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Basic Concepts

Languages of propositional modal logic are propositioaabliages to which sen-
tential operators (usually calledodalitiesor modal operators have been added.
In spite of their syntactic simplicity, such languages taut to be useful tools for
describing and reasoning abaetational structures A relational structure is a
non-empty set on which a number of relations have been defthey are wide-
spread in mathematics, computer science, artificial igilce and linguistics, and
are also used to interpret first-order languages.

Now, when working with relational structures we are ofteteiasted in struc-
tures possessing certain properties. Perhaps a certasititra binary relation is
particularly important. Or perhaps we are interested ifiegjoons where ‘dead
ends, ‘loops, and ‘forkings’ are crucial, or where eachation is a partial func-
tion. Wherever our interests lie, modal languages can biiluser modal oper-
ators are essentially a simple way of accessing the infeomabntained in rela-
tional structures. As we will see, thecal andinternal access method that modali-
ties offer is strong enough to describe, constrain, anerealout many interesting
and important aspects of relational structures.

Much of this book is essentially an exploration and elalionavf these remarks.
The present chapter introduces the concepts and terminoalegvill need, and the
concluding section places them in historical context.

Chapter guide

Section 1.1: Relational Structures. Relational structures are defined, and a num-
ber of examples are given.

Section 1.2: Modal Languages. We are going to talk about relational structures
using a number of different modal languages. This sectidinet the
basic modal language and some of its extensions.

Section 1.3: Models and Frames. Here we link modal languages and relational
structures. In fact, we introdude/o levels at which modal languages can
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2 1 Basic Concepts

be used to talk about structures: the levelhuddels(which we explore

in Chapter 2) and the level dfames(which is examined in Chapter 3).
This section contains the fundamengatisfaction definitionand defines

the key logical notion ofalidity.

Section 1.4: General Frames. In this section we link modal languages and rela-
tional structures in yet another way: \general frames Roughly speak-
ing, general frames provide a third level at which modal leagges can be
used to talk about relational structures, a level interatedbetween those
provided by models and frames. We will make heavy use of géframes
in Chapter 5.

Section 1.5: Modal Consequence Relations. Which conclusions do we wish to
draw from a given a set of modal premises? That is, wimhsequence
relationsare appropriate for modal languages? We opt flmcal conse-
quence relation, though we note that there ggadal alternative.

Section 1.6: Normal Modal Logics. Both validity and local consequence are de-
fined semantically(that is, in terms of relational structures). However, we
want to be able to generate validities and draw conclussynsactically
We take our first steps in modal proof theory and introducééittstyle
axiom systems for modal reasoning. This motivates a conufepentral
importance in Chapters 4 and Bormal modal logics

Section 1.7: Historical Overview. The ideas introduced in this chapter have a long
and interesting history. Some knowledge of this will makeasier to
understand developments in subsequent chapters, so weideneith a
historical overview that highlights a number of key themes.

1.1 Relational Structures

Definition 1.1 A relational structureis a tupleg whose first component is a non-
empty setiV called theuniverse(or domair) of §, and whose remaining compo-
nents are relations ol’. We assume that every relational structure contains at
least one relation. The elementsi&thave a variety of names in this book, includ-
ing: points states nodes worlds times instantsandsituations -

An attractive feature of relational structures is that we often display them as
simple pictures, as the following examples show.

Example 1.2 Strict partial orders(spcs) are an important type of relational struc-
ture. Astrict partial orderis a pair(W, R) such thatR isirreflexive(Vax —~Rxx) and
transitive(Vxyz (RryARyz — Rxz)). A strict partial ordeR is alinear order(or
atotal order) if it also satisfies th&richotomycondition:Vzy (RxyVa = yV Ryx).
An example of arspois given in Figure 1.1, wherd” = {1, 2, 3,4, 6, 8, 12, 24}
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Fig. 1.1. A strict partial order.

and Rxy meanst andy are different, ang can be divided by:.” Obviously this is
nota linear order. On the other hand, if we defiRey by ‘= is numerically smaller
thany, we obtain a linear order over the same univéigelmportant examples of
linear orders ar¢N, <), (Z, <), (Q, <) and(R, <), thenatural numbersintegers
rationalsandrealsin their usual order. We sometimes use the notation<) for
(N, <).

In many applications we want to work not wigirict partial orders, but with
plain old partial orders fos). We can think of a partial order as the reflexive
closure of a strict partial order; that is, i is a strict partial order oV, then
RU{(u,u) | v € W} is a partial order (for more on reflexive closures, see Exer-
cise 1.1.3). Thus partial orders are transitieglexive(Vx Rrz) andantisymmetric
(Vxy (Rzy N Ryx — x = y)). If a partial order isconnectedVzy (Rxy V Ryx))
it is called areflexive linear ordefor areflexive total ordey.

If we interpret the relation in Figure 1.1 reflexively (that if we takeRxy to
mean & andy are equal, oy can be divided by:’) we have a simple example of
a partial order. Obviously, it is not a reflexiliaear order. Important examples of
reflexive linear orders includé, <) (or (w, <)), (Z, <), (Q, <) and(R, <), the
natural numbersintegers rationals andreals under their respective ‘less-than-or-
equal-to’ orderings. -

Example 1.3 Labeled Transition Systenfsrss), or more simplyfransition sys-
tems are a simple kind of relational structure widely used in paier science. An
LTS is apair(W,{R, | a € A}) wherelV is a non-empty set of stated,is a non-
empty set (ofabelg, and for eachu € A, R, C W x W. Transition systems can
be viewed as an abstract model of computation: the statethengossible states
of a computer, the labels stand for programs, énd) € R, means that there is
an execution of the programthat starts in state and terminates in state It is
natural to depict states as nodes and transitidnas directed arrows.

In Figure 1.2 a transition system with states, ws, w3, w4 and labelsa, b, ¢ is
shown. FormallyR, = {(w1,w2), (ws, ws)}, while Ry, = {(w2,ws)} andR, =
{(wy4, w3)}. This transition system is actually rather special, fos déterministic
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w1 w2 Da

Fig. 1.2. A deterministic transition system.

if we are in a state where it is possible to make one of the thossible kinds of
transition (for example, an transition) then it is fixed which state that transition
will take us to. In short, the relationd,, R, and R, are allpartial functions

Deterministic transition systems are important, but iroteécal computer sci-
ence itis more usual to taken-deterministi¢cransition systems as the basic model
of computation. A non-deterministic transition systemng @ which the state we
reach by making a particular kind of transition from a giveates need not be fixed.
That is, the transition relations do not have to be partiatfions, but can be arbi-
trary relations.

w1 w2 Da

Fig. 1.3. A non-deterministic transition system.

In Figure 1.3 a non-deterministic transition system is gsfmow is now a non-
deterministic program, for if we execute it in statg there are two possibilities:
either we loop back inta4, or we move taws,.

Transition systems play an important role in this book. T#isot so much be-
cause of their computational interpretation (though thamteresting) but because
of their sheer ubiquity. Sets equipped with collections iofby relations are one
of the simplest types of mathematical structures imagaedohd they crop up just
about everywhere. -

Example 1.4 For our next example we turn to the branch of artificial ingelhce
called knowledge representation. A central concern of kadge representation
is objects, their properties, their relations to other otgeand the conclusions one
can draw about them. For example, Figure 1.4 represents sbthe ways Mike
relates to his surroundings.

