) formulas ensure that w has a

successor that is a spy point via the relation R

s

. They also guarantee that (1) w is not

a successor of the spy point, (2) w is not a successor of any successor of the spy point,

(3) R

s

, R

u

and R

r

are irreflexive, and (4) R

u

and R

r

are asymmetric. The points that

are R

s

-accessible from the spy point represent the tiles. The formula (Grid)—together

with (Back) and (Spy)—ensures that every tile (i.e., every point accessible from the

spy point) has a tile above it, via the R

u

relation, and a tile to its right, via the

R

r

relation. The two (Func) formulas—together with (Back) and (Spy)—on the other

hand, guarantee that R

u

and R

r

are functional: namely, that every tile has at most one

tile above it and at most one tile to its right. So, (Grid) and (Func) together ensure

that every tile has exactly one tile above it and exactly one tile to its right. Now,

(UR-no-Cycle) ensures that no tile can be both above/below and to the left/right of

another tile, while (URU-no-Cycle) forbids cycles following successive steps of the R

u

,

R

r

and R

u

relations, in this order. Together with (UR-no-Cycle) and (URU-no-Cycle),

(Conf) then ensures that the tiles are arranged in a grid. Finally, (Unique) guarantees

that every tile has a unique type, while (Vert) and (Horiz) ensure that the colours of

the tiles match appropriately. It then follows that M yields a tiling of Ê ◊ Ê.

(≈) For the other direction, suppose that f : Ê ◊Ê æ T is a tiling of Ê ◊Ê. Let M be

the PML(^
s

,^
u

,^
r

) model (Ê ◊ Ê fi {w, v}, R

s

, R

u

, R

r

, V, ÿ), where the accessibility

relations R

s

, R

u

and R

r

are given by

R

s

= {(w, v)} fi {(v, x), (x, v) : x œ Ê ◊ Ê}
R

u

= {((n, m), (n, m + 1)) : n, m œ Ê}
R

r

= {((n, m), (n + 1, m)) : n, m œ Ê}

15

w

spy point

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

s

s

s

s

s

s

s

s

u

u

u

u

u

u

u

u

u

r r r

r r r

r r r

Figure 4: A model for ÏT : a Ê ◊ Ê grid with a spy point.

and the valuation V is defined as

V (q) = {w}
V (s) = {v}
V (t

i

) = {x : x œ Ê ◊ Ê and f(x) = T

i

} for all 1 Æ i Æ n

V (p) = ÿ for all other proposition letters p

The above specification of M ensures that v is a spy point. By construction, we then

have that M, w |= ÏT . ⇤

So, PML(^
s

,^
u

,^
r

) is undecidable. The additional modalities render the encod-

ing less cumbersome, but, as a matter of fact, they are not required for undecidability:

an argument analogous to the one given by Ho�mann [2015] can be employed to adapt

our proof of Theorem 3.8 to the original PML language with only one accessibility

relation R. The basic idea for such a modification consists in using proposition letters

u and r to appropriately encode the relations R

u

and R

r

.

Theorem 3.9. The satisfiability problem for PML is undecidable.

16

w

spy point

0 r 2 . . .

r 1

u u u

1 r 0 r 2

u u u

2 r 1 r 0

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

Figure 5: Encoding the grid with a single accessibility relation.

Proof. Consider the set of proposition letters V := {0, 1, 2, q, s, r, u}. For any ¸ œ V ,

let X

¸

:= ¸ · w
vœV \{¸} ¬v be the formula stating that ¸ holds and all other atomic

propositions in V are false. For i œ {0, 1, 2}, let n(i) = i + 1 (mod 3) and e(i) =
i + 2 (mod 3). Now, consider the following formulas, where i œ {0, 1, 2} and a œ {r, u}:

(Grid1) X

q

· ^€ · ⇤
1
X

s

· ^€ · ⇤(X0 ‚ X1 ‚ X2)
2

(Grid2) ⇤⇤
1
^X

r

· ^X

u

· ⇤(X
r

‚ X

u

‚ X

s

)
2

(—
i

) ⇤⇤
A

i æ ⇤
1
(r æ ^e(i) · ⇤Xe(i)) · (u æ ^n(i) · ⇤Xn(i))

