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4th International Symposium on Methodologies for Intelligent Systems - ISMIS `89 - Charlotte, NCLOGICS OF PUBLIC COMMUNICATIONSJan A. PlazaDepartment of Mathematics and Computer ScienceLehman College, CUNYBedford Park Boulevard WestBronx, NY 10468, USABitnet: JANPLAZA@LCVAXResearch partly supported by NSF Grant CCR-8702307 and PSC-CUNY Grant 668283ABSTRACT.Multimodal versions of propositional logics S5 or S4 - commonly accepted as logics ofknowledge - are capable of describing static states of knowledge but they do not re
ect howthe knowledge changes after communications among agents. In the present paper (part ofbroader research on logics of knowledge and communications [10]) we de�ne extensions of thelogic S5 which can deal with public communications. The logics have natural semantics. Weprove some completeness, decidability and interpretability results and formulate a generalalgorithm that solves certain kind of problems involving public communications - amongthem widely known puzzles of Muddy Children or Mr. Sum & Mr. Product.As the paper gives formal logical treatment of the operation of restriction of the universeof a Kripke model, it contributes also to investigations of semantics for modal logics.KEYWORDS: logics of knowledge, communications, Kripke models, logic S5,(applicable in) distributed systems, (applicable in) expert systems.1



1 IntroductionA students' proverb says `No one knows everything but true wisdom is to know whom to ask'.This emphasizes that knowledge can consist not only of ground facts but can also involvestatements about somebody else's knowledge. Reasoning about knowledge is characteristicespecially for the situations where information is exchanged.Example 1.1 Muddy ChildrenFather : At least one of you has a muddy forehead.Child 1 : I do not know whether my forehead is muddy.Child 2 : I do not know whether my forehead is muddy.Child 3 : I know whether my forehead is muddy or not but I won't tell you!If the participants of the dialog can see each other (but no one can see his own forehead) isthe forehead of Child 3 muddy?Example 1.2 Mr. Sum & Mr. ProductMr. Puzzle : I choose two natural numbers greater than 1. I will tell the sum of the. numbers only to Mr. Sum and their product only to Mr. Product.He tells them.Mr. Product : I do not know the numbers.Mr. Sum : I knew you didn't.Mr. Product : But now I know!Mr. Sum : So do I!What can be the numbers if they are not greater than 100?The �rst of the above puzzles was discussed by R. Parikh (cf. [9]), the second one is a classicexercise in combinatorics and was further popularized by J. McCarthy. In this paper wepropose and investigate formal logical systems which can deal with communication sessionssuch as ones in 1.1, 1.2.The communication session of Muddy Children consists of a sequence of four public com-munications. In the communication session of the example 1.2 Mr. Puzzle performs twosemi-public communications - one directed to Mr. Product and one - to Mr. Sum. (Semi-public communications considered in [10] are beyond the scope of this paper and the resultswill be published elsewhere.) The �rst communication of Mr. Product and the �rst com-munication of Mr. Sum are both based only on the knowledge acquired after Mr. Puzzle'scommunications - Mr. Sum's communication does not depend on Mr. Product's one. There-fore we consider them as parallel (i.e. performed at the same time) public communications.After them two other public communications follow in a sequence.Note that a communication consists not only of the message that was sent. To specify acommunication one needs also description of the information received by various agents. De-spite the fact that communication channels are guaranteed information received is usually2