One conclusion that can be drawn from this representatitmisSue has chil-
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Fig. 1.4. Mike and others.

dren. Others are not so clear. For example, does Mike love &wk does he
love his BMW? Assuming that absence afiat _| oves arc (like that connecting
the Mike and the Diana nodes) means that the loves relatitws hthis is a safe
conclusion to draw. There are often such ‘gaps’ betweenugstand relational
structures, and to fill them correctly (that is, to know whigational structure
the picture corresponds to) we have to know which diagraficncativentions are
being assumed.
Let’s take the picture at face value. It gives us a{&¥W Sue,M ke, Di ana}

together with binary relationson- of , owns, andnot _| oves. So we have here
another labeled transition system-

Example 1.5 Finite trees are ubiquitous in linguistics. For example, titee de-
picted in Figure 1.5 represents some simple facts abousetstaucture, namely
that a sentence (S) can consist of a noun phrase (NP) and plvade (VP); an NP
can consist of a proper noun (PN); and VPs can consist of aitikanverb (TV)
and an NP.

NP VP

NP
PN vV

PN

Fig. 1.5. Afinite decorated tree.

Trees play an important role in this book, so we will take tipportunity to define
them. We first introduce the following important concepts.

Definition 1.6 Let W be a non-empty set anéla binary relation odV. ThenR ™,
thetransitive closureof R, is the smallest transitive relation % that containsR.
That is,

R = ﬂ{R’ | R’ is a transitive binary relation oW & R C R'}.

Furthermore R*, thereflexive transitive closuref R, is the smallest reflexive and
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transitive relation o’V containingR. That is,

R* = ﬂ{R’ | R is a reflexive transitive binary relation 6ff & R C R'}.

Note thatR " uv holds if and only if there is a sequence of elements wy, w1,
..., w, = v (n > 0) from W such that for each < n we haveRw;w; 1. That
is, RTuv means thav is reachable fromu in a finite number ofR-steps. Thus
transitive closure is a natural and useful notion; see Esert.1.3.

With these concepts at our disposal, it is easy to say whatasr

Definition 1.7 A tree¥ is a relational structur€rl’, S) where:

(i) T, the set of nodes, contains a unique= T (called theroot) such that
YVt € T S*rt.
(i) Every element ofl" distinct fromr has a unique-predecessor; that is, for
everyt # r there is a uniqué’ € T such thatSt't.
(i) Sis acyclic; that isyVt—~S*tt. (It follows thatsS is irreflexive.) -

Clearly, Figure 1.5 contains enough information to give tre@(7’, S) in the sense
just defined: the nodes ifi are the displayed points, and the relati®rs indicated

by means of a straight line segment drawn from a node to a nodeediately

below (that is,S is the obvioussuccessoor daughter-ofrelation). The root of the
tree is the topmost node (the one labeled S).

But the diagram also illustrates something else: often wexirte work with
structures consisting of not only a tré€, S), but a whole lot else besides. For
example, linguists wouldn't be particularly interestedttie bare tredT’, S) just
defined, rather they’d be interested in (at least) the stract

(T, S,LEFT-OF, S NP, VP,PN, TV).

Here S, NP, VP, PN, and TV atmaryrelations oril” (note that S and are distinct
symbols). These relations record the information attachedch node, namely the
fact that some nodes are noun phrase nodes, while othersogrer mame nodes,
sentential nodes, and so OreFT-OF is a binary relation which captures the left-
to-right aspect of the above picture; the fact that the NReriedo the left of the
VP node might be linguistically crucial.

Similar things happen in mathematical contexts. Sometiwewill need to
work with relational structures which are much richer thiae simple tree¢T’, S)
just defined, but which, perhaps in an implicit form, contairelation with all the
properties required of. It is useful to have a general term for such structures; we
will call them tree-like A formal definition here would do more harm than good,
but in the text we will indicate, whenever we call a structtree-like, where this
implicit tree (7', S) can be found. That is, we will say, unless it is obviowsjch
definable relation in the structure satisfies the conditmfri3efinition 1.7. One of
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the most important examples of tree-like structures is thbifRstructure, which
we will meet in Section 6.3.

One often encounters the notion of a tree defined in termsedfrédilexive) tran-
sitive closure of the successor relation. Such trees wéredikxive and) transitive
trees and they are dealt with in Exercises 1.1.4 and 1.1-6

Example 1.8 We have already seen that labeled transition systems cagasled
as a simple model of computation. Indeed, they can be thaofgdes models for
practically any dynamic notion: each transition takes osifian input state to an
output state. But this treatment of states and transitisrrather unbalanced: it
is clear that transitions are second-class citizens. Famele, if we talked about
LTSS using a first-order language, we couldn’t name transitissing constants
(they would be talked about using relation symbols) but wdddave constants
for states. But there is a way to treat transitions as fie$sctitizens: we can work
with arrow structures

The objectsof an arrow structure are things that can be picturedramvs As
concrete examples, the mathematically inclined readehiiank of vectors, or
functions or morphisms in some category; the computer 8stesf programs; the
linguist of the context changing potential of a grammaljcalell-formed piece of
text or discourse; the philosopher of some agent’s cognétations; and so on. But
note well: although arrows are the prime citizens of arrawcdtires, this does not
mean that they should always be thought opemitive entities. For example, in
atwo-dimensional arrow structurean arrowa is thought of as gair (ag, a;) of
which aq represents the starting point@fanda; its endpoint.

Having ‘defined’ the elements of arrow structures to be dbjgcaphically rep-
resentable as arrows, we should now ask: what are the teaionswhich hold
between arrows? The most obvious candidatmmposition vector spaces have
an additive structure, functions can be composed, langitagments can be con-
catenated, and so on. So the central relation on arrows &l ternarycomposi-
tion relation C', whereC'abc says that arrow is the outcome of composing arrow
b with arrow ¢ (or conversely, that can be decomposed intoandc). Note that
in many concrete example§, is actually a (partial) function; for example, in the
two-dimensional framework we have

Cabc iff ag = by, a1 = 1 andb; = co- (1.1)

What next? Well, in all the examples listed, the compositiorction has a neutral
element; think of the identity function or tHf#KI P-program. So, arrow structures
will contain degenerate arrows, transitions that do notl leaa different state.
Formally, this means that arrow structures will contain aigigated subset of
identity arrows in the pair-representatiod,will be (a subset of) the diagonal:

Taiff ag = ay. (1.2)
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Another natural relation is converse. In linguistics angrative science we might
view this as an ‘undo’ action (perhaps we've made a mistakienaed to recover)
and in many fields of mathematics arrow-like objects haverexses (vectors) or
inverses (bijective functions). So we’ll also give arrowustures a binaryeverse
relation R. Again, in many cases this relation will be a partial functié-or exam-
ple, in the two-dimensional picture is given by

Rab iff ag = by anda; = by. (13)

Although there are further natural candidates for arrovati@hs (notably some
notion of iteration) we’ll leave it at this. And now for the formal definition: an
arrow frameis a quadruples = (W, C, R, I) such thatC', R andI are a ternary,

a binary and a unary relation a7, respectively. Pictorially, we can think of them
as follows:

a

Cabe Ia

The two-dimensional arrow structure, in which the universasists of all pairs
over the setV (and the relationg’, R and [ are given by (1.1), (1.3) and (1.2),
respectively) is called thequare ovelU, notation: S;;. The square arrow frame
over U can be pictorially represented as a full graph oliereach arrow object
(ap,a1) In Sy can be represented as a ‘real’ arrow fregto a;; the relations

are as pictured above. Alternatively, square arrow framaesbe represented two-
dimensionally, cf. the pictures in Example 1.27

Exercises for Section 1.1

1.1.1 Let (W, R) be aquasi-orderthat is, assume that is transitive and reflexive. Define
the binary relation~ on W by puttings ~ t iff Rst andRts.