2B

(Back) [p]⇤
1
^(s · •p) · ⇤(s æ •p)

2

(Spy) [p][p][p]
A

a æ [p]^
1
s · •p · ^(•p · ⇤(a æ ¬•p))

2B

(Func) ⇤[p][p]
A

a æ [p]^
1
s · ^(•p · ^(•p · a · ^•p) · ⇤(a æ •p · ⇤•p)

2B

We then also add the formulas (UR-no-Cycleú
), (Conf ú

), (Uniqueú
), (Vertú

) and (Horizú
),

17

each of which is obtained by a simple translation scheme which replaces every multi-

modal PML(^
s

,^
r

,^
u

) formula Ï by a standard PML formula Ï

ú
. The translation

Ï ‘æ Ï

ú
leaves Boolean formulas unchanged and, otherwise, is defined as follows:

(⇤
s

Ï)ú = ⇤Ï

ú

([p]
s

Ï)ú = [p]Ïú

(⇤
a

Ï)ú = ⇤(a æ ⇤Ï

ú) for a œ {r, u}
([p]

a

Ï)ú = [p](a æ [p]Ïú) for a œ {r, u}

The conjunction of the above formulas is satisfiable if and only if the corresponding

instance of the tiling problem has a solution. The formula forces a grid-like structure,

as depicted in Figure 5. Each point in the valuation of 0, 1, 2 is assigned a tile type:

the type of each such point i is required to match the type of its rightward successor

i + 2 (mod 3) and of its upward successor i + 1 (mod 3). The rest of the argument is

then analogous to the undecidability proof for PML(^
s

,^
r

,^
u

). ⇤

4 PSL
Besides undecidability, another reason why one might be unhappy with PML as a

language for modelling the poison game concerns the •p operator. When used in

conjunction with ^, •p allows to talk about Traveller’s moves. However, •p by itself

does not have a counterpart in the poison game: neither player is allowed to roam the

graph without poisoning, simply to check whether certain vertices are poisoned or not.

To overcome these di�culties, we will now consider the fragment of PML (and, a
fortiori, MLÿ) that does not feature the basic ^ modality, but which includes ÈpÍ and

the operator ÈtÍ, defined as ÈtÍÏ ¡ ^(¬•p · Ï). As before, the ÈpÍ operator captures

Poisoner’s moves. The ÈtÍ modality, on the other hand, captures Traveller’s safe moves:

i.e., moves along edges that do not lead to a poisoned state. We will refer to this logic

as PSL.

Expressive power. Even though there are no modalities that prompt the explicit

deletion of edges, PSL is rather close to sabotage modal logic in spirit.

5
This is because

we could also think of ÈtÍ as the modality associated with a second graph relation, one

that corresponds to Traveller’s ‘safe accessibility’ relation and which shrinks over time,

as more and more states get poisoned. Under this interpretation, the poison modality

ÈpÍ behaves analogously to the sabotage modality, in that poisoning moves result in the

deletion of links from the safe accessibility relation, just as sabotaging moves trigger the

5This is why the logic is called PSL, which is an abbreviation for poison sabotage logic.

18

deletion of links from the basic graph relation. The crucial di�erence between sabotage

modal logic and PSL, however, is that, while sabotaging only allows to remove one

link at a time, poisoning prompts the deletion of all safe links leading to the poisoned

state.

It is worth noting that ÈpÍ and ÈtÍ agree on atomic propositions and Boolean

formulas, since here we restrict attention to the class of initial models where P = ÿ.

