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ABSTRACT.

Multimodal versions of propositional logics S5 or S4 - commonly accepted as logics of
knowledge - are capable of describing static states of knowledge but they do not reflect how
the knowledge changes after communications among agents. In the present paper (part of
broader research on logics of knowledge and communications [10]) we define extensions of the
logic S5 which can deal with public communications. The logics have natural semantics. We
prove some completeness, decidability and interpretability results and formulate a general
algorithm that solves certain kind of problems involving public communications - among
them widely known puzzles of Muddy Children or Mr. Sum & Mr. Product.

As the paper gives formal logical treatment of the operation of restriction of the universe
of a Kripke model, it contributes also to investigations of semantics for modal logics.

KEYWORDS: logics of knowledge, communications, Kripke models, logic S5,
(applicable in) distributed systems, (applicable in) expert systems.
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1 Introduction

A students’ proverb says ‘No one knows everything but true wisdom is to know whom to ask’.
This emphasizes that knowledge can consist not only of ground facts but can also involve
statements about somebody else’s knowledge. Reasoning about knowledge is characteristic
especially for the situations where information is exchanged.

Example 1.1 Muddy Children

Father : At least one of you has a muddy forehead.

Child 1 : T do not know whether my forehead is muddy.

Child 2 : T do not know whether my forehead is muddy.

Child 3 : T know whether my forehead is muddy or not but I won’t tell you!

If the participants of the dialog can see each other (but no one can see his own forehead) is

the forehead of Child 3 muddy?

Example 1.2 Mr. Sum & Mr. Product

Mr. Puzzle : T choose two natural numbers greater than 1. 1 will tell the sum of the

. numbers only to Mr. Sum and their product only to Mr. Product.
He tells them.
Mr. Product : I do not know the numbers.

Mr. Sum : I knew you didn’t.

Mr. Product : But now I know!

Mr. Sum : So do I!

What can be the numbers if they are not greater than 1007

The first of the above puzzles was discussed by R. Parikh (cf. [9]), the second one is a classic
exercise in combinatorics and was further popularized by J. McCarthy. In this paper we
propose and investigate formal logical systems which can deal with communication sessions
such as ones in 1.1, 1.2.

The communication session of Muddy Children consists of a sequence of four public com-

munications. In the communication session of the example 1.2 Mr. Puzzle performs two
semi-public communications - one directed to Mr. Product and one - to Mr. Sum. (Semi-
public communications considered in [10] are beyond the scope of this paper and the results
will be published elsewhere.) The first communication of Mr. Product and the first com-
munication of Mr. Sum are both based only on the knowledge acquired after Mr. Puzzle’s
communications - Mr. Sum’s communication does not depend on Mr. Product’s one. There-
fore we consider them as parallel (i.e. performed at the same time) public communications.
After them two other public communications follow in a sequence.

Note that a communication consists not only of the message that was sent. To specify a
communication one needs also description of the information received by various agents. De-
spite the fact that communication channels are guaranteed information received is usually



different from the message that was sent - its form depends on the kind of communication.
For instance different information would be received by Mr. Sum if Mr. Puzzle sent the
value of the sum of the numbers not in semi-public communication but in public one - Mr.
Sum would know then that Mr. Product knows the sum.

Before we consider these problems in greater detail let us recall basic notions connected
with logics of knowledge. (For general logical notions and those specific to modal logics the
reader can consult [1], [3], S. Kripke’s paper in [8] and [2].)

Definition 1.3 Language L, (P)
L., (P) - the language of the logic of knowledge with m agents - is the language with a set

P of propositional symbols and containing the following connectives:

/\7 \/7 —, =, 1, T, J_, Kl, RN Km, KWl7 RN KWm

( T, L stand for "true” and "false”; K;a can be read ‘agent ¢ knows that « is true’,
Kw;a - ‘agent ¢ knows whether « is true or not’.)

Our basic tool is Kripke’s possible worlds semantics. Fach agent knows only some aspects
of the situation that is considered. The agent does not know the actual world but he
can imagine several possible worlds which do not differ in these aspects. FEach group of
such indistinguishable worlds constitutes an equivalence class of the indiscernibility relation
associated with the agent. The agent knows a fact if the fact is true in all possible worlds
which are indistinguishable from the actual world.

