Logics and Statistics for Language Modeling

Carlos Areces

areces@loria.fr http://www.loria.fr/~areces/ls INRIA Nancy Grand Est Nancy, France

2009/2010

Today's Program

- ► Description Logics
 - Syntax and Semantics
 - ► The Tableaux Method
 - ► Inference Tasks

Description Logics: Syntax

- ▶ Atomic Concepts: CON = $\{C_1, C_2, ..., C_n, ...\}$
- ▶ Roles: ROL = $\{R_1, R_2, \dots, R_n, \dots\}$
- ▶ Individuals: IND = $\{i_1, i_2, \dots, i_n, \dots\}$
- ► (Complex) Concepts:

$$\top \mid \neg C \mid C_1 \lor C_2 \mid \exists R.C$$

for C, C_1, C_2 concepts and R a role.

► (Partial) Definitions:

 $C_1 \sqsubseteq C_2$

for C_1 , C_2 concepts.

► Assertions:

$$i: C \mid (i_1, i_2): R$$

for C a concept, i, i_1, i_2 individuals and R a role.

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Description Logics: Semantics

▶ Define the following translation T_x from DL to FOL:

$$\begin{array}{rcl} T_{x}(C) & = & C(x) \text{ for } C \text{ atomic} \\ T_{x}(\neg C) & = & \neg T_{x}(C) \\ T_{x}(C_{1} \lor C_{2}) & = & T_{x}(C_{1}) \lor T_{x}(C_{2}) \\ T_{x}(\exists R.C) & = & \exists y.(R(x,y) \land T_{y}(C)) \\ & \text{for } y \text{ a new variable} \\ T_{x}(C_{1} \sqsubseteq C_{2}) & = & \forall x.(T_{x}(C_{1}) \rightarrow T_{x}(C_{2})) \\ T_{x}(i:C) & = & T_{i}(C) \\ T_{x}((i_{1},i_{2}):R) & = & R(i_{1},i_{2}) \end{array}$$

 \blacktriangleright Let φ be a formula in DL. Then φ is satisfiable iff

$$M,g \models T_x(\varphi)$$

for M a first-order model for the signature $\langle \mathsf{VARS}, \mathsf{IND}, \{\}, \mathsf{CON} \cup \mathsf{ROL} \rangle \text{ and } g \text{ an arbitrary assignment}.$

The Tableaux Method

- ▶ What is a tableaux? It's a method to search for models
 - ▶ It's a collection of formulas (assertions) organized as a tree.
 - ► Each branch of the tree represent a (partial) model of the root formula.
 - Branches are expanded via tableaux rules.
 - If a branch contains a contradition it is closed.
 - If no further rule can be applied and there is at least a branch which is not closed, then we have found a model for the root.
- ▶ A branch is closed if for some *C* and some *i*, both *i* : *C* and $i : \neg C$ are in the branch; or if $i : \neg T$ is in the branch.

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Tableaux Rules

For Conjunction:

$$\frac{a: C_1 \wedge C_2}{a: C_2} \left(\wedge \right) \qquad \frac{a: \neg (C_1 \wedge C_2)}{a: \neg C_1 \mid a: \neg C_2} \left(\neg \wedge \right)$$

For Disjunction

$$\frac{a:C_1\vee C_2}{a:C_1\ |\ a:C_2}\ (\vee) \qquad \frac{a:\neg(C_1\vee C_2)}{a:\neg C_2}\ (\neg\vee)$$

For Negation: $\frac{a: \neg \neg C}{a: C}$ (\neg)

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Tableaux Rules

For Existential:

for b a new individual

For Universal:

$$\frac{a:\forall R.C}{(a,b):R} \\ b:C \qquad (\forall) \qquad \frac{a:\neg(\forall R.C)}{b:\neg C} \quad (\neg\forall)$$

for b a new individual

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Reasoning with Description Logics

▶ We defined before what it meant for a formula of DL to be sat/unsat (using the translation to FOL).

The tablaux rules that we saw up to know can be used to prove that an assertion is sat/unsat.

▶ There are different Reasoning Tasks that we might be interested in, when using DL.

► Concept Inconsistency: Given a concept C, is C always empty in every model?