(&) Show that- is an equivalence relation

Let [s] denote the equivalence classsaiinder this relation, and define the following rela-
tion on the collection of equivalence classp$:< [t] iff Rst.

(b) Show that this is well-defined.
(c) Show thak is a partial order.

1.1.2 Let R be a transitive relation on a finite 9&t. Prove thatR is well-founded iffR is
irreflexive. (R is calledwell-foundedf there are no infinite paths . Rss Rs1 Rsg.)

1.1.3 Let R be a binary relation ofii’. In Example 1.2 we defined the reflexive closure
of Rto beRU {(u,u) | v € W}. But we can also give a definition analogous to those
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of R andR* in Definition 1.6, namely that it is the smallest reflexiveatédn oni¥ that
containsRk:

R'=({R'| R'is a reflexive binary relation o’ & R C R'}.

Explain why this new definition (and the definitions®f andR*) are well defined. Show
the equivalence of the two definitions of reflexive closuri@aly, show thatR+uw if and
only if there is a sequence of elements- wg, wy, ...,w, = v from W such that for each
i < n we haveRw;w; 1, and give an analogous sequence-based definitioafleikive
transitive closure.

1.1.4 A transitive treeis anspo(T', <) such that (i) there is ot r € T satisfyingr < ¢
forall ¢t € T and (i) for eacht € T', the set{s € T' | s < t} of predecessors dfis finite
and linearly ordered by..

(@) Provethati{T,S) is a tree theT, ST) is a transitive tree.

(b) ProvethatT, <) is atransitive tree iffT, S-) is a tree, wheré - is the immediate
successor relation given Bt iff s < tands < v < tfornov € T.

(c) Under which conditions does the converse of (a) hold?

1.1.5 Define the notion of a reflexive and transitive tree, suchifh@f’, S) is a tree then
(T, S*) is a reflexive and transitive tree.

1.1.6 Show that the following formulas hold on square arrow frames

(@) Vxy (Rxy — Ryx),
(b) Vayz (Cxyz AN z) &z =y),
(€) Vexyzows (Jy (Cxxiy A Cyzaxs) « Iz (Cxzas A Czxizs)).

1.2 Modal Languages

It's now time to meet the modal languages we will be workinghwiFirst, we
introduce theébasic modal languagé/Ne then definenodal languages of arbitrary
similarity type Finally we examine the following extensions of the basicdalo
language in more detail: theasic temporal languagethe language oproposi-
tional dynamic logicand a language @frrow logic.

Definition 1.9 Thebasic modal languages defined using a set @iroposition let-
ters(or proposition symbolsr propositional variables® whose elements are usu-
ally denotedp, ¢, », and so on, and a unary modal operato(‘diamond’). The
well-formed formulasy of the basic modal language are given by the rule

¢pu=p| L¢PVl

wherep ranges over elements @f This definition means that a formula is either a
proposition letter, the propositional constant falsuno{tbm’), a negated formula,
a disjunction of formulas, or a formula prefixed by a diamond.

Just as the familiar first-order existential and universamifiers are duals to
each other (in the sense that o <» —3x —«), we have a dual operatar (‘box’)
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for our diamond which is defined ¢ := -<>—¢. We also make use of the classi-
cal abbreviations for conjunction, implication, bi-imgdition and the constant true
(top)): dAY :==(20V 1), ¢ = Y= 29V, ¢ < Y= (¢ = V) A (Y = ¢)
andT : == 1. -

Although we generally assume that the etf proposition letters is a countably
infinite {po, p1,...}, occasionally we need to make other assumptions. For in-
stance, when we are after decidability results, it may b&ulsestipulate that? is
finite, while doing model theory or frame theory we may neecoumtably infinite
languages. This is why we takeas an explicit parameter when defining the set of
modal formulas.

Example 1.10 Three readings of diamond and box have been extremely influen
tial. First, &¢ can be read as ‘it ipossiblythe case thap.” Under this reading,
O¢ means ‘it is not possible that ngt’ that is, ‘necessarilyy,” and examples
of formulas we would probably regard as correct principlegdude all instances
of O¢p — <$¢ (‘whatever is necessary is possible’) and all instances ef <¢
(‘whatever is, is possible’). The status of other formutalsarder to decide. Should
¢ — OO (‘whatever is, isnecessarilypossible’) be regarded as a general truth
about necessity and possibility? Shodld — OO¢ (‘whatever is possible, is
necessarily possible’)? Are any of these formulas linked byodal notion of log-
ical consequence, or are they independent claims aboussigcand possibility?
These are difficult (and historically important) questiomke relational semantics
defined in the following section offers a simple and int@hwvcompelling frame-
work in which to discuss them.

Second, inepistemic logicthe basic modal language is used to reason about
knowledge, though instead of writing¢ for ‘the agent knows that’ it is usual to
write I{¢. Given that we are talking about knowledge (as opposed o bstief
or rumar), it seems natural to view all instancesiop — ¢ as true: if the agent
really knowsthat ¢, then¢ must hold. On the other hand (assuming that the agent
is not omniscient) we would regartl — K ¢ as false. But the legitimacy of other
principles is harder to judge (if an agent knows thatdoes she know that she
knows it?). Again, a precise semantics brings clarity.

Third, in provability logic O¢ is read as ‘it isprovable (in some arithmetical
theory) thatp.” A central theme in provability logic is the search for a quete
axiomatization of the provability principles that are dafor various arithmetical
theories (such as Peano Arithmetic). Ttib formulad(Cp — p) — Op plays a
key role here. The arithmetical ramifications of this forelie outside the scope
of the book, but in Chapters 3 and 4 we will explore its modaitent. -

That’s the basic modal language. Let's now generalize ier&lare two obvious
ways to do so. First, there seems no good reason to restratloes to languages
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with only one diamond. Second, there seems no good reasesttct ourselves
to modalities that take only a single formula as argumenusTthe general modal
languages we will now define may contain many modalitiesyloitrary arities.

Definition 1.11 A modal similarity typeis a pairr = (O, p) whereO is a non-
empty set, ang is a functionO — N. The elements o) are calledmodal
operators we useA (‘triangl€’), Ag, A1, ... to denote elements 6f. The function
p assigns to each operatare O a finitearity, indicating the number of arguments
A can be applied to.