di�erent from the message that was sent - its form depends on the kind of communication.For instance di�erent information would be received by Mr. Sum if Mr. Puzzle sent thevalue of the sum of the numbers not in semi-public communication but in public one - Mr.Sum would know then that Mr. Product knows the sum.Before we consider these problems in greater detail let us recall basic notions connectedwith logics of knowledge. (For general logical notions and those speci�c to modal logics thereader can consult [1], [3], S. Kripke's paper in [8] and [2].)De�nition 1.3 Language Lm(P)Lm(P) - the language of the logic of knowledge with m agents - is the language with a setP of propositional symbols and containing the following connectives:^, _, !, �, :, >, ?, K1, : : :, Km, Kw1, : : :, Kwm.( >, ? stand for "true" and "false"; Ki� can be read `agent i knows that � is true',Kwi� - `agent i knows whether � is true or not'.)Our basic tool is Kripke's possible worlds semantics. Each agent knows only some aspectsof the situation that is considered. The agent does not know the actual world but hecan imagine several possible worlds which do not di�er in these aspects. Each group ofsuch indistinguishable worlds constitutes an equivalence class of the indiscernibility relationassociated with the agent. The agent knows a fact if the fact is true in all possible worldswhich are indistinguishable from the actual world.De�nition 1.4 Kripke modelsBy a Kripke model (with equivalence relations) for a language Lm(P) we understand anytuple M = hW;w0; R1; : : : ; Rm; vP i, where:W is a nonempty set (of possible worlds)w0 2 W (is the actual world)R1; : : : ; Rm � W �W are equivalence relations (indiscernibility relations)vP :W � P �! f0; 1g (is a valuation of propositional letters)The relation of satisfaction of a formula in a world w of a Kripke modelM is de�ned as thesmallest relation meeting the following conditions:M;wj=m>M;wj=mp i� vP (w; p) = 1 (for any propositional letter p 2 P)M;wj=m�^� i� M;wj=m� and M;wj=m�M;wj=m�_� i� M;wj=m� or M;wj=m�M;wj=m�!� i� M;wj=m� impliesM;wj=m�M;wj=m��� i� M;wj=m� is equivalent to M;wj=m�M;wj=m:� i� not M;wj=m�M;wj=mKi� i� for any w0, if wRiw0 then M;w0j=m�M;wj=mKwi� i� M;wj=mKi� or M;wj=mKi:�3



A formula is said to be true in the modelM i�M;w0j=m�; this is denoted byM j=m�. Givena set of formulas � we write �j=m� to denote that � is true in all models in which formulasof � are true. A formula is universally true i� ; j=m�, this is denoted by j=m�.De�nition 1.5 Logic LKmFor any language Lm(P) the consequence operation `m of the logic of knowledge LKm isde�ned by means of the following schemata (i = 1; : : :;m):1. axiom schemata of the propositional classical logic2. Ki� ! �3. Ki� ! KiKi�4. :Ki� ! Ki:Ki�5. Ki�^Ki(�!�) ! Ki�6. Kwi� � Ki�_Ki:�7. �; �!��8. `m�Ki�The logic LKm can be viewed as a logic of an external observer who can reason about theworld and about agent's knowledge. Even if the external observer can see that � is trueit does not imply that the agents know �, therefore the rule �Ki� is not assumed in LKm.We allow agents to be logically omniscient - to know all the logical theorems - ones whichare true in all situations. Exactly this is expressed by the rule 8 - the assertion mark inthe premiss of the rule indicates that it can be applied only to formulas which are logicaltheorems. Two examples: `mK2(K1p!p) but fpg 6 `mK1p.Remark 1.6LKm is a multimodal version of the Lewis logic S5.LKm is a conservative extension of the classical propositional logic.Linguistical extensions of theories formalized in LKm are conservative.If m < n then LKn is a conservative extension of LKm:if �[f�g�Lm and � `n � then �`m�.Deduction lemma holds: �[f�g`m� i� �`m�!�.LKm is sound and complete: �j=m� i� �`m� .LKm is compact: if every �nite subset of � has a model then � has a model.LKm has the �nite model property (and therefore it is decidable):if 6`m� then there exists a �nite Kripke modelM with equivalence relations such thatM 6 j=m�.(cf. S. Kripke's paper in [8], [3], [6])In example 1.2 Mr. Sum and Mr. Product speak about values of numbers. To express theirstatements we need new unary logical connectives Kvi in our language. Kvid can be read4