Definition 1.4 Kripke models

By a Kripke model (with equivalence relations) for a language L,,(P) we understand any
tuple M = (W, wo, R1,..., Ry, vp), where:

W is a nonempty set (of possible worlds)

wy € W (is the actual world)

Ri,...,Rn €W x W are equivalence relations (indiscernibility relations)

vp: W x P —{0,1} (is a valuation of propositional letters)

The relation of satisfaction of a formula in a world w of a Kripke model M is defined as the

smallest relation meeting the following conditions:
M,wE=, T
M,wkE, p ifft vp(w,p) =1 (for any propositional letter p € P)
M,wkE _ang it M,wkE oand M,wkE= (3
M,wkE _aovp it M,wkE oo M,wkE=
M,wkE a—p it M,wk o implies M,wk=
M,wE, ao=p it M wl_ais equivalent to M, w=, 3
M, wE=, —a iff not M,wE_«
M,wE=, Ko iff for any o', if wR;w’ then M, w'l= o
M,wkE Kwa iff M, wkE Kaor M,wE=, K-«

3



A formula is said to be true in the model M iff M, wol=, «; thisis denoted by M= «. Given
a set of formulas I' we write ['=_« to denote that « is true in all models in which formulas
of I' are true. A formula is universally true iff ) = _«, this is denoted by = a.

Definition 1.5 Logic LK,,
For any language L,,(P) the consequence operation F,, of the logic of knowledge LK,, is
defined by means of the following schemata (¢ = 1,...,m):

1. axiom schemata of the propositional classical logic
2. KZ'Oé — &
3. KZ'Oé — KZKZOé
4. —|Ki0z — KZ'_'KZ'Oé
5. K¢Oé/\Ki(Oz—>ﬂ) — Kzﬂ
6. KWZ'Oé = KZ'Oé\/KZ'_'Oé
7 a—[3
e
8. Koo

The logic LK, can be viewed as a logic of an external observer who can reason about the
world and about agent’s knowledge. Even if the external observer can see that «a is true

it does not imply that the agents know «, therefore the rule ﬁ is not assumed in LK,,.

We allow agents to be logically omniscient - to know all the loéical theorems - ones which
are true in all situations. Exactly this is expressed by the rule 8 - the assertion mark in
the premiss of the rule indicates that it can be applied only to formulas which are logical
theorems. Two examples: ., Ky(Kip—p) but {p} F..Kip.

Remark 1.6

LK,, is a multimodal version of the Lewis logic S5.

LK,, is a conservative extension of the classical propositional logic.
Linguistical extensions of theories formalized in LK,, are conservative.

If m < n then LK, 1s a conservative extension of LK,,:

if TU{a}CL,, and I' F,, « then '+, a.

Deduction lemma holds: TU{a}t,, 3 iff ['F,a—p.

LK,, is sound and complete: I'=_« iff ', a .

LK,, is compact: if every finite subset of I' has a model then I' has a model.
LK., has the finite model property (and therefore it is decidable):

if I/, a then there exists a finite Kripke model M with equivalence relations such that M =
«

(C‘f. S. Kripke’s paper in [8], [3], [6])

In example 1.2 Mr. Sum and Mr. Product speak about values of numbers. To express their
statements we need new unary logical connectives Kv; in our language. Kv;d can be read

4



‘agent ¢ knows the value of the designator d’. For instance Kvg,,,numbers, Kvg,i,.smurderer
or Kvstemperature. The designators we consider are nonrigid - each can be thought as a name
whose meaning varies from one world to another - for instance temperature can designate
different real numbers in different possible worlds. Nonrigid designators are called sometimes
nonrigid constants because they can be considered as individual constants of a first order
language, constants - which have nonrigid semantical interpretations. (Yet most treatments
of the first order modal logic interpret constants and functions as rigid. For a broader
perspective cf. [11] , [2].) The language £ (P,D) that is defined below is stronger than the
propositional language L£,,(P) but as it does not admit individual variables and quantifiers
- it 1s still weaker than full first order modal language.