In line with Definition 1.9, we often refer tanary triangles asliamonds and
denote them by, or (a), wherea is taken from some index set. We often assume
that the arity of operators is known, and do not distinguistweenr andO. -

Definition 1.12 A modal languageV/L(r, ®) is built up using a modal similarity
typer = (O, p) and a set of proposition lette#s The setForm(r, ) of modal
formulasoverr and@ is given by the rule

p=p|L]=0|P1Voa|Ald1,-- s Ppn)),
wherep ranges over elements ¢t -

The similarity type of the basic modal language is caligd In the sequel we
sometimes state results for modal languages of arbitramitesity types, give the
proof for similarity types with diamonds only, and leave teneral case as an ex-
ercise. For binary modal operators, we often use infix nmtatihat is, we usually
write ¢ A1) instead ofA(¢, ). One other thing: note that our definition permits
nullary modalities(or modal constanjs triangles that take no arguments at all.
Such modalities can be useful — we will see a natural examplenwve discuss
arrow logic — but they play a relatively minor role in this Bbod&syntactically (and
indeed, semantically) they are rather like propositioraiables; in fact, they are
best thought of as propositionabnstants

Definition 1.13 We now define dual operators for non-nullary triangles. Fmhe
A € O thedual v of A is defined as7(¢1,...,¢p) := =A(=¢1,...,—¢,). The
dual of a triangle of arity at leagtis called anabla As in the basic modal language,
the dual of a diamond is calledx and is writtend,, or [a].

Three extensions of the basic modal language deserve kpé#eiation. Two of

these, thédvasic temporal languagend the language @iropositional dynamic logic
will be frequently used in subsequent chapters. The thiedgsnple language of
arrow logic; it will provide us with a natural example of a binary modalit

Example 1.14 (The Basic Temporal Language)he basic temporal language is
built using a set of unary operatofs = {(F'), (P)}. The intended interpretation
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of a formula(F)¢ is ‘¢ will be true at somé-uture time,” and the intended inter-
pretation of(P)¢ is ‘¢ was true at som®ast time.” This language is called the
basic temporal languagend it is the core language underlying a branch of modal
logic calledtemporal logic It is traditional to write(F') as F' and (P) as P, and
their duals are written a§ and H, respectively. (The mnemonics here are: ‘it is
alwaysGoing to be the case’ and ‘it alway$as been the case.)

We can express many interesting assertions about time mighanguage. For
example,P¢p — G P¢, says ‘whatever has happened will always have happened,’
and this seems a plausible candidate for a general trutht éibmer On the other
hand, if we insist thatt'¢y — FF'¢ must always be true, it shows that we are
thinking of time asdense between any two instants there is always a third. And if
we insist thatz F'p — FGp (the McKinsey formulais true, for all propositional
symbolsp, we are insisting that atomic information true somewherthanfuture
eventually settles down to being always true. (We mightkluhthis as reflecting
a ‘thermodynamic’ view of information distribution.)

One final remark: computer scientists will have noticed that binary until
modality is conspicuous by its absence. As we will see in thlewing chapter,
the basic temporal languagerist strong enough to express until. We examine a
language containing the until operator in Section 7.2.

Example 1.15 (Propositional Dynamic Logic)Another important branch of mo-
dal logic, again involving only unary modalities, gsopositional dynamic logic
PDL, the language of propositional dynamic logic, has an irdimibllection of
diamonds. Each of these diamonds has the forin wherer denotes a (non-
deterministic)program The intended interpretation ¢fr)¢ is ‘some terminating
execution ofr from the present state leads to a state bearing the infaymati
The dual assertiojr]¢ states that ‘every execution offrom the present state leads
to a state bearing the informatien

So far, there’s nothing really new — but a simple idea is gdmgnsure that
PDL is highly expressive: we will make the inductive structufettee programs
explicit in PDL’'s syntax. Complex programs are built out of basic prograsisgu
some repertoire of program constructors. By using diamanigish reflect this
structure, we obtain a powerful and flexible language.

Let us examine the core languagermL. Suppose we have fixed some set of
basic programs, b, ¢, and so on (thus we have basic modalities, (b), (c), ...
at our disposal). Then we are allowed to define complex pmgra(and hence,
modal operatorgér)) over this base as follows:

(choice) ifm andm, are programs, then soig U ms.
The programr; U w5 (non-deterministically) executes or .
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(composition) ifr; andm, are programs, then sois ; mo.
This program first executes and thenrs.
(iteration) if w is a program, then so is".
7" is a program that executesa finite (possibly zero) number of times.

For the collection of diamonds this means thatif) and(m) are modal operators,
then so ardm; U ma), (w1 ; m2) and(xy). This notation makes it straightforward to
describe properties of program execution. Here is a fairgightforward example.
The formula(m*)¢ <> ¢ V (7 ; )¢ says that a state bearing the informatipoan
be reached by executinga finite number of times if and only if either we already
have the informatio in the current state, or we can execuatence and then find
a state bearing the informatiahafter finitely many more iterations af. Here’s a
far more demanding example:

[*](¢ = [7]¢) = (¢ = [77]9).

This isSegerberg’s axiorfor theinduction axiom and the reader should try work-
ing out what exactly it is that this formula says. We discims formula further in
Chapter 3, cf. Example 3.10.

If we confine ourselves to these three constructors (anddrbtok for the most
part we do) we are working with a version pbL calledregular pDL. (This is
because the three constructors are the ones used in Kleaxikelsnown analysis of
regular programs.) However, a wide range of other congiradtave been studied.
Here are two:

(intersection) ifr; andw, are programs, then sos N .

The intended meaning af, N 75 is: execute bothr andms, in parallel.
(test)  if¢is aformula, ther? is a program.

This program tests whethérholds, and if so, continues; if not, it fails.

To flesh this out a little, the intended reading(af N m)¢ is that if we execute
both7, andms in the present state, then there is at least one state rdadiyalboth
programs which bears the informatign This is a natural constructor for a variety
of purposes, and we will make use of it in Section 6.5.

The key point to note about the test constructor is its urlissudax: it allows us
to make a modality out of a formula. Intuitively, this modglaccesses theurrent
state if the current state satisfi@s On its own such a constructor is uninteresting
({p7)yy simply means) A ¢»). However, when other constructors are present, it can
be used to build interesting programs. For examfl@,; a) U (—p?;b)is‘if p
thenael seb’

Nothing prevents us from viewing the basic programsleterministic and we
will discuss a fragment of deterministikoL (DPDL) in Section 6.5
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Example 1.16 (An Arrow Language) A similarity type with modal operators
other than diamonds, is the type, of arrow logic. The language of arrow logic
is designed to talk about the objects in arrow structuresti@n which can be
pictured as arrows). The well-formed formula®f the arrow language are given
by the rule

p:=p|L|-ploVi|goy|®e|L.