`agent i knows the value of the designator d'. For instance KvSumnumbers, KvHolmesmurdereror Kv5temperature. The designators we consider are nonrigid - each can be thought as a namewhose meaning varies from one world to another - for instance temperature can designatedi�erent real numbers in di�erent possible worlds. Nonrigid designators are called sometimesnonrigid constants because they can be considered as individual constants of a �rst orderlanguage, constants - which have nonrigid semantical interpretations. (Yet most treatmentsof the �rst order modal logic interpret constants and functions as rigid. For a broaderperspective cf. [11] , [2].) The language Ldm(P,D) that is de�ned below is stronger than thepropositional language Lm(P) but as it does not admit individual variables and quanti�ers- it is still weaker than full �rst order modal language.An agent is said to know the value of a designator d if d has the same value in all worldsindistinguishable from the actual one. Note that Kvi can be thought as a generalization ofKwi - in fact Kwi� means `agent i knows the (logical) value of �'.De�nition 1.7 Language Ldm(P,D)Consider a set P of propositional letters and a set D of individual constants. Ldm(P,D) -the language of the logic of knowledge with designators - is the extension of the languageLm(P) in which for every i = 1; : : : ;m and every d 2 D the expression Kvid is allowed asatomic formula.De�nition 1.8 Kripke models with nonrigid constantsBy a Kripke model (with equivalence relations) and with nonrigid constantsfor a language Ldm(P,D) we understand a tuple M = hW;w0; R1; : : : ; Rm; vP ; vDiwhere hW;w0; R1; : : : ; Rm; vP i is a Kripke model (with equivalence relations) for Lm(P) andvD is a function with arbitrary range, de�ned on W�D. The notion of satisfaction is de�nedas in usual Kripke models except that the following condition is added:M;wj=mKvid i� for any w0; w00; if wRiw0 and wRiw00 then vD(w0; d) = vD(w00; d).Note that that as the considered relations are equivalences we havewj=mKvid i� for any w0, if wRiw0 then vD(w0; d) = vD(w; d).De�nition 1.9 Logic LKdmFor any language Ldm(P,D) the consequence operation `dm of the logic of knowledge with nonrigid designatorsLKdm is the extension of the logic LKm obtained by adjoining the following schemata(i = 1; : : :;m):1. Kvid ! KiKvid2. :Kvid ! Ki:Kvid3. `dm�Ki�The explanation following De�nition 1.5 applies to rule 3 as well.5



Remark 1.10Linguistical extensions of theories formalized in LKdm are conservative.LKdm(Ldm(P;D)) is a conservative extension of LKm(Lm(P)):if �[f�g�Lm(P ) and �`dm� then �`m�.If m < n then LKdn is a conservative extension of LKdm:if �[f�g�Ldm and � `dn � then �`dm�.Deduction lemma holds: �[f�g`dm� i� �`dm�!�.LKdmis sound and complete: �`dm� i� �j=m� .LKdm is compact: if every �nite subset of � has a model then � has a model.LKdm has the �nite model property and therefore it is decidable.LKdm is interpretable in LKm, more exactly:LKdm(Ldm(P;D)) is interpretable in LKm(Lm(P[fpd : d 2 Dg)):Let * : Ldm(P,D)�! Lm(P[fpd : d 2 Dg) be the mapping that replaces every occurrence ofKvid in a formula by Kwipd. Denote f
*:
2�g by �*. Then �`dm� i� �*`m�*.cf. [10].The mapping * above has the following informal meaning: instead of asking `Do you knowwho is the author of Knowledge and Belief ?' ask `Do you know whether it is J. Hintikka whois the author of Knowledge and Belief ?'.At the end of the preliminaries let us remind the concept of common knowledge. De�ne:E�=K1�^: : :^Km� . E� intuitively means `every agent knows that � is true'.De�ne E0� = �, En+1� = EEn�. For instance E2� intuitively means `everybody knows thateverybody knows that � is true'.If the agents are gathered in a conference room and if somebody states aloud ground fact pthen each agent gains in�nite set of formulas: fEip : i 2 Ng - in other words p becomescommon knowledge. (Note that if not a ground fact p but a more complicated formula � werecommunicated it could happen that � would be no longer true after this communication; cf.Example 2.2.) Set fEi� : i 2 Ng will be denoted C� (C stands for `common'). Note thatC� represents an in�nite conjunction and according to our terminology it is not a formula.In a Kripke modelM = hW;w0; R1; : : : ; Rm; vP i (with equivalence relations) M;wj=mC� i�for any w0, if wRcw0 then M;w0j=m�where Rc is the transitive closure of the union R1[: : :[Rm.For a broader perspective on problems of reasoning about knowledge we recommend: J.Halpern's overview of the subject in [5], chapter 9 of [4] with Bibliographical and HistoricalRemarks 9.13, [6] - review of logics of knowledge, J Hintikka's classical book [7] and hispaper in [8], and papers: [9], [5], [12]. 6