However, this is clearly not the case for arbitrary formulas. For a simple example,

consider the formula ÈpÍÈtÍq ¡ ÈtÍÈtÍq, and the model M = (W, R, V, ÿ) below, where

V (q) = {v}. We then have that M, w |= ÈtÍÈtÍq, but M, w ”|= ÈpÍÈtÍq.

w vM

Like MLÿ and PML, PSL can express that Traveller has a strategy for surviving

at least n rounds of a poison game via the inductive scheme below:

fl1 := [p]([p]‹ ‚ ÈtÍ€)

fl

n

:= [p]([p]‹ ‚ ÈtÍfl
n≠1)

We can also express the property that (i) the current state has a safely accessible

successor that has itself as its only safely accessible successor, and that (ii) every state

that is safely accessible from the current state is either an endpoint or has itself as its

only safely accessible successor via the formula ÈtÍÈtÍ€ · [p][t]‹. It then follows that

the tree model property fails for PSL, too.

Now, note that the notion of PML bisimulation defined in Section 3 can be easily

adapted to the case of PSL by replacing the standard clauses for ^ with the following

clauses for ÈtÍ:

ZigÈtÍ: if (S, u)Z(S Õ
, u

Õ) and there exists v œ W with (u, v) œ R and v < S, then

there exists v

Õ œ W

Õ
with (uÕ

, v

Õ) œ R

Õ
and v

Õ < S

Õ
, and (S, v)Z(S Õ

, v

Õ);

ZagÈtÍ: if (S, u)Z(S Õ
, u

Õ) and there exists v

Õ œ W

Õ
with (uÕ

, v

Õ) œ R

Õ
and v

Õ < S

Õ
,

then there exists v œ W with (u, v) œ R and v < S, and (S, v)Z(S Õ
, v

Õ).

Next, we make sure that the above definition is correct:

Proposition 4.1. Let M = (W, R, V, P) and N = (W Õ
, R

Õ
, V

Õ
, P

Õ) be two PSL models,
w œ W and w

Õ œ W

Õ. If Z is a bisimulation linking (P, w) and (P Õ
, w

Õ), then, for any
Ï œ PSL,

M, w |= Ï i� N , w

Õ |= Ï.

19

Proof. The only case that requires checking is the one involving ÈtÍ. Suppose that

M, w |= ÈtÍÏ. Then, by the semantics of ÈtÍ, there is v œ W with (w, v) œ R, v < P

and M, v |= Ï. By the ZigÈtÍ condition, we then have that there exists v

Õ œ W

Õ
with

(wÕ
, v

Õ) œ R

Õ
, v

Õ < P

Õ
and (P, v)Z(P Õ

, v

Õ). By the induction hypothesis, we can then

conclude that N , v

Õ |= Ï. Hence, N , w

Õ |= ÈtÍÏ. The other direction is analogous,

except that it instead relies on the ZagÈtÍ condition. ⇤

At this point, it is natural to ask how PSL compares with PML in terms of

expressivity. Using the above notion of PSL bisimulation, we can show that PSL is

strictly less expressive than PML:

Proposition 4.2. PSL < PML.

Proof. Since PSL is a syntactic fragment of PML, we trivially have that PSL Æ
PML. To show that PML ⇥ PSL, consider the two infinite binary trees M =
(W, R, V, ÿ) and N = (W Õ

, R

Õ
, V

Õ
, ÿ) shown below, where V (q) = V

Õ(q) = ÿ for all

proposition letters q.

w

.

.

.

.

.

.

.

.

.

.

.

.

M
w

Õ

.

.

.

.

.

.

.

.

.

.

.

.

N

The two pointed models (M, w) and (N , w

Õ) are PSL bisimilar. However, we have

that N , w

Õ |=PML ÈpÍ^•p , while M, w ”|=PML ÈpÍ^•p . ⇤

Just as in the case of PML, we can define a direct translation ST

X

y

from PSL
formulas to first-order formulas, where, once again, y is a variable and X a finite set

of variables. We only give the clause for the ÈtÍ operator:

ST

X

y

(ÈtÍÏ) = ÷z

1
Ryz ·

fi

xœX

¬(z = x) · ST

X

z

(Ï)
2

Model checking. The model-checking complexity of PSL can be analysed in the

exact same way as that of PML. The standard translation into first-order logic (or

simply the fact that PSL is a fragment of MLÿ) provides a PSPACE upper bound,

while the lower bound can be shown via the same reduction from the true QBF problem.