Thatis,I' (‘identity’) is a nullary modality (a modal constant), th@onverse’ oper-
ator® is a diamond, and the ‘composition’ operatds a dyadic operator. Possible
readings of these operators are:

r identity ‘skip’
@ converse ¢ conversely’
¢ o composition ‘firste, theny’. -

Example 1.17 (Feature Logic and Description Logic)As we mentioned in the
Preface, researchers developing formalisms for desgrifpiaphs have sometimes
(without intending to) come up with notational variants obaal logic. For ex-
ample, computational linguists ugdtribute-Value MatricegAvM s) for describ-
ing feature structuregdirected acyclic graphs that encode linguistic inforimai
Here’s a fairly typicalavm:

PERSON 1st
NUMBER plural
CASE dative

AGREEMENT

But this is just a two dimensional notation for the followingpdal formula

(AGREEMENT)({PERSON1stA (NUMBER)plural) A
(CAsE)dative

Similarly, researchers in Al needing a notation for desogkand reasoning about
ontologies developedescription logic For example, the concept of ‘being a hired
killer for the mob’ is true of any individual who is a killer dris employed by a
gangster. In description logic we can define this concepolésas:

kill er mndenpl oyer.gangst er
But this is simply the following modal formula lightly disged:
ki ller A{enpl oyer)gangst er

It turns out that the links between modal logic on the one hand feature and
description logic on the other, are far more interesting ttese rather simple ex-
amples might suggest. A modal perspective on feature origésa logic capable
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of accounting for other important aspects of these systsosh(as the ability to
talk about re-entrancy in feature structures, or to perféBox reasoning in de-
scription logic) must make use of the kinds of extended mtmats discussed in
Chapter 7 (in particular, logics containing the global mitgsand hybrid logics).
Furthermore, some versions of feature and descriptiorc logike use of ideas
from pDL, and description logic makes heavy usecotinting modalitiegwhich
say such things as ‘at most 3 transitions lead ¢ostate’). -

Substitution

Throughout this book we’ll be working with the syntactic oot of one formula
being a substitution instance of another. In order to defi® riotion we first
introduce the concept of a substitution as a function mappioposition letters to
variables.

Definition 1.18 Suppose we're working a modal similarity typeand a set? of
proposition letters. Aubstitutionis a mapo : ¢ — Form(r,®).

Now such a substitutionr induces a mag-)? : Form(r,®) — Form(r,®)
which we can recursively define as follows:

17 = 1
p’ = oalp)
()7 = —u7
(Vo) = y7ve°
(A1, )T = AR, Up).
This definition spells out exactly what is meant by carrying uniform substitu-

tion. Finally, we say thak is asubstitution instancef v if there is some substitu-
tion 7 such that)™ = y. -

To give an example, if is the substitution that mapsto p A Ogq, ¢ to COq VvV r
and leaves all other proposition letters untouched, thehave

(pAgAT)? = ((pAOg) A(OCOgVTr)AT).

Exercises for Section 1.2

1.2.1 Using K ¢ to mean ‘the agent knows that and M ¢ to mean ‘it is consistent with
what the agent knows thét’ represent the following statements.

(a) If ¢ is true, then it is consistent with what the agent knows thatksrows that.

(b) Ifitis consistent with what the agent knows tlgtand it is consistent with what
the agent knows that, then it is consistent with what the agent knows that .

(c) If the agent knows that, then it is consistent with what the agent knows that
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(d) Ifitis consistent with what the agent knows that it is sistent with what the agent
knows thatp, then it is consistent with what the agent knows that

Which of these seem plausible principles concerning kndgéeand consistency?

1.2.2 Suppose¢ is interpreted asg is permissible’; how shouldl¢ be understood?
List formulas which seem plausible under this interpretati Should the Lob formula
O(Op — p) — Op be on your list? Why?

1.2.3 Explain how the program constructstii | e ¢ do #’ and ‘r epeat 7 until ¢’
can be expressed #DL.

1.2.4 Consider the following arrow formulas. Do you think they gltbbe always true?

Top < p,
@(poq) + ©@qoap,
po(gor) < (pog)or.

1.2.5 Show that ‘being-a-substitution-instance-of’ is a tréimsiconcept. That is, show
that if y is a substitution instance af, ande is a substitution instance @f, theny is a
substitution instance af.

1.3 Models and Frames

Although our discussion has contained many semanticatjgestive phrases such
as ‘true’ and ‘intended interpretation’, as yet we have gitleem no mathemat-
ical content. The purpose of this (key) section is to put tigitt. We do so by
interpreting our modal languages in relational structuhesact, by the end of the
section we will have done this in two distinct ways: at theelesf modelsand at
the level offrames Both levels are important, though in different ways. Thele
of models is important because this is where the fundamantain ofsatisfaction
(or truth) is defined. The level of frames is important because it supphe key
logical notion ofvalidity.

Models and satisfaction

We start by defining frames, models, and the satisfactioatiosl for the basic
modal language.

Definition 1.19 A framefor the basic modal language is a pgir= (W, R) such
that

(i) W is a non-empty set.
(i) Ris abinary relation onV .
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Thatis, a frame for the basic modal language is simply aioglak structure bearing
a single binary relation. We remind the reader that we reféhé elements ofl’
by many different names (see Definition 1.1).

A modelfor the basic modal language is a p2ir = (§, V'), whereg is a frame
for the basic modal language, amdis a function assigning to each proposition
letterp in @ a subsel/ (p) of W. Informally we think ofV'(p) as the set of points
in our model where is true. The functiori/ is called avaluation Given a model
M = (§,V), we say thatht is based onthe frameg, or thatF is the frame
underlying9t. -

Note that models for the basic modal language can be vieweela®nal struc-
tures in a natural way, namely as structures of the form:

(W, R,V (p),V(g), V(r),...).

That is, a model is a relational structure consisting of a @oma single binary
relation R, and the unary relations given to us by Thus, viewed from a purely
structural perspective, a franfeand a modef)t based orf, are simply two re-
lational models based on the same universe; indeed, a modehply a frame
enriched by a collection of unary relations.

But in spite of their mathematical kinship, frames and mea@eéusedvery dif-
ferently. Frames are essentially mathematical picturesnaslogies that we find
interesting. For example, we may view time as a collectiopmhts ordered by
a strict partial order, or feel that a correct analysis ofidealge requires that we
postulate the existence of situations linked by a relatibfbeing an epistemic
alternative to.” In short, we use the level of frames to malkefandamental as-
sumptions mathematically precise.

The unary relations provided by valuations, on the othedhare there to dress
our frames with contingent information. Is it raining on $day or not? Is the
system write-enabled at tintg? Is a situation where Janet does not love him an
epistemic alternative for John? Such information is imgaftt and we certainly
need to be able to work with it — nonetheless, statements dedgrve the de-
scription ‘logical’ if they areinvariant under changes of contingent information.
Because we have drawn a distinction between the fundamefamation given
by frames, and the additional descriptive content providgdnodels, it will be
straightforward to define a modally reasonable notion afiitsl

But this is jumping ahead. First we must learn how to intdrgive basic modal
language in models. This we do by means of the following fati|on definition.

Definition 1.20 Supposev is a state in a modéht = (W, R, V). Then we induc-
tively define the notion of a formula beingsatisfied(or true) in 9t at statew as



18 1 Basic Concepts

follows:

MwlFp iff weV(p), wherep €
M, w I-L never
M, w k=g iff not M wlk o
MuwlFopVvy iff Mwl-¢o or Mw -1
M, wl- ¢ iff for somewv € W with Rwv we havedt, v IF ¢. (1.4)

It follows from this definition thatit, w IF O¢ if and only if for all v € W such
that Rwv, we havedlt, v IF ¢. Finally, we say that aetX’ of formulas is true at a
statew of a modeb, notation:9, w I- X, if all members ofY are true atv. -

Note that this notion of satisfaction is intrinsicallyternal andlocal. We evaluate
formulasinside models, at some particular state(the current stat¢. Moreover,
<& works locally: the final clause (1.4) treafsp as an instruction to scan states
in search of one wherg is satisfied. Crucially, only statgg-accessible from the
current one can be scanned by our operators. Much of theathestic flavor of
modal logic springs from the perspective on relationaldtmes embodied in the
satisfaction definition.