An agent is said to know the value of a designator d if d has the same value in all worlds
indistinguishable from the actual one. Note that Kv; can be thought as a generalization of
Kw; - in fact Kw;a means ‘agent ¢ knows the (logical) value of o’

Definition 1.7 Language £ (P,D)

Consider a set P of propositional letters and a set D of individual constants. L% (P,D) -
the language of the logic of knowledge with designators - is the extension of the language
L., (P) in which for every ¢« = 1,...,m and every d € D the expression Kv;d is allowed as
atomic formula.

Definition 1.8 Kripke models with nonrigid constants
By a Kripke model (with equivalence relations) and with nonrigid constants

for a language £2 (P,D) we understand a tuple M = (W, wo, Ry, ..., R, vp,vp)
where (W, wq, Ry, ..., Ry, vp) is a Kripke model (with equivalence relations) for £,,(P) and

vp is a function with arbitrary range, defined on W x D. The notion of satisfaction is defined
as in usual Kripke models except that the following condition is added:
M,wk Kvid iff for any w',w”, if wR;w" and wR;w” then vp(w',d) = vp(w”,d).

Note that that as the considered relations are equivalences we have
wl=, Kvid iff for any w', if wR;w' then vp(w',d) = vp(w,d).

Definition 1.9 Logic LK%
For any language £2 (P,D) the consequence operation F¢ of the logic of knowledge with nonrigid designato

LK? is the extension of the logic LK,, obtained by adjoining the following schemata
(t=1,...,m):

2. _'KVZ'd — KZ'_'KVZ'd

3 o

) KZ'Oé

The explanation following Definition 1.5 applies to rule 3 as well.
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Remark 1.10

Linguistical extensions of theories formalized in LK? are conservative.

LK (L% (P, D)) is a conservative extension of LK,,(£,,(P)):

if 'U{a}CL,,(P) and I'F a then ', a.

If m < n then LK is a conservative extension of LK< :

if 'U{a}CLL and I' F¢ o then I'F2 a.

Deduction lemma holds: TU{a}F% 8 iff TF? a—p.

LK is sound and complete: TH? o iff INS

LK? is compact: if every finite subset of I' has a model then I' has a model.
LK? has the finite model property and therefore it is decidable.

LK;'; is interpretable in LK,,, more exactly:

LK (£ (P, D)) is interpretable in LK, (£,,(PU{pys : d € D})):

Let *: L4 (P,D)— L,,(PU{ps : d € D}) be the mapping that replaces every occurrence of
Kv;d in a formula by Kw;p;. Denote {y*:v€l'} by I'*. Then Fl—fnoz iff T, o,
cf. [10].

The mapping * above has the following informal meaning: instead of asking ‘Do you know
who is the author of Knowledge and Belief 77 ask ‘Do you know whether it is J. Hintikka who
is the author of Knowledge and Belief 7’

At the end of the preliminaries let us remind the concept of common knowledge. Define:
Ea=KiaA.. .AK,,a . Ea intuitively means ‘every agent knows that « is true’.

Define E’a = o, E"™'a = EE"a. For instance E*a intuitively means ‘everybody knows that
everybody knows that «a is true’.

If the agents are gathered in a conference room and if somebody states aloud ground fact p
then each agent gains infinite set of formulas: {E'p : i € N} - in other words p becomes
common knowledge. (Note that if not a ground fact p but a more complicated formula o were
communicated it could happen that o would be no longer true after this communication; cf.
Example 2.2.) Set {E'a :i € N} will be denoted Ca (C stands for ‘common’). Note that
Ca represents an infinite conjunction and according to our terminology it is not a formula.
In a Kripke model M = (W, wy, Ry,..., Ry, vp) (with equivalence relations) M, wlk= Ca iff
for any w’, if wRw’ then M, w'l= «

where R° is the transitive closure of the union F;U...UR,,.

For a broader perspective on problems of reasoning about knowledge we recommend: J.
Halpern’s overview of the subject in [5], chapter 9 of [4] with Bibliographical and Historical
Remarks 9.13, [6] - review of logics of knowledge, J Hintikka’s classical book [7] and his
paper in [8], and papers: [9], [5], [12].



2 Logics of public communications

We consider communication sessions with discrete time. The session begins at the time
0. A public communication can be imagined as a statement made in a conference room in
which all agents are present. If at a moment ¢ agent ¢ starts a public communication with a
message {a} then at moment ¢ 4+ 1 it becomes common knowledge of all agents that ¢ knew
that « was true at . (We consider only honest communications.) Although the situation
involves time and common knowledge it can be described in a simpler way: the information
received through this communication causes each agent to change the Kripke model he has
at the time ¢ - to delete possible worlds in which K;a is not true. This is the idea behind
the following definition.