2 Logics of public communicationsWe consider communication sessions with discrete time. The session begins at the time0. A public communication can be imagined as a statement made in a conference room inwhich all agents are present. If at a moment t agent i starts a public communication with amessage f�g then at moment t+ 1 it becomes common knowledge of all agents that i knewthat � was true at t. (We consider only honest communications.) Although the situationinvolves time and common knowledge it can be described in a simpler way: the informationreceived through this communication causes each agent to change the Kripke model he hasat the time t - to delete possible worlds in which Ki� is not true. This is the idea behindthe following de�nition.De�nition 2.1Let L+m be the extension of a language Lm(P) in which new binary logical connective + isallowed. For any Kripke model M = hW;w0; R1; : : : ; Rm; vP i for Lm(P) we de�ne a notionof satisfaction of formulas of L+m :M;wj=m�+� i� M;wj=m� and M j�;wj=m�where M j� is the restriction of the model M to the set fw 2 W :M;wj=m�g.Intuitively �+� is true i� � would be true after a (honest) public communication of f�gperformed by an omniscient agent (i.e. an agent whose equivalence is equality).Another example: � will be true in the situation after a sequence of (honest) public commu-nications: f�1g by the agent 1,: : :, of f�kg by the agent k i�((: : :(K1�1 + K2�2) + : : :) + Kk�k) + � is true at the present.Another example: � will be true in the situation after (honest) parallel public communica-tions of f�1g by the agent 1 and of f�2g by the agent 2 i� (K1�1^K2�2) + � is true at thepresent.More general:For each i; t let �ti be a (honest) message sent in a public communication by the agent i atthe time t. (Message is a �nite set of formulas.) (�ti = ; if there was no message.) Then �will be true at the time t+ 1 i�(Vmi=1Ki�0i )+(Vmi=1Ki�1i )+ : : :+(Vmi=1 Ki�ti)+� is true at the time 0, where �ki = V�ki and +is considered as right-associative. (Problem of placing parentheses in such expressions willdisappear when we will learn in 2.14 that + is associative.)Example 2.2Consider the language with the set of P= fpg of propositional letters and a Kripke modelM = hW;w0; R1; R2; vP i whereW = fw0; w1; w2g,equivalence classes of R1 are fw0g and fw1; w2g,equivalence classes of R2 are fw0; w1g and fw2g,7



vP (w0; p) = 1, vP (w1; p) = 0, vP (w2; p) = 0.Consider � = K1:Kw2p. We will check whether the formula � ! � + � is true in w0. Wehave: M;w0j=m�, M;w1 6 j=m�, M;w2 6 j=m�.Let us consider the restricted model M j� = hW j�;w0; R1 j�;R2 j�; vP j�iNow W j�= fw0g and R1 j� , R2 j� are equalities.We have M j�;w0 6 j=m�. Thus M;w0 6 j=m�+�. Consequently M;w0 6 j=m� ! �+ �.This example shows a situation in which � is initially true in a model but after a publiccommunication of f�g, it becomes false.Proposition 2.3The following schemata are true in every Kripke model:�+p � �^p (for any propositional letter p 2 P)�+> � ��+? � ?�+(�1^�2) � (�+�1)^(�+�2)�+(�1_�2) � (�+�1)_(�+�2)�+:� � �^:(�+�)�+(�1!�2) � �^(�+�1!�+�2)�+(�1��2) � �^(�+�1��+�2)�+Ki� � �^Ki(� ! �+�)De�nition 2.4 Logic LK+mFor any language L+m the consequence operation `+m of the logic of public communicationsLK+m is de�ned as the extension of LKm obtained by adding all the schemata listed in theproposition 2.3 and the rule of the replacement of equivalents: `+m����(�)��(�)The schemata of Proposition 2.3 are not independent. In fact it would be it would be enoughto take as axioms of LK+m the �rst one and a subset of the remaining ones that correspondsto a complete set of logical connectives.Theorem 2.5 Interpretability of LK+m in LKmThe equivalences of the proposition 2.3, schema 6 of De�nition 1.5 and the rule of thereplacement of equivalents determine a (unique) way of translating a formula � of L+m intoa formula �� of Lm .� is an interpretation of LK+m in LKm: `+m� i� `m��. Moreover `+m����.Proof.The equivalence `+m���� is a straightforward consequence of the de�nition of �.By induction on � show that j=m��� implies j=m�(�)��(�). This proves the soundness ofLK+m. 8