If 9T does not satisfy atw we often writedt, w I ¢, and say thab is falseor
refutedatw. When9t is clear from the context, we write I ¢ for 9t, w I+ ¢ and
w I ¢ for M, w I ¢. Itis convenient to extend the valuati®hfrom proposition
letters to arbitrary formulas so thai(¢) always denotes the set of states at which
¢ is true:

V(g) == {w|MuwlF ¢}.

Definition 1.21 A formula ¢ is globally or universally truein a model?t (nota-
tion: 9 I+ ¢) if it is satisfied at all points it (that is, if M, w I+ ¢, for all
w € W). A formula ¢ is satisfiablein a modelOt if there issomestate in9t at
which ¢ is true; a formula idalsifiable or refutablein a model if its negation is
satisfiable.

A set X of formulas is globally true (satisfiable, respectively)aimodel9t if
M, w I+ X for all statesw in M (some statev in NN, respectively).

Example 1.22 (i) Consider the frame = ({wi, wa, ws, wy, ws}, R), where
Rwiwj iff ] =+ 1:

o———
w1 w9 w3 Wy Ws

If we choose a valuatio” on § such thatV'(p) = {w2, w3}, V(q) = {w1, wo,
ws, wy, ws }, andV (r) = @, then in the modet = (F, V') we have thafit, w, -
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SOp, M wy P O0p — p, Mws I O(p A —r), and, wy IF g A (g A O(g A
O(g A ©q))).

Furthermoret I Og. Now, it is clear thatlq is true atw,, w2, w3 andwy, but
why is it true atws? Well, asws; has no successors at all (we often call such points
‘dead endsor ‘blind state§ it is vacuously true that is true at allR-successors
of ws. Indeed, any ‘boxed’ formulale is true at any dead end in any model.

(i) As a second example, I¢t be thespogiven in Figure 1.1, wher® = {1,
2,3,4,6, 8,12, 24} and Rxry means & andy are different, and, can be divided
by z.” Choose a valuatio” on this frame such that (p) = {4,8,12,24}, and
V(q) = {6}, and letht = (F, V). Thend, 4 I+ Op, M, 6 |- Op, M, 2 I Op, and
M, 2 - O(g A Op) AO(—g A Op).

(iif) Whereas a diamond> corresponds to making a single-step in a model,
stacking diamonds one in front of the other corresponds tkingaa sequence
of R-steps through the model. The following defined operatots ssmetimes
be useful: we write>"¢ for ¢ preceded by: occurrences of>, andd"¢ for ¢
preceded by, occurrences ofl. If we like, we can associate each of these defined
operators with its own accessibility relation. We do so irtikely: Rz is defined
to hold if z = y, and R"*'zy is defined to hold iz (Rxz A R"zy). Under this
definition, for any modet and statev in 9t we havedlt, w I- O™ ¢ iff there exists
av such thatR™wv and, v I- ¢.

(iv) The use of the word ‘world’ (or ‘possible world’) for thentities in W
derives from the reading of the basic modal language in wiglis taken to mean
‘possiblyg,” and O¢ to mean hecessarilyy.” Given this reading, the machinery of
frames, models, and satisfaction which we have defined &ngally an attempt to
capture mathematically the view (often attributed to L&bpthatnecessityneans
truth in all possible worldsand thapossibilitymeangruth in some possible world

The satisfaction definition stipulates thatandd check for truth not aall possi-
ble worlds (that is, at all elements ') but only atR-accessible possible worlds.
At first sight this may seem a weakness of the satisfactiomitiefi — but in fact,
it's its greatest source of strength. The point is this: wagyR is a mechanism
which gives us a firm mathematical grip on the pre-theorktiotion of access be-
tween possible worlds. For example, by stipulating that 1 x W we can allow
all worlds access to each other; this corresponds to thenlzéim idea in its purest
form. Going to the other extreme, we might stipulate thatvorld has access to
any other. Between these extremes there is a wide range iohsgb explore.
Should interworld access be reflexive? Should it be tramsitiWwhat impact do
these choices have on the notions of necessity and pos&thbifor example, if we
demand symmetry, does this justify certain principles uée others out?

(v) Recall from Example 1.10 that in epistemic logids written ask and K ¢
is interpreted as ‘the agent knows thiat Under this interpretation, the intuitive
reading for the semantic clause governiigs: the agent knows in a situation
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w (that is,w I+ K¢) iff ¢ is true in all situations that are compatible with her
knowledge (that is, i I+ ¢ for all v such thatRwv). Thus, under this interpre-
tation, W is to be thought of as a collection of situatior,is a relation which

models the idea of one situation being epistemically adaessom another, and
V' governs the distribution of primitive information acrossiations. -

We now define frames, models and satisfaction for modal lages! of arbitrary
similarity type.

Definition 1.23 Let T be a modal similarity type. A-frameis a tuple§ consisting
of the following ingredients:

(i) anon-empty selV,
(i) for eachn > 0, and eaclm-ary modal operaton in the similarity typer,
an (» + 1)-ary relationR, .

So, again, frames are simply relational structures.dbntains just a finite number
of modal operatorg\y, ..., A,, we write§ = (W, R,,, ..., R,,); otherwise we
write § = (W, Rp)per Or§ = (W, {R, | & € 7}). We turn such a frame into a
model in exactly the same way we did for the basic modal lagguay adding a
valuation. That is, a-modelis a paird)t = (§, V') whereg is ar-frame, and is

a valuation with domai and rangeP (W), wherelV is the universe of.

The notion of a formula beingsatisfied(or true) at a statew in a modelt =
(W, {R, | & € 7}, V) (notation: M, w I- ¢) is defined inductively. The clauses
for the atomic and Boolean cases are the same as for the bad#d language (see
Definition 1.20). As for the modal case, whefn) > 0 we define

M, wlk A(¢r1,...,¢,) Iff forsomewvy, ...,v, € Wwith Rywuvy ... v,
we have, for each, 991, v; IF ¢;.

This is an obvious generalization of the w&yis handled in the basic modal lan-
guage. Before going any further, the reader should forratled satisfaction clause
for V(¢1,...,on).

On the other hand, whew(A) = 0 (that is, whena is a nullary modality) then
R, is a unary relation and we define

Mwl-a iff we R,

That is, unlike other modalities, nullary modalities do actess other states. In
fact, their semantics is identical to that of the propostgilovariables, save that the
unary relations used to interpret them acdgiven by the valuation — rather, they
are part of the underlyinffame

As before, we often writav I- ¢ for 91, w IF ¢ where9t is clear from the
context. The concept ajlobal truth (or universal trutl) in a model is defined
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as for the basic modal language: it simply meamngh at all states in the model
And, as before, we sometimes extend the valuatiosupplied by)t to arbitrary
formulas. -

Example 1.24 (i) Let 7 be a similarity type with three unary operatdrs, (b),
and(c). Then ar-frame has three binary relatiod,, R;, and R, (that is, it is a
labeled transition system with three labels). To give am®da, letW, R,, Ry
and R, be as in Figure 1.2, and consider the formutap — (b)p. Informally,
this formula is true at a state, if it has a@h,-successor satisfying only if it has
an Ry-successor satisfying. Let V' be a valuation with/(p) = {w2}. Then the
model9t = (W, R, Ry, R., V') hasdt, wy Iff (a)p — (b)p.