Definition 2.1

Let £} be the extension of a language £,,(P) in which new binary logical connective + is
allowed. For any Kripke model M = (W, wo, R1,..., Ry,vp) for L,,(P) we define a notion
of satisfaction of formulas of L :

M,wkE_a+p it M,w= o and M |o,wl=,

where M |q is the restriction of the model M to the set {w € W : M, wk=, a}.

Intuitively a+4 is true iff 3 would be true after a (honest) public communication of {«a}
performed by an omniscient agent (i.e. an agent whose equivalence is equality).

Another example: 3 will be true in the situation after a sequence of (honest) public commu-
nications: {aq} by the agent 1,...; of {a)} by the agent & iff

((...(Kiag + Keag) +...) + Kgay) + 3 is true at the present.

Another example:  will be true in the situation after (honest) parallel public communica-
tions of {a1} by the agent 1 and of {az} by the agent 2 iff (Kja;AKzay) + 3 is true at the
present.

More general:

For each i,t let Al be a (honest) message sent in a public communication by the agent i at
the time ¢. (Message is a finite set of formulas.) (A! = () if there was no message.) Then 3
will be true at the time ¢ + 1 iff

(AL, KZ'(S?) +(AZ, KZ'(S}) +...+(AZ, Kﬁf) + /3 is true at the time 0, where (5f =A Af and +
is considered as right-associative. (Problem of placing parentheses in such expressions will
disappear when we will learn in 2.14 that + is associative.)

Example 2.2

Consider the language with the set of P= {p} of propositional letters and a Kripke model
M = (W, wo, R1, Rz, vp) where

W = {wg, wy,ws },

equivalence classes of Ry are {wp} and {wq,w},

equivalence classes of Ry are {wp,w;} and {ws},

7



vp(wo,p) = 1, vp(wy,p) = 0, vp(ws, p) = 0.

Consider a = K;=Kwyp. We will check whether the formula @ — a 4+ « is true in wy. We
have: M,wol=, o, M,wy f= o, M w, f= «.

Let us consider the restricted model M |o = (W |, wo, Ry |as B2 s vp |a)

Now W |a= {wo} and Ry |o , Rs |a are equalities.

We have M |o,wo f=, «. Thus M,wy f=, oa+a. Consequently M, wy f= a — a+ «a.

This example shows a situation in which « is initially true in a model but after a public
communication of {a}, it becomes false.

Proposition 2.3

The following schemata are true in every Kripke model:
a+p = aAp (for any propositional letter p € P)
a+T =«

at+l = 1

at(BiABa) = (atbi)A(a+f2)

at(1V ) = (atb1)V(a+pa)

a+-0 = ah=(a+)

at(pi—f2) = aMa+fr—a+f)

a+(1=p2) = aN(a+i=a+Fs)

a+K; 3 = anKi(a — a+f3)

Definition 2.4 Logic LK’
For any language £} the consequence operation ' of the logic of public communications
LK is defined as the extension of LK,, obtained by adding all the schemata listed in the
+ 0=

proposition 2.3 and the rule of the replacement of equivalents: M

H=6([3)
The schemata of Proposition 2.3 are not independent. In fact it would be it would be enough
to take as axioms of LK the first one and a subset of the remaining ones that corresponds
to a complete set of logical connectives.

Theorem 2.5 Interpretability of LK in LK,,

The equivalences of the proposition 2.3, schema 6 of Definition 1.5 and the rule of the
replacement of equivalents determine a (unique) way of translating a formula « of £} into
a formula o* of £, .

* is an interpretation of LK} in LK,,: F a iff F,a*. Moreover Fta=a*.

Proof.

The equivalence - a=a* is a straightforward consequence of the definition of .

By induction on ¢ show that = a=g implies |=,_¢(a)=¢(3). This proves the soundness of
LK.



Now assume F,,a*. Thus k' a* and by the first equivalence: F' a.
For the proof of the other implication assume ' «. Thus by the first equivalence 1 a*,
thus by soundness of LK}: | o and by completeness of LK,,,: F,,a.