Now assume `m��. Thus `+m�� and by the �rst equivalence: `+m�.For the proof of the other implication assume `+m�. Thus by the �rst equivalence `+m��,thus by soundness of LK+m: j=m�� and by completeness of LKm: `m��.Proposition 2.6+ is not de�nable in terms of the remaining logical connectives:there is no scheme �(�; �) such that: + does not occur in � and for any language L+m andany formulas in it `+m�+ � � �(�; �).Proof.If there were such a scheme � then the rule of uniform substitution of formulas for proposi-tional letters  (p) (�) would be admissible in LK+m (by induction on  ). But as j=m�+p � �^pand 6 j=m� + � � �^� (by Example 2.2) this rule is not valid. Contradiction.Theorem 2.7 Soundness and completeness of LK+m�`+m� i� �j=m�.Proof.Soundness was already mentioned in the proof of Theorem 2.5.For the proof of completeness note that:i) `+m���� (from 2.5)ii) j=m���� (from i by soundness)Assume �j=m�. Then by ii: ��j=m��, thus by completeness of LKm: ��`m��, thus ��`+m��,thus by i: �`+m�.Proposition 2.8If m < n then LK+n is a conservative extension of LK+m:if �[f�g�L+m and � `+n � then �`+m�.Proof.Assume � 6 `+m�. By completeness of LK+m there is a model M in which � is not true. Mcan be expanded to a model for LK+n . By soundness: � 6`+n �.Theorem 2.9 CompactnessLK+m is compact: if every �nite subset of � has a model then � has a model.Proof.For the proof of compactness assume that ��L+m does not have a model. Then �j=m? andby completeness: �`+m?. By �niteness of proofs there is �nite �0�� such that �0`+m?. �0does not have a model. 9



Theorem 2.10 On deduction�[f�g`+m� i� �`+m�!�Proof.Assume �[f�g`+m�. By soundness: �[f�gj=m�. Thus ��[f��gj=m��.By completeness of LKm: ��[f��g`m��and by deduction lemma for LKm: ��`m��!��.As ��!�� = (�!�)� we have ��`m(�!�)�, so: ��`+m(�!�)�.Therefore: �`+m�!�.The other implication in the theorem is straightforward.Proposition 2.11LK+m is a conservative extension of LKm: if �[f�g�Lm and �`+m� then �`m�.Proof.Assume �`+m�. Thus by soundness of LK+m: �j=m�, thus by completeness of LKm: �`m�.Theorem 2.12 Decidability of LK+mThe logic LK+m has �nite model property: if 6 `+m� then there exists a �nite Kripke modelM with equivalence relations such that M 6 j=m�.Therefore for any language L+m the relation `+m� is decidable.Note that in the above theorem � has to be a formula of a particular language, not a schema.We do not know how to decide whether a schema is admissible in LK+m.Proof.Assume 6 `+m�. Then by interpretability 6 `m��. By �nite model property of LKmthere existrequired M such that M 6 j=m�� and as j=m���� we have M 6 j=m�.A formula � 2 Ldm(P;D) is said to be K-positive if it does not contain negative occurrencesof Ki, Kwi, Kvi. In other words K-positive formulas are those equivalent to formulas built ofclassical formulas and formulas of the form Kvid by means of ^,_ and Ki.Proposition 2.131. If a formula �2 L+m does not contain neither Ki nor Kwi (but + is allowed) then`+m�+� � �^� and `+m�+Ki� � �^Ki(�!�).2. If a formula �2 L+m is K-positive then `+m�^� ! �+�.10



Proof.1. By induction on �.2. By the monotonic property of K-positive formulas:if 
 is K-positive, M;wj=m
;w 2M 0�M then M 0; wj=m
.Proposition 2.14The following schemata are admissible in LK+m:�+(�+
) � (�+�)+
�+� ! �(�1 + : : :+ �i + : : :+ �n) ! (�1 + : : :+ �i)>+� � �?+� � ?(�+ �1)^(�+ (�1!�2)) ! (�+ �2)�+Ki� ! �+��+Ki� ! �+KiKi��+:Ki� ! �+Ki:Ki��+ (Ki�1^Ki�2) � �+ Ki(�1^�2)`+m���0; `+m�!� 0�+� ! �0+� 0`+m�1^�2 ! �3�+�1^�+�2 ! �+�3Proof.All items can be proved semantically. We will show only the �rst item:M;w0j=m�+ (� + 
) i� M;w0j=m� and M j�;w0j=m� and M j�j�;w0j=m
.On the other handM;w0j=m(�+ �) + 
 i� M;w0j=m� and M j�;w0j=m� and M j�+�;w0j=m
.It is enough to notice that M j�j� = M j�+� (but neither of those is M j�^�).Remark 2.15The following schemata are not admissible in LK+m:�+� � �+��+� ! ��^� ! �+�� ! �+��+ (�1 + �2) � �^((�+ �1) + (� + �2)) (p) (�)̀+m�!�0�+� 0 ! �+� 11



