Additional Exercises: Logics and Statistics for Language Modeling 2009-2010

1 Propositional Logics

- Classify the following formulas in
 - satisfiable: they are true in at least one valuation,
 - unsatisfiable: they are true in no valuation,
 - tautologies: they are true in all valuations,
 - contingent: they are true in some valuations and false in others
 - 1. $((p \land (p \rightarrow r)) \rightarrow (q \rightarrow r))$
 - 2. $p \lor q$
 - 3. $((p \lor q) \to r) \leftrightarrow (\neg p \land \neg q)$
 - 4. $(p \land (q \lor r)) \leftrightarrow ((p \lor q) \land (p \lor r))$
- We say that a formula φ entails ψ , if whenever φ is true then ψ is also true (equivalently, whenever the formula $(\varphi \to \psi)$ is true in all situations). For the following pairs of formulas, when does A entails B?, when does B entails A?, when are both true?, when is none?
 - 1. $A = (p \land q), B = (p \lor q)$
 - 2. $A = (p \rightarrow q), B = (q \rightarrow p)$
 - 3. $A = ((p \lor q) \rightarrow r), B = (p \rightarrow r)$
 - 4. $A = ((p \rightarrow q) \rightarrow r), B = ((p \lor q) \rightarrow r)$
 - 5. $A = (p \rightarrow q), B = (p \leftrightarrow q)$
- Show using DP that the following formulas are tautologies:
 - 1. $(\neg a \rightarrow b) \rightarrow ((a \rightarrow b) \rightarrow b)$
 - 2. $(a \to (b \to c)) \leftrightarrow ((a \land b) \to c)$
 - 3. $(b \rightarrow c) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))$