Proposition 2.6

+ is not definable in terms of the remaining logical connectives:

there is no scheme ¢(a, §) such that: 4+ does not occur in ¢ and for any language £} and
any formulas in it F'a + 3 = é(a, ).

Proof.

If there were such a scheme ¢ then the rule of uniform substitution of formulas for proposi-
tional letters % would be admissible in LK} (by induction on ¢). But as =_a+p = aAp
and f= o+ o = aAa (by Example 2.2) this rule is not valid. Contradiction.

Theorem 2.7 Soundness and completeness of LK
IFraiff TE a.

Proof.

Soundness was already mentioned in the proof of Theorem 2.5.

For the proof of completeness note that:

i) FrB=3" (from 2.5)

i) [, p=p" (from i by soundness)

Assume I''=_a. Then by ii: I'"[=_a*, thus by completeness of LK,,,: Tk, a*, thus "o,
thus by i: I'Fta.

Proposition 2.8
If m < n then LK is a conservative extension of LK :

if TU{a}CL} and T+ o then TH a.

Proof.
Assume I' f-"a. By completeness of LK there is a model M in which « is not true. M
can be expanded to a model for LK. By soundness: ' I/ a.

Theorem 2.9 Compactness
LK is compact: if every finite subset of I' has a model then I' has a model.

Proof.

For the proof of compactness assume that I'CL} does not have a model. Then I'i=_ L and
by completeness: I'=F 1. By finiteness of proofs there is finite I¢CI' such that Tt L. Ty
does not have a model.



Theorem 2.10 On deduction
FU{oz}l—;Cﬁ iff Fl—:boz—ﬁ

Proof.

Assume T'U{a}F! 3. By soundness: I'U{a}}=_#3. Thus I"U{a*}=, 3"
By completeness of LK,,,: T™U{a*}t,, 3"

and by deduction lemma for LK,,: I'"F,,a*—3".

As a*— (" = (a—f)* we have I*F,, (a— )", so: T*F(a—p)".
Therefore: TH'a—p.

The other implication in the theorem is straightforward.

Proposition 2.11
LK} is a conservative extension of LK,,: if TU{a}CL,, and T+ a then T+, a.

Proof.
Assume T'H'a. Thus by soundness of LK : T'=_«, thus by completeness of LK,,: T'k,a.

Theorem 2.12 Decidability of LK

The logic LK} has finite model property: if f+a then there exists a finite Kripke model
M with equivalence relations such that M = «.

Therefore for any language £} the relation 7 a is decidable.

Note that in the above theorem a has to be a formula of a particular language, not a schema.
We do not know how to decide whether a schema is admissible in LK.

Proof.
Assume fta. Then by interpretability f,,a*. By finite model property of LK, there exist
required M such that M J= o* and as |=_o*=a we have M = a.

A formula o € L% (P, D) is said to be K-positive if it does not contain negative occurrences
of K;, Kw;, Kv;. In other words K-positive formulas are those equivalent to formulas built of
classical formulas and formulas of the form Kv;d by means of A,V and K;.

Proposition 2.13

1. If a formula € L} does not contain neither K; nor Kw; (but + is allowed) then
Fra+8 = anB and Ffa+K;B = anK(a—p).

2. If a formula € L} is K-positive then FFaAf — a+8.
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Proof.
1. By induction on f.
2. By the monotonic property of K-positive formulas:
if v is K-positive, M, wl=, ~,w € M'CM then M’ wi=, 7.

Proposition 2.14
The following schemata are admissible in LK :

a+(f+7) = (a+8)+y

a+f — «

(14 ...+a;i+...4+a,) = (a1 +...+ )
THa = «

l4+a=_1

(a+ BN+ (=) = (a+ B2)
a+K;8 — a+

Oé—I-_'KZ'ﬂ — Oz—I—KZ_'KZﬂ
a+ (KgAK B) = a+ Ki(BiAG2)
FHra=ar b B4
a+B — a'+f
F;ﬂl/\62 - 63
o+ Na+Py — a+f3,

Proof.

All items can be proved semantically. We will show only the first item:

M, wol=, o+ (8 +7) it M,wol=, o and M |o, wol=, § and M |a|5,w0|:m’y.