`+m�!�0�+� ! �0+�`+m�!�0�0+� ! �+�Note also that although the rule `+m�!�0�+� ! �+� 0 is admissible,M j=m�!�0 does not implyM j=m� + � ! � + �0. (Compare also with 2.16.)One of the counterexamples required for the proof of the above remark was given in 2.2, theremaining ones are left to the reader.Immediately from the de�nition of semantics of + we obtain:Proposition 2.16If for any w 2M , M;wj=m���0 then for any w 2M , M;wj=m�+ � � �0 + �.Proposition 2.16 is of importance for applications (cf. Example 2.17) and it should not beconfused with the following statement which is not true:if for any w 2M , M;wj=m��� 0 then for any w 2M , M;wj=m� + � � � + �0.Also the following more general statement is not true:if for any w 2M M;wj=m���0 then for any w 2M M;wj=m�(�)��(�0)Example 2.17 Muddy Children IIConsider the modelM corresponding to the initial situation in the puzzle of Muddy Children.Possible worlds:W = fhc; c; ci; hc; c;mi; hc;m; ci; hc;m;mi; hm; c; ci; hm; c;mi; hm;m; ci; hm;m;mig(Think of hc; c;mi as "Child1 is clean, Child2 is clean, Child3 is muddy".)We do not specify the actual world in this model - we will test a formula corresponding tothe dialog of Muddy Children in all the worlds of the model. If the formula is true in aworld, the world can be taken as the actual world. In this way we will obtain all the worlds(situations) in which the dialog could take place.Indiscernibility relations:hx1; x2; x3iRFatherhy1; y2; y3i i� x1 = y1; x2 = y2 and x3 = y3hx1; x2; x3iRChild1hy1; y2; y3i i� x2 = y2 and x3 = y3hx1; x2; x3iRChild2hy1; y2; y3i i� x1 = y1 and x3 = y3hx1; x2; x3iRChild3hy1; y2; y3i i� x1 = y1 and x2 = y2(Intuitively two worlds look to Child1 alike if they agree on the second and on the thirdposition - Child3 can see only the foreheads of Child2 and Child3, etc.)In our language L+4 we use the following propositional symbols:atLeastOneMuddy, muddy1, muddy2, muddy3 with the following interpretations:atLeastOneMuddy is true in the worlds containing at least one m,muddy1 is true in the worlds represented by triples with an m at the �rst position,12



muddy2 is true in the worlds represented by triples with an m at the second position,muddy3 is true in the worlds represented by triples with an m at the third position.As explained after De�nition 2.1 the formula corresponding to (sequential) dialog is createdby pre�xing the statement of agent i by Ki (for every agent) and joining the formulas obtainedin this way by means of + (As + is associative at this time we do not bother with placingparentheses) :KFatheratLeastOneMuddy ++KChild1:KwChild1muddy1 + KChild2:KwChild2muddy2 + KChild3KwChild3muddy3 .As `mKi:Kwi� � :Kwi�, the formula is equivalent to:KFatheratLeastOneMuddy + :KwChild1muddy1+ :KwChild2muddy2+ KwChild3muddy3As for any w 2 W , M;wj=mKFatheratLeastOneMuddy � atLeastOneMuddyby proposition 2.16 it is enough to consider the following formula:atLeastOneMuddy + :KwChild1muddy1+ :KwChild2muddy2+ KwChild3muddy3.One can see that there are exactly four worlds in which this formula is satis�ed: hc; c;mi,hc;m;mi, hm; c;mi, hm;m;mi. One of them has to be the actual world of the agents. Wedo not have enough information to determine which one but we can see that all these worldscontain an m at the third position. Therefore the forehead of Child3 is muddy.Remark 2.18The operation + can be interpreted also in Kripke models with nonrigid constants. Thisleads to a (semantically de�ned) logic LKd+m .LKd+m is a conservative extension of both LKdm and LK+m. (standard semantical proof thatuses completeness of LKdm and LK+m)Proposition 2.13 generalizes to LKd+m :1. If a formula �2 Ld+m does not contain Ki,Kwi,Kvi then `d+m �+� � �^�.2. If a formula �2 Ld+m is K-positive then `d+m �^� ! �+�.Moreover the following schemata are valid in LKd+m :Kvic+ Kvid � Kvic^KvidKi�+ Kvid � Ki�^Kvid(�+ Kvid) ! Ki(�!(� + Kvid))(�+ :Kvid) ! Ki(�!(�+ :Kvid))j=m����(�)��(�)We do not know whether the axioms of LKdm and LK+m augmented by the above ones givea complete axiomatization of LKd+m .Proposition 2.16 is valid also for Kripke models with nonrigid constants.As the next example shows even without completeness LKd+m can be a useful tool.Example 2.19 Mr. Sum & Mr. Product IIConsider the model M corresponding to the situation in the puzzle of Mr. Sum & Mr.13