(i) Let 7 be a similarity type with a binary modal operatarand a ternary
operator(). Frames for thisr contain a ternary relatio®®, and a 4-ary rela-
tion So. As an example, leV = {u,v,w,s}, Ry = {(u,v,w)}, andSy =
{(u,v,w, s)} as in Figure 1.6, and consider a valuatibnon this frame with
Vipo) = {v}, V(p1) = {w} andV(p2) = {s}. Now, let ¢ be the formula

v _ w
po - 1 1

——— ! Ryuvw

- - - Souvws

Fig. 1.6. A simple frame

A(po,p1) = O(po, p1,p2). Aninformal reading ofy is ‘any triangle of which the
evaluation point is a vertex, and which hasandp, true at the other two vertices,
can be expanded to a rectangle with a fourth point at whidls true.” The reader
should be able to verify that is true atu, and indeed at all other points, and hence
that it is globally true in the model. -

Example 1.25 (Bidirectional Frames and Models) Recall from Example 1.14
that the basic temporal language has two unary operatarsd P. Thus, according
to Definition 1.23, models for this language consist of a setring two binary re-
lations, Ry (the into-the-future relation) anllp (the into-the-past relation), which
are used to interpre’ and P respectively. However, given the intended reading
of the operators, most such models are inappropriate:lgi@@rought to insist on
working with models based on frames in whiBt is theconverseof R (that is,
frames in whichWzy (Rpxy <> Rpyx)).

Let us denote the converse of a relatiBroy R". We will call a frame of the
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form (T, R, R') abidirectional frame and a model built over such a framiali-
rectional model From now on, we will only interpret the basic temporal laage
in bidirectional models. That is, 8t = (T, R, R ,V) is a bidirectional model
then:

Mt - Fo iff ds(Rts A M, s |- o)

M, tI- Py iff Fs(Rts A M, sk o).

But of course, once we've made this restriction, we don’tdigementionR?” ex-
plicitly any more: onceR has been fixed, its converse is fixed too. That is, we are
free to interpret the basic temporal languages on fraffieR®) for the basic modal
language using the clauses

Mtk Fo iff Is(Rts A M, s Ik ¢)
M, ¢ Ik Py iff 3Is(Rst A M, s Ik ¢).

These clauses clearly capture a crucial part of the inteséetantics: F' looks
forward alongR, and P looks backwards along. Of course, our models will
only start looking genuinelyemporalwhen we insist thaf? has further properties
(notably transitivity, to capture the flow of time), but aa#t we have pinned down
the fundamental interaction between the two modalities.

Example 1.26 (Regular Frames and ModelsAs explained in Example 1.15, the
language oPDL has an infinite collection of diamonds, each indexed by ararog
7 built from basic programs using the constructors, and«. Now, according to
Definition 1.23, a model for this language has the form

(W,{Rx | mis a program}, V).

That is, a model is a labeled transition system together avithluation. However,
given our reading of theDL operators, most of these models are uninteresting. As
with the basic temporal language, we must insist on workiitg s/class of models
that does justice to our intentions.

Now, there is no problem with the interpretation of the bagsiograms: any
binary relation can be regarded as a transition relatiom foon-deterministic pro-
gram. Of course, if we were particularly interesteddaterministicorograms we
would insist that each basic program be interpreted by éb&uhction, but let us
ignore this possibility and turn to the key question: whielations should interpret
the structured modalities? Given our readingsipfand*, as choice, composition,
and iteration, it is clear that we are only interested intrefes constructed using
the following inductive clauses:

R7T1U7T2 = R7r1 URﬂ'z
Rrimy = RpoRp, (={(z,y) | 32 (Rr,xz A Rry2y)})
Rq: = (Ry)", the reflexive transitive closure @i, .
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These inductive clauses completely determine how each lityosdhould be inter-
preted. Once the interpretation of the basic programs has fieed, the relation
corresponding to each complex program is fixed too. Thissléadhe following
definition.

Suppose we have fixed a set of basic programs. ILdte the smallest set of
programs containing the basic programs and all programsticaned over them
using the regular constructots ; and*. Then aregular frame fori! is a labeled
transition systemiW, { R, | = € II}) such thatR, is an arbitrary binary relation
for each basic program and for all complex programs, R is the binary relation
inductively constructed in accordance with the previoasisés. Aregular model
for 1 is a model built over a regular frame; that is, a regular masleegular
frame together with a valuation. When working with the |aage ofPDL over the
programs inZZ, we will only be interested in regular models faf, for these are
the models that capture the intended interpretation.

What about they and? constructors? Clearly the intended readingiafemands
that R ,nr, = Rr, NRy,. Asfor ?, itis clear that we want the following definition:

Rgr = {(z,y) | »=yandy Ik ¢}.

This is indeed the clause we want, but note that it is ratH&ardint from the others:
it is not aframecondition. Rather, in order to determine the relati®g, we need
information about theruth of the formulag, and this can only be provided at the
level of models H

Example 1.27 (Arrow Models) Arrow frames were defined in Example 1.8 and
the arrow language in Example 1.16. Given these definitiiins,clear how the
language of arrow logic should be interpreted. Firstaaow modelis a structure
M = (F,V) such thaty = (W, C, R, I) is an arrow frame andl” is a valuation.
Then:
Mal-T iff Ia,
M, alk e iff M, bIF ¢ for someb with Rab,

M,alkpory iff I bIF¢andd, el for someb ande with Cabe.
When § is a squareframe &y (as defined in Example 1.8), this works out as
follows. V' now maps propositional variables to setspairs over U; that is, to
binary relations. The truth definition can be rephrased kmAis:

M, (ag,ar) -1 iff  ap=ay,

M, (ag,ar) Ik @¢ iff M, (ar,ap) IF ¢
M, (ag,ar) Ik porp iff M, (ag,u) Ik ¢andM, (u,ay) IF ¢ for someu € U.

Such situations can be represented pictorially in two w&ysst, one could draw
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the graph-like structures as given in Example 1.8. Altevet one could draw
a square model two-dimensionally, as in the picture belowill be obvious that
the modal constarit holds precisely at theiagonal pointsand thatx ¢ is true at a
point iff ¢ holds at itsmirror imagewith respect to the diagonal. The formula v
holds at a point: iff we can draw a rectanglebcd such thatb lies on the vertical
line througha, d lies on the vertical line through; and¢ lies on the diagonal.

[dIF ¥ a ¥ o

1!

"¢ T kg

Frames and validity

It is time to define one of the key concepts in modal logic. Soafa have been
viewing modal languages as tools for talking about modelst. rBodels are com-
posite entities consisting of a frame (our underlying argg) and contingent in-
formation (the valuation). We often want to ignore the effeaf the valuation and
get a grip on the more fundamental level of frames. The cdnokepalidity lets
us do this. A formula is valid on a frame if it is true at evergtstin every model
that can be built over the frame. In effect, this conceptrprets modal formulas
on frames by abstracting away from the effects of particudduations.