On the other hand

M, wol=, (a4 8) 4+~ it M, wol=, o and M |o, wol=, # and M |oz+ﬂ7w0|:m7'

It is enough to notice that M |oz|5 =M |OH_5 (but neither of those is M |oz/\ﬂ)'

Remark 2.15

The following schemata are not admissible in LK :
a+p = f+a

atp — 3

alNf — a+f3

oa — ata

a+ (B +4) = anl(a+ B) + (a+ B))
&

«
L B—p
atf — a+fs

11



Fra—ar
a+ff — a'+f3
I—T";Loz—>oz'
a'+f — a+f

+ !
Note also that although the rule M is admissible,
a+ff — a+f3

M=, B—pB" does not imply M=, a + 8 — a + 3'. (Compare also with 2.16.)

One of the counterexamples required for the proof of the above remark was given in 2.2, the
remaining ones are left to the reader.
Immediately from the definition of semantics of + we obtain:

Proposition 2.16
If for any w € M, M,wk= _«a=a’ then for any w e M, M,wE=, o+ 5 =d' + 5.

Proposition 2.16 is of importance for applications (cf. Example 2.17) and it should not be
confused with the following statement which is not true:

if for any w € M, M,wkE, B=p" then for any w € M, M,wE_a+=a+ /7.

Also the following more general statement is not true:

if for any w € M M,wl=_a=cd then for any w € M M, wl=, ¢(a)=¢(a’)

Example 2.17 Muddy Children II

Consider the model M corresponding to the initial situation in the puzzle of Muddy Children.
Possible worlds:

W ={{c,c,c),{c,e,m), (e,m,c), {c,m,m), (m,c,c), (m,c,m), (m,m,c), (m,m,m)}

(Think of (¢, ¢, m) as "Childl is clean, Child2 is clean, Child3 is muddy”.)

We do not specify the actual world in this model - we will test a formula corresponding to
the dialog of Muddy Children in all the worlds of the model. If the formula is true in a
world, the world can be taken as the actual world. In this way we will obtain all the worlds
(situations) in which the dialog could take place.

Indiscernibility relations:

<x17x2ax3>RFatheT<ylay27y3> iff 2y =y, 22 =y and 23 =y

(21,29, 23) Ronitar (Y1, Y2, y3) it 29 =y, and 23 = y3

(21,29, 23) Ropitaz (Y1, Y2, y3) i 21 =y and 23 = y3

(21,29, x3) Ronitas (Y1, y2, y3) i 21 = y1 and 20 =y,

(Intuitively two worlds look to Childl alike if they agree on the second and on the third
position - Child3 can see only the foreheads of Child2 and Child3, etc.)

In our language £ we use the following propositional symbols:

atLeastOneMuddy, muddyl, muddy2, muddy3 with the following interpretations:
atLeastOneMuddy is true in the worlds containing at least one m,

muddyl is true in the worlds represented by triples with an m at the first position,
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muddy? is true in the worlds represented by triples with an m at the second position,
muddy3 is true in the worlds represented by triples with an m at the third position.

As explained after Definition 2.1 the formula corresponding to (sequential) dialog is created
by prefixing the statement of agent ¢ by K; (for every agent) and joining the formulas obtained
in this way by means of + (As + is associative at this time we do not bother with placing
parentheses) :

KraineratLeastOneMuddy +

+Kenitan~Kwepignmuddyl + Kogige = Kwerigemuddy2 + KeniasKwerigsmuddy3 .

As ., Ki=Kw;a = =Kw;a, the formula is equivalent to:

KraineratLeastOneMuddy + = Kwepiigr muddyl + =Kwepgomuddy?2 + Kwepgsmuddy3

As for any w € W, M,wk=, KraperatleastOneMuddy = atLeastOneMuddy

by proposition 2.16 it is enough to consider the following formula:

atLeastOneMuddy + =Kwepigi muddyl + =Kwepgomuddy2 + Kwepigsmuddy3.

One can see that there are exactly four worlds in which this formula is satisfied: (¢, ¢, m),
(c,m,m), (m,c,m), (m,m,m). One of them has to be the actual world of the agents. We
do not have enough information to determine which one but we can see that all these worlds
contain an m at the third position. Therefore the forehead of Child3 is muddy.

Remark 2.18

The operation + can be interpreted also in Kripke models with nonrigid constants. This
leads to a (semantically defined) logic LK?Y.