Product after Mr. Puzzle's communications.Possible worlds: W = fha; bi 2 N �N : 1 < a � bgMr. Sum does not distinguish two worlds if they have the same sum, Mr. Product - if theyhave the same product:ha; biRSumha0; b0i i� a+ b = a0 + b0,ha; biRProductha0; b0i i� a � b = a0 � b0.We do not specify the actual world in this model - we will test a formula corresponding tothe dialog of Mr. Sum and Mr. Product in several worlds of the model. If the formula istrue in a world, the world can be taken as actual world. In this way we will obtain all theworlds (situations) in which the dialog could take place.Our language Ld+2 does not contain any propositional letters; it contains a nonrigid des-ignator numbers which is interpreted in every possible world. Its value is the world itself:vD(w; numbers) = w (for any w 2 W ).As explained after De�nition 2.1 the formula corresponding to the dialog is created by pre-�xing the statement of agent i by Ki (for every agent), joining parallel communications bymeans of ^ and sequential ones - by means of +. Note that the �rst statement of Mr. Prod-uct and the �rst statement of Mr. Sum are parallel communications, therefore the followingformula corresponds to the dialog (As + is associative we omit some parentheses):(KProduct:KvProductnumbers ^ KSum:KvProductnumbers) ++ KProductKvProductnumbers + KSumKvSumnumbersThe following equivalences hold in LKd+m (in fact they are theorems of LKdm) :(KProduct:KvProductnumbers ^ KSum:KvProductnumbers) � KSum:KvProductnumbers,KProductKvProductnumbers � KvProductnumbers,KSumKvSumnumbers � KvSumnumbers.Therefore the formula representing dialog can be reduced to:KSum:KvProductnumbers+ KvProductnumbers+ KvSumnumbersBecause of the size of the problem it is better to employ a computer to test in which worldsha; bi 2 N �N : 1 < a � b � 100 the last formula is satis�ed. (It is harmless that the modelis in�nite because equivalence classes of relations are always �nite). The program returnsfour worlds: h4; 13i; h4; 61i; h16; 73i; h64; 73i.We can consider another version of of the puzzle in which Mr. Puzzle tells Mr. Sum andMr. Product in a public communication that the numbers are not greater than 100. Nowthe model is smaller: W = fha; bi 2 N �N : 1 < a � b � 100g. The formula representingdialog stays the same. The reader can write a PROLOG or LISP program and �nd thesolution. 14