For the latter, it is su�cient to note that PSL can express survival for at least n rounds.

20

Theorem 4.3. Model checking for PSL is PSPACE-complete.

Proof. By the same reduction as in Theorem 3.5: given a QBF Ï with n variables,

construct the pointed model (M
Ï

, s). As we saw, PSL can express, through the

formula fl

n

given above, the existence of a survival strategy for Traveller for at least

n rounds. Then, Traveller has winning strategy in the poison game on (M
Ï

, s) if and

only if M
Ï

, s |= ÈtÍfl
n+3. ⇤

The logic PSL appears to be particularly well-suited for talking about the poison

game. It allows to describe each stage of the game from the local perspective of

the vertex currently occupied by the players, and quantification is restricted so as to

precisely match the possible moves of the players: the ÈtÍ and ÈpÍ modalities capture

exactly statements of the form ‘there is an available move by Traveller/Poisoner resulting

in Ï’. Note, in particular, the elegant way in which PSL expresses n-round survival

for the two players: with every application of a modal operator corresponding to a

player’s move, the language allows to talk about the game steps with no frills. Thus,

PSL seems to have a strong claim for being the most appropriate logic, at least among

the memory logics discussed in this paper, for modelling the poison game from a local,

stepwise perspective.

These considerations render the decidability question for PSL especially poignant.

The question is open: should PSL satisfiability be decidable, we would then have

a logic that strikes a very pleasing balance between close fit with the original game,

expressivity and good computational behaviour.

5 Conclusion
In this paper, we studied three logics for modelling the poison game, moving from the

memory logic MLÿ to two fragments thereof: PML and PSL. We showed that these

logics form a chain in expressive power, with PSL < PML < MLÿ, and we introduced

suitable notions of bisimulation for the two new logics presented in this paper. We

proved that PML, while strictly less expressive than MLÿ, has a PSPACE-complete

model-checking problem and an undecidable satisfiability problem. We also showed

that model checking for PSL, a more sabotage-style logic for describing the poison

game, is PSPACE-complete, and we concluded by identifying a natural open question:

namely, whether the satisfiability problem for PSL is decidable.

Our results indicate that methods from modal logic are indeed well-suited for mod-

elling graph games such as the poison game and the sabotage game—and, more broadly,

‘evolving’ relational structures. They also suggest the adoption of a useful technical

perspective for this wider purpose: the systematic use of memory logics and, more

21

generally, of techniques from hybrid logics (such as the spy-point method), in addition

to game-reduction techniques for analysing model-checking complexity [Löding and

Rohde, 2003a]. Lastly, our findings invite a broad methodological question concern-

ing the emerging study of modal logics for graph games: which logics are the natural

candidates for studying a given class of games, and how do such design choices a�ect

significant properties of these logics?

Acknowledgments: We would like to thank Johan van Benthem for many helpful

suggestions and inspiring discussions, the organisers and participants of the 4th Asian

Workshop on Philosophical Logic (AWPL 2018) held at Tsinghua University, as well

as the anonymous referees for their feedback and valuable comments.

References
C. Areces. Hybrid Logics: The Old and the New. In the Proceedings of LogKCA-07,

San Sebastian, Spain, pages 15–29, 2007.

C. Areces, D. Figueira, S. Figueira, and S. Mera. The Expressive Power of Memory

Logics. Review of Symbolic Logic, 4(2): 290–318, 2011.

C. Areces, R. Fervari, and G. Ho�mann. Relation-changing modal operators. Logic
Journal of the IGPL, 23: 601–627, 2015.

G. Aucher, J. van Benthem, and D. Grossi. Sabotage Modal Logic: Some Model and

Proof Theoretic Aspects. In the Proceedings of the 5th International Workshop on
Logic, Rationality and Interaction (LORI ‘15), Taipei, Taiwan, pages 1–13, 2015.

