Logics and Statistics for Language Modeling

Carlos Areces

areces@loria.fr http://www.loria.fr/~areces/ls INRIA Nancy Grand Est Nancy, France

2009/2010

Today's Program

- ► Propositional Logics (Again)

 - Syntax and SemanticsSatisfiability, Validity, Contingency, etc.
 - The Tableau Method
 - Decision Methods
 - Exercises

Propositional Logic

▶ The language of propositional logic (PL) is very easy: Some propositional symbols: p_1, p_2, p_3, \dots \neg , \lor

Two logical symbols: Two syntactic symbols:

- ▶ What is a formula?
 - Every propositional symbol p_i is a formula in PL

 - If φ is a formula in PL then $\neg(\varphi)$ is a formula in PL If φ and ψ are formulas in PL then $(\varphi \lor \psi)$ is a formula in PL
 - Nothing esle is a formula

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Propositional Logic

- ightharpoonup Given an assignment V of true or false to the propositional symbols we can determine for any formula whether it is true
- ▶ Let's write $V \models \varphi$ for V makes φ true.
- ▶ If $V \models \varphi$ we say that V is a model of φ .
- ▶ The symbol \models links models (V) and formulas (φ), and says that the formula φ is true in the model V.

$$\begin{array}{ccc} V \models \neg(\phi) & \text{iff} & V \not\models \phi \\ V \models (\phi \lor \psi) & \text{iff} & \text{either } V \models \phi \text{ or } V \models \psi \end{array}$$

© Areces: Logics and Statistics for Language Modeling

Satisfiable/Unsatisfiable and Tautology/Contingeny/Contradiction

- lacktriangle We say that a PL formula φ is satisfiable iff for some V, $V \models \varphi$.
- \blacktriangleright We say that a PL formula φ is unsatisfiable iff it is not satisfiable.
- lackbox We say that a PL formula φ is a tautology iff for all V, $V \models \varphi$.
- \blacktriangleright We say that a PL formula φ is a contradiction iff for no V,
- \blacktriangleright We say that a PL formula φ is a contingency iff it is neither a tautology nor a contradiction.

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

INRIA Nancy Grand Est

Relations between these notions

- ▶ If a formula is a tautology, is it satisfiable? YES.
- ▶ If a formula is a contingency, is it satisfiable? YES
- ▶ If a formula is a contingency, is it unsatisfiable? NO
- ▶ If a formula is satisfiable, can it be a tautology? YES
- ▶ If a formula is satisfiable, can it be a contingency? YES
- ▶ If a formula is satisfiable, can it be a contradiction? NO

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

So let's turn to satisfiability checking . . .

- ▶ We'll use tableaux to perform this task.
- ▶ A tableaux is essentially a tree-like data structure that records attempts to build a model.
- ► Tableaux are built by applying rules to an input formula. These rules systematically tear the formula to detect all possible ways of building a model.
- ▶ Each branch of a tableaux records one way of trying to build a model. Some branches ("closed branches") don't lead to models. Others branching ("open branches") do.
- ► The best way to learn is via an example...

Tableaux for PL

Let's see if we can build a model for $(\neg(p \land q) \land \neg \neg r) \land p$.

Rules for \neg and \land $(\neg(p \land q) \land \neg \neg r) \land p$ $\frac{(\varphi \wedge \psi)}{2}$ (\wedge) $\neg(p \land q) \land \neg \neg r$ р $\neg(p \land q)$ $\frac{\neg(\varphi \wedge \psi)}{\neg \varphi} \ (\neg \wedge)$

Contradiction!!! Model

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Formalizing the Diplomatic Problem

▶ Three propositional symbols

 $\neg P \equiv \text{exclude Peru}$ P ≡ invite Peru $Q \equiv \text{invite Qatar}$ $\neg Q \equiv \text{exclude Qatar}$ $R \equiv \text{invite Romania} \quad \neg R \equiv \text{exclude Romania}$

▶ The problem can be formalized as

prince: $P \lor \neg Q \equiv \text{invite Peru or exclude Qatar}$ queen: $Q \lor R \equiv \text{invite Qatar or Romania or both}$ king: $\neg R \lor \neg P \equiv \text{snub Romania or Peru or both}$

 $\blacktriangleright \ \Sigma = (P \vee \neg Q) \ \& \ (Q \vee R) \ \& \ (\neg R \vee \neg P)$

Some of the Techniques for SAT Solving

- ▶ Complete methods (they answer SAT if and only if the formula is satisfiable).
 - truth tables
 - tableaux
 - Davis-Putman
 - resolution
 - map into linear equations
- ► Approximation procedures (they answer SAT or UNKOWN)
 - ▶ flip the value of a variable in an unsatisfied clause
 - genetic algorithms
 - hill-climbing

© Areces: Logics and Statistics for Language Mode

INRIA Nancy Grand Est

Graph Coloring: The Nitty-Gritty Details

- ▶ We will use $n \times k$ propositional symbols that we write p_{ii} (n is the number of nodes in N, k the number of colors)
- ightharpoonup We will read p_{ij} as node i has color j
- ▶ We have to say that
 - 1. Each node has (at least) one color.
 - 2. Each node has no more than one color.
 - 3. Related nodes have different colors.
- 1. Each node has one color: $p_{i1} \lor \ldots \lor p_{ik}$, for $1 \le i \le n$
- 2. Each node has no more than one color: $\neg p_{il} \lor \neg p_{im}$, for $1 \le i \le n$, and $1 \le l < m \le k$
- 3. Neighboring nodes have different colors. $\neg p_{il} \lor \neg p_{jl}$, for i and j neighboring nodes, and $1 \le l \le k$

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Exercises

Use the graph coloring coding in the following graph, using 2 colors (R and B):

Show the first three lines of a truth table for the formula obtained in the codification.

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Validity via Tableaux

Let's show that $(p \land q) \rightarrow p$ is valid

Rules for
$$\rightarrow$$

$$\begin{array}{c} \neg((p \land q) \rightarrow p) \\ p \land q \\ \neg p \\ \hline \neg \varphi \quad \psi \\ \hline \neg \varphi \quad \psi \end{array} (\rightarrow) \\ \begin{array}{c} p \\ q \\ \hline Contradiction!!! \end{array}$$

It is impossible to apply any more rules, and there are no open branches. Hence no model exists for the input $\neg \varphi$. Hence φ is valid.

Decision Methods for PL

- ▶ The most traditional methods for solving the SAT problem for propositional logics (PL-SAT) behave as follows. For any input formula φ
 - ▶ They always answer SATISFIABLE or UNSATISFIABLE.

 - They always answer correctly.
- ▶ The best known decision methods probably are
 - truth tables
 - tableaux
 - ▶ Davis-Putnam
 - resolution

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Applications: Graph Coloring 3

- Results:
 - ▶ the GSAT and WalkSAT algorithms seem to be competitive with specialized graph coloring algorithms
- ► An application to algebra:
 - problems dealing with quasigroups can be viewed as specialized coloring problems
 - some open problems on quasigroups have been encoded in this way and solved automatically by propositional provers. E.g. is there a quasigroup satisfying the equations $\forall a.(a \cdot a) = a$

$$\forall a.(a \cdot a) = a$$
$$\forall a, b.((b \cdot a) \cdot b) \cdot b = a$$

© Areces: Logics and Statistics for Language Modeling