3 Concluding remarksBecause of applications in distributed systems and in expert systems logics of knowledgereceive recently growing attention in computer science community. In both of these applica-tions it is however essential to strengthen the expressive power of the logic to describe howthe knowledge changes after communications among agents.In this paper we discussed public communications and de�ned two corresponding logics al-lowing for two degrees of strength of the language. Although intuitive descriptions of publiccommunications involve time and the notion of common knowledge we were able to eliminatethem from our model. This elimination reduces the computational complexity of algorithmsfor testing satis�ability of formulas in possible worlds and makes them suitable for imple-mentations.The logics introduced in the paper can be used to solve in an automatic way problems similarto those of examples 1.1, 1.2.; in general - problems which satisfy the following assumptions:� True knowledge: If an agent knows that � is true then it is true.� Cumulative knowledge: Agents do not forget what they knew or heard.� Honest messages: An agent communicates � only if he knows that � is true .� Implicit knowledge discussed: Agents are perfect reasoners. For instance if an agent says`I do not know �' it is not fault of his deductive abilities but � is not a logical consequenceof his knowledge.� Guaranteed communication channels: No message can be delivered late, misplaced, lost,changed or overheard.� Common knowledge of external notions: For instance Mr. Sum and Mr. Product knowin the sense of common knowledge what natural numbers are, what sum and product are.� Messages expressed in a language of propositional logic of knowledgewith nonrigid designators� Public communication sessions: Agents start their session at the time 0, each with someprimary knowledge. At any moment t any agent can initiate some communications (possi-bly many and possibly several agents at the same moment) sending messages based on theknowledge he has at this time. Messages are received at the time t+1 and contribute to thenew states of agents' knowledge.� Common initial Kripke model: Agents discuss an external object (world) which is fullycharacterized by values of its attributes. The agents know at the beginning of the sessionwhat combinations of values of attributes are possible. All these facts constitute commonknowledge - Kripke models used by the agents have the same universe. Moreover if at thebeginning of the session an agent knows values of some attributes then everybody knows (inthe sense of common knowledge) that he knows the values of those attributes. So the kindof everybody's primary knowledge constitues common knowledge - agents know each other'sindiscernibility relations in their initial Kripke model. To sum up - all the agents considerat the time t = 0 the same Kripke model. 15



� Complete description of communications: For instance if Mr. Sum knows eventually thenumbers it is because of his reasoning and not because of a secret message sent to him byMr. Puzzle, a message we do not know about.While specifying the class of problems which can be solved using the logic of public commu-nications we assumed that agents have the same initial model. In fact the above assumptionsensure that at each moment t agents have common Kripke model. Every next public com-munication changes this model but the new model is also common to all the agents.AlgorithmGiven a problem satisfying the bulleted assumptions above, de�ne the corresponding Kripkemodel, express the dialog of the agents by a formula of LK+m or LKd+m , simplify the formulausing equivalences of the logic or Proposition 2.16 and test in which worlds of the model itis true.A test whether a formula of LKd+m is satis�ed in a world of a given Kripke model can beimplemented in PROLOG in a very natural way. The universe of the model can be repre-sented by a procedure worlds(PossibleWorld)which generates under backtracking all pos-sible worlds. Indiscernibility relations can be represented by a procedure relation(Agent,World, AccessibleWorld) which generates under backtracking all the worlds indiscerniblefrom the given one. (If equivalence classes of relations in our model are in�nite the programneed not terminate for some queries.) Propositional letters can be represented by unary testswhich return Yes if they are true in a world. Nonrigid designators can be represented asprocedures which take a world as their �rst argument and return the (unique) value of thedesignator on the second argument. PROLOG's device of in�x and pre�x operators allowsus to write formulas in a transparent way. The procedure satisfied(World, Formula,YesOrNo) can be de�ned recursively according to the de�nitions 1.4, 1.8 and + can be trans-lated away by the mapping * from Theorem 2.5Due to its associativity there are multiple ways of translating + away from a formula. Theylead to equivalent but not identical formulas, for instance:p + q + r � p+ (q + r) � p + (q^r) � (p+ q)^(p + r) � (p^q)^(p + r) � (p^q)^(p^r)p + q + r � (p+ q) + r � (p + q)^r � (p^q)^rAs we see, de�ning + as left associative saves some work.The program based on above ideas is purely recursive and it does not use much memory butit possibly repeats the same calculation several times.Another way of handling + can be based on De�nition 2.1. It leads to an iterative programwhich uses a lot of memory (especially for Kripke models with big universes) and possiblycarries out some computations which are irrelevant to a problem (but does each such calcu-lation only once).The most reasonable choice for implementation is an algorithm intermediate between the16



mentioned approaches - one which uses recursion but stores obtained results to avoid repeat-ing the calculations.Illustrating programs can be obtained from the author via E-mail.AcknowledgementsThe author would like to thank prof. M. Fitting and prof. R. Parikh for many helpfuland interesting comments.
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