G. Aucher, J. van Benthem, and D. Grossi. Modal Logics of Sabotage Revisited.

Journal of Logic and Computation, 28(2): 269–303, 2017.

J. van Benthem. An Essay on Sabotage and Obstruction. In Hutter, D. and Stephan,

W. (eds.), Mechanizing Mathematical Reasoning, Lecture Notes in Computer Sci-

ence, 2605: 268–276, 2005.

J. van Benthem. Logic in Games. The MIT Press, Cambridge, MA, 2014.

J. van Benthem, K. Mierzewski, and F. Za�ora Blando. The Modal Logic of Stepwise

Removal. Under review, 2019.

P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and
Information, Special issue on decompositions of first-order logic, 4(3): 251–272, 1995.

P. Duchet and H. Meyniel. Kernels in directed graph: a poison game. Discrete Math-
ematics, 115: 273–276, 1993.

A. Ehrenfeucht. An Application of Games to the Completeness Problem for Formalized

Theories. Fundamenta Mathematicae, 49: 129–141, 1961.

22

R. Fraïssé. Sur quelques classifications des systèmes de relations. Publications des
Sciences de l’Université de l’Algérie, Série A1, pages 35–182, 1954.

D. Grossi and S. Rey. Credulous Acceptability, Poison Games and Modal Logic. To

appear in the Proceedings of SYSMICS 2019, 2019.

J. Hintikka. Logic, Language-Games and Information: Kantian Themes in the Philos-
ophy of Logic. Clarendon Press, Oxford, 1973.

W. Hodges. Building Models by Games. Dover Publications, Mineola, NY, 2006.

W. Hodges. Logic and Games. The Stanford Encyclopedia of Philosophy (Spring 2013

Edition), Edward N. Zalta (ed.), 2013.

G. Ho�mann. Undecidability of a Very Simple Modal Logic with Binding. Preprint,

2015.

C. Löding and P. Rohde. Model Checking and Satisfiability for Sabotage Modal Logic.

In Pandya, P. K. and Radhakrishnan, J. (eds.), Proceedings of the 23rd Conference on
the Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2003), Mumbai, India, December 15-17, 2003, Lecture Notes in Computer Science

2914, Springer-Verlag: 302–313, 2003a.

C. Löding and P. Rohde. Solving the Sabotage Game is PSPACE-hard. In Rovan,

B. and Vojtás, P. (eds.), Proceedings of the 28th International Symposium on the
Mathematical Foundations of Computer Science (MFCS 2003), Bratislava, Slovakia,

August 25-29, 2003, Lecture Notes in Computer Science 2747, Springer-Verlag: 531–

540, 2003b.

P. Lorenzen. Einführung in die Operative Logik und Mathematik. Springer-Verlag,

Berlin, 1955.

S. Mera. Modal Memory Logics. Ph.D. Dissertation, Universidad de Buenos Aires,

Buenos Aires, Argentina and Université Henri Poincaré, Nancy, France, 2009.

K. Mierzewski and F. Za�ora Blando. The Modal Logic(s) of Poison Games.

Manuscript, Stanford University, 2016.

P. Rohde. On Games and Logics over Dynamically Changing Structures. Ph.D. Dis-

sertation, RWTH Aachen University, Aachen, Germany, 2005.

M. Sipser. Introduction to the Theory of Computation. Third Edition, Cengage Learn-

ing, Boston, 2012.

G. Vreeswijk and H. Prakken. Credulous and Sceptical Argument Games for Preferred

Semantics. In the Proceedings of the 7th European Workshop on Logic for Artificial
Intelligence (JELIA ‘00), LNAI, pages 239–253, 2000.

T. Zhang. Solution Complexity of Local Variants of Sabotage Game. To appear in the

Proceedings of the Workshop on Logics for the Formation and Dynamics of Social
Norms (LFDSN 2019), Zheijang University, Hangzhou, China, May 4-5, 2019.

23

	Introduction
	ML
	PML
	PSL
	Conclusion
	Bibliography