LK™ is a conservative extension of both LK? and LK. (standard semantical proof that
uses completeness of LK;'; and LK)

Proposition 2.13 generalizes to LK%

1. If a formula € £ does not contain K; Kw;,Kv; then l—fn"'oz—l—ﬂ = aAf.

2. If a formula 3¢ LI+ is K-positive then l—fn"'oz/\ﬂ — a+p.

Moreover the following schemata are valid in LK

KVZ'C + KVZd = KVZ'C/\KVZ'd

KZ'Oé + KVZd = KZ'Oé/\KVZ'd

(Oé + szd) — Ki(oz—>(oz + szd))

(Oé + —|Kvid) — Ki(oz—>(oz + _'szd))

=, a=

H=6([3)

We do not know whether the axioms of LK? and LK augmented by the above ones give
a complete axiomatization of LK.

Proposition 2.16 is valid also for Kripke models with nonrigid constants.

As the next example shows even without completeness LKfn"' can be a useful tool.

Example 2.19 Mr. Sum & Mr. Product II
Consider the model M corresponding to the situation in the puzzle of Mr. Sum & Mr.
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Product after Mr. Puzzle’s communications.

Possible worlds: W = {(a,b) e N x N :1 <a<b}

Mr. Sum does not distinguish two worlds if they have the same sum, Mr. Product - if they
have the same product:

(a,b) Rsym (a’,b) iff a+b=0d +1¥,

(a,0) Rproguet(a’, b)) iff axb=a" V.

We do not specify the actual world in this model - we will test a formula corresponding to
the dialog of Mr. Sum and Mr. Product in several worlds of the model. If the formula is
true in a world, the world can be taken as actual world. In this way we will obtain all the
worlds (situations) in which the dialog could take place.

Our language L4 does not contain any propositional letters; it contains a nonrigid des-
ignator numbers which is interpreted in every possible world. Its value is the world itself:
vp(w,numbers) = w (for any w € W).

As explained after Definition 2.1 the formula corresponding to the dialog is created by pre-
fixing the statement of agent ¢ by K; (for every agent), joining parallel communications by
means of A and sequential ones - by means of 4. Note that the first statement of Mr. Prod-
uct and the first statement of Mr. Sum are parallel communications, therefore the following
formula corresponds to the dialog (As + is associative we omit some parentheses):
(Kproduct 7 KV progucenumbers A Ky, 7 KVp, gy numbers) +

+ Kproduet KVProduesnumbers + Kgy Kvgymnumbers

The following equivalences hold in LKfn"' (in fact they are theorems of LK;';) :
(Kproduct 7 KV progucenumbers A Ky 7 KVp, gy numbers) = Kgy, 7 Kvpyogqueenumbers,
Kproduct KV producenumbers = Kvp, g, numbers,

K sum KVsymnumbers = Kvg,,,numbers.

Therefore the formula representing dialog can be reduced to:

K sum = KVproguetnumbers -+ Kvp,,qu:numbers + Kvg,,,,numbers

Because of the size of the problem it is better to employ a computer to test in which worlds
(a,b) e N XN :1<a<b<100 the last formula is satisfied. (It is harmless that the model
is infinite because equivalence classes of relations are always finite). The program returns

four worlds: (4,13), (4,61), (16,73), (64, 73).

We can consider another version of of the puzzle in which Mr. Puzzle tells Mr. Sum and
Mzr. Product in a public communication that the numbers are not greater than 100. Now
the model is smaller: W = {(a,b) € N x N :1 < a <b<100}. The formula representing
dialog stays the same. The reader can write a PROLOG or LISP program and find the

solution.
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3 Concluding remarks

Because of applications in distributed systems and in expert systems logics of knowledge
receive recently growing attention in computer science community. In both of these applica-
tions it is however essential to strengthen the expressive power of the logic to describe how
the knowledge changes after communications among agents.

In this paper we discussed public communications and defined two corresponding logics al-
lowing for two degrees of strength of the language. Although intuitive descriptions of public
communications involve time and the notion of common knowledge we were able to eliminate
them from our model. This elimination reduces the computational complexity of algorithms
for testing satisfiability of formulas in possible worlds and makes them suitable for imple-
mentations.