Equivalently, can we find a model where C is not empty?

▶ Concept Membership: Given some definitions T, some assertions A, a concept C and an individual a, does the information in $\langle T, A \rangle$ makes a a C?

Equivalently, does every model where $\langle T, A \rangle$ is true, also makes a: C true? Concept Equivalence: Given some definitions T, some assertions A, and two concepts C_1 and C_2 , does the information in $\langle T, A \rangle$ makes the concept C1 and C2 equivalent?

Equivalently, does every model where $\langle T,A \rangle$ is true, also makes $\mathcal{C}_1 \equiv \mathcal{C}_2$ true?

es: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Tableaux Rules

For a set T of Definitions

$$\begin{array}{c} \underline{C_1 \sqsubseteq C_2 \in \mathcal{T}} \\ a : \neg C_1 \lor C_2 \end{array} \big(\sqsubseteq \big) \\ \begin{array}{c} \underline{C_1 \equiv C_2 \in \mathcal{T}} \\ a : \neg C_2 \lor C_1 \\ a : \neg C_1 \lor C_2 \end{array} \big(\equiv \big) \end{array}$$

for a any individual in the tableaux For a set \boldsymbol{A} of Assertions

$$\frac{a:C\in A}{a:C}\;(a:)\qquad \qquad \frac{(a,b):R\in A}{(a,b):R}\;((a,b):)$$

Using the Tableaux Rules

- ► Concept Inconsistency: Given a concept *C*, is *C* always empty in every model?
 - Run the tableaux rules on a:C for an arbitrary a. If all the branches are closed, then ${\it C}$ is always empty in every model.
- ▶ We prove that $C \land \neg (D \lor C)$ is inconsistent.

$$\begin{array}{l} a: C \land \neg (D \lor C) \\ a: C \\ a: \neg (D \lor C) \\ a: \neg D \\ a: \neg C \\ & \otimes \end{array}$$

Using the Tableaux Rules

- ► Concept Membership: Given some definitions *T*, some assertions A, a concept C and an individual a, does the information in $\langle T, A \rangle$ makes a a C? Run the tableaux rules on $a: \neg C$. If all the branches are closed, then in every model a:C.
- lacktriangle We prove that given $T=\{{\sf Father}\equiv{\sf Man}\ \land \exists{\sf has\text{-}child}.\top\}$ and

We prove that given
$$T = \{\text{Father} \equiv \text{Man} \land \exists \text{has-child}. \top \}$$
 and $A = \{a : \text{Father} \}$ it follows that $a : \text{Man}$ a : $\neg \text{Man}$ a : $\neg \text{Father} \lor \neg \text{Man}$ a : $\neg \text{Father} \lor \neg \text{Man} \land \exists \text{has-child}. \top \rangle$ a : $\neg \text{Father} \lor \neg \text{Man} \land \exists \text{has-child}. \top \rangle$ a : $\neg \text{Man}$ a : $\neg \text{Has-child}. \top \rangle$

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Using the Tableaux Rules

▶ Concept Equivalence: Given some definitions *T*, some assertions A, and two concepts C_1 and C_2 , does the information in $\langle T, A \rangle$ makes the concept C_1 and C_2 equivalent? Run the tableaux rules on $a: C_1 \wedge \neg C_2$. If all the branches are closed, then in every model $C_1 \sqsubseteq C_2$. Do the same for $a: C_1 \wedge \neg C_2$.

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est

Exercises

Prove that, with respect to the following definitions,

 $\mathsf{Man} \ \equiv \ \mathsf{Male} \land \mathsf{Human}$ $\mathsf{Parent} \ \equiv \ \exists \mathsf{children}. \top$ Father \equiv Man \wedge Parent

Father-with-only-male-children \equiv Father \land Human \land (\forall children.Male) $\mathsf{Father\text{-}with\text{-}only\text{-}sons} \ \equiv \ \mathsf{Man} \land \big(\exists \mathsf{children}. \top \big) \land \big(\forall \mathsf{children}. \mathsf{Man} \big)$

the concept Father-with-only-sons and Father-with-only-male-children are ${f not}$ equivalent.

© Areces: Logics and Statistics for Language Modeling

INRIA Nancy Grand Est