The logics introduced in the paper can be used to solve in an automatic way problems similar
to those of examples 1.1, 1.2.; in general - problems which satisfy the following assumptions:
o True knowledge: If an agent knows that « is true then it is true.

e Cumulative knowledge: Agents do not forget what they knew or heard.

e Honest messages: An agent communicates « only if he knows that « is true .

o Implicit knowledge discussed: Agents are perfect reasoners. For instance if an agent says

‘I do not know «’ it is not fault of his deductive abilities but « is not a logical consequence
of his knowledge.

e Guaranteed communication channels: No message can be delivered late, misplaced, lost,
changed or overheard.

e Common knowledge of external notions: For instance Mr. Sum and Mr. Product know

in the sense of common knowledge what natural numbers are, what sum and product are.
o Messages expressed in a language of propositional logic of knowledge

with nonrigid designators

e Public communication sessions: Agents start their session at the time 0, each with some
primary knowledge. At any moment ¢ any agent can initiate some communications (possi-
bly many and possibly several agents at the same moment) sending messages based on the

knowledge he has at this time. Messages are received at the time ¢t + 1 and contribute to the
new states of agents’ knowledge.

e Common initial Kripke model: Agents discuss an external object (world) which is fully
characterized by values of its attributes. The agents know at the beginning of the session
what combinations of values of attributes are possible. All these facts constitute common

knowledge - Kripke models used by the agents have the same universe. Moreover if at the
beginning of the session an agent knows values of some attributes then everybody knows (in
the sense of common knowledge) that he knows the values of those attributes. So the kind
of everybody’s primary knowledge constitues common knowledge - agents know each other’s
indiscernibility relations in their initial Kripke model. To sum up - all the agents consider
at the time t = 0 the same Kripke model.
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o Complete description of communications: For instance if Mr. Sum knows eventually the

numbers it is because of his reasoning and not because of a secret message sent to him by
Mr. Puzzle, a message we do not know about.

While specitying the class of problems which can be solved using the logic of public commu-
nications we assumed that agents have the same initial model. In fact the above assumptions
ensure that at each moment ¢ agents have common Kripke model. Every next public com-
munication changes this model but the new model is also common to all the agents.

Algorithm

Given a problem satisfying the bulleted assumptions above, define the corresponding Kripke
model, express the dialog of the agents by a formula of LK or LK%t  simplify the formula
using equivalences of the logic or Proposition 2.16 and test in which worlds of the model it
is true.

A test whether a formula of LK is satisfied in a world of a given Kripke model can be
implemented in PROLOG in a very natural way. The universe of the model can be repre-
sented by a procedure worlds(PossibleWorld) which generates under backtracking all pos-
sible worlds. Indiscernibility relations can be represented by a procedure relation(Agent,
World, AccessibleWorld) which generates under backtracking all the worlds indiscernible
from the given one. (If equivalence classes of relations in our model are infinite the program
need not terminate for some queries.) Propositional letters can be represented by unary tests
which return Yes if they are true in a world. Nonrigid designators can be represented as
procedures which take a world as their first argument and return the (unique) value of the
designator on the second argument. PROLOG’s device of infix and prefix operators allows
us to write formulas in a transparent way. The procedure satisfied(World, Formula,
YesOrNo) can be defined recursively according to the definitions 1.4, 1.8 and + can be trans-
lated away by the mapping * from Theorem 2.5

Due to its associativity there are multiple ways of translating + away from a formula. They
lead to equivalent but not identical formulas, for instance:
pta+r=p+(g+r)=p+(ehr) = (p+OAp+7) = (PAQAp + 1) = (PAGA(PAT)
ptatr=(p+q)+r=(p+qir=(pAghir

As we see, defining + as left associative saves some work.

The program based on above ideas is purely recursive and it does not use much memory but
it possibly repeats the same calculation several times.

Another way of handling 4+ can be based on Definition 2.1. It leads to an iterative program
which uses a lot of memory (especially for Kripke models with big universes) and possibly
carries out some computations which are irrelevant to a problem (but does each such calcu-
lation only once).

The most reasonable choice for implementation is an algorithm intermediate between the
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mentioned approaches - one which uses recursion but stores obtained results to avoid repeat-
ing the calculations.
Mlustrating programs can be obtained from the author via E-mail.
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