Definition 1.28 Aformula¢ isvalid at a statew in a frameg (notation: g, w I+ ¢)

if ¢ is true atw in every model§, V') based orF; ¢ is valid in a frame¥ (notation:
S IF ¢) if it is valid at every state ir§. A formula ¢ is valid on a class of frames
F (notation: F I ¢) if it is valid on every frame§ in F'; and it isvalid (notation:
IF ¢) if it is valid on the class of all frames. The set of all forrasithat are valid in
a class of frames is called thdogic of F (notation: Ag). -

Our definition of the logic of a frame clads (as the set of ‘all’ formulas that
are valid onF) is underspecified: we did not say which collection of propms
letters® should be used to build formulas. But usually the precisenfof this
collection is irrelevant for our purposes. On the few oamasiin this book where
more precision is required, we will explicitly deal with tissue. (If the reader is
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worried about this, he or she may just fix a countabledset proposition letters
and definelr to be{¢ € Form(r,®) | FI- ¢}.)

As will become abundantly clear in the course of the bookiditgl differs from
truth in many ways. Here’s a simple example. When a formgulay) is true at a
point w, this means that that eitheror v is true atw (the satisfaction definition
tells us so). On the other hand,difv « is valid on a frameg, this doesnot mean
that eitherg or ¢ is valid on§ (p V —p is a simple counterexample).

Example 1.29 (i) The formula$(p V ¢) — (Op Vv O¢) is valid on all frames. To
see this, take any franfeand statev in §, and letl” be a valuation of. We have
to show that if(§, V), w IF O(p V @), then(F, V), w IF Op Vv &g. So assume that
(F,V),w IF O(p V q). Then, by definition there is a statesuch thatRwv and
(&, V),v Ik pVgq. But, if v IF pV qthen eitherw I p orv IF ¢. Hence either
w IF Op orw IF Oq. Either way,w IF Op v Og.

(i) The formula<Op — Op is not valid on all frames. To see this we need to
find a frameg, a statew in §, and a valuation off that falsifies the formula at.
So letF be a three-point frame with universe, 1, 2} and relatior{ (0,1), (1,2)}.
Let V' be any valuation o such thatV' (p) = {2}. Then(§,V),0 I &Op, but
(§,V),0 I Op since 0 is not related to 2.

(iif) But there is a class of frames on whichGp — Op is valid: the class
of transitive frames. To see this, take any transitive frafhand statew in F,
and letV be a valuation or§. We have to show that if§, V), w I &Op, then
(F,V),w IF Op. So assume thdf, V), w I OGOp. Then by definition there are
statesu andv such thatRwu and Ruv and(F, V'), v IF p. But asR is transitive, it
follows that Rwv, hence(F, V), w IF Op.

(iv) As the previous example suggests, when additionaltcainsés are imposed
on frames, more formulas may become valid. For example,idenghe frame
depicted in Figure 1.2. On this frame the formap — (b)p is not valid; a coun-
termodel is obtained by putting (p) = {w2}. Now, consider a frame satisfying
the conditionR, C R;; an example is depicted in Figure 1.7.

a
[ ]
YT D b
Fig. 1.7. A frame satisfyind?, C Ry.

On this frame it is impossible to refute the formylap — (b)p atw, because a
refutation would require the existence of a painvith R,wu andp true atu, but
not R,wu; but such points are forbidden when we insist tRgtC Ry

This is a completely general point: @averyframeg of the appropriate similarity
type, if § satisfies the conditio®®?, C R;, then{a)p — (b)p is valid in§. More-
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over, the converse to this statement also holds: wher(eygr— (b)p is valid on
a given frameg, then the frame must satisfy the conditi®) C R,. To use the
terminology we will introduce in Chapter 3, the formul@p — (b)p definesthe
property thatk, C Ry,.

(v) When interpreting the basic temporal language (see Biam?25) we ob-
served that arbitrary frames of the fofiV, Rp, Rr) were uninteresting given the
intended interpretation af' and P, and we insisted on interpreting them using a
relation R and its converse. Interestingly, there is a sense in whiebdsic tempo-
ral language itself is strong enough to enforce the conditiat the relatiorRp is
the converse of the relatioR: such frames arpreciselythe ones which validate
both the formulag — G Pp andp — H F'p; see Exercise 3.1.1.

(vi) The formulaf'q — FFq is not valid on all frames. To see this we need
to find a frame¥ = (T, R), a statet in T, and a valuation orf that falsifies
this formula att. So let7”” = {0,1}, and letR be the relation{(0,1)}. Let
V' be a valuation such that(p) = {1}. Then(%,V),0 |- Fp, but obviously
(2, V),0f FFp.

(vii) But there is a frame on whicli’p — F Fp is valid. As the universe of the
frame take the set of all rational numbépsand let the frame relation be the usual
<-ordering onQQ. To show thatt'p — F F'p is valid on this frame, take any point
t in it, and any valuatiori” such that(Q, <,V'),t I+ F'p; we have to show that
t I FFp. But this is easy: asl- F'p, there exists & such that < ¢ andt’ I+ p.
Because we are working on the rationals, there must bewdth ¢t < s ands < ¢/
(for examplet + t')/2). As s |- Fp, it follows thatt I F Fp.

(viii) The special conditions demandedribL models also give rise to validities.
For example(m; ; ma)p <+ (m1)(me)p is valid on any frame such that,,.,, =
Ry, o R:,, and in fact the converse is also true. The reader is askexbte phis
in Exercise 3.1.2.

(ix) In our last example we consider arrow logic. We claimttimaany square
arrow frameSy;, the formula®(p o q) — ©q o @p is valid. For, letV be a
valuation on&yr, and suppose that for some pair of points) in U, we have
(&u, V), (u,v) IF @(p o q). Itfollows that(Sy, V), (v,u) IF po g, and hence,
there must be a € U for which (&, V), (v, w) IF p and(Sy, V), (w, u) IF g.
But then we havé&y, V), (w,v) IF @p and (&, V), (u,w) IF @q. This in turn
implies that(&Sy, V), (u,v) IF @go @p. -

Exercises for Section 1.3

1.3.1 Show that when evaluating a formulan a model, the only relevant information in
the valuation is the assignments it makes to the propositietters actually occurring in
¢. More precisely, le§ be a frame, an#f” andV’ be two valuations off such thatl’ (p) =
V' (p) for all proposition letterg in ¢. Show that§, V) IF ¢ iff (F,V’) IF ¢. Work in the
basic modal language. Do this exerciseafuction on the number of connectivas) (or
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as we usually put it, binduction on ¢). (If you are unsure how to do this, glance ahead to
Proposition 2.3 where such a proof is given in detail.)

1.3.2LetN = (N,51,95,) and®B = (B, R;, R») be the following frames for a modal
similarity type with two diamond$>; and<,. HereN is the set of natural numberB,is
the set of strings ois andls, and the relations are defined by

mSin iff n=m+1,
mSon iff  m>n,
sRit iff t=s0ort=sl,
sRot iff  tis aproper initial segment of

Which of the following formulas are valid o) andB, respectively?

(@ (C1pAC1q) = C1(p A ),

(b) (C2p A C2q) = C2(pAq),

©) (C1pACIgAOIT) = (C1(pAQ VOL(pAT)V O1(gAT)),
(d) p— ©102p,

(e) p— 201,

() p— 01 Oap,

(@ p— O2C1p.

1.3.3 Consider the basic temporal language and the fraffies), (Q, <) and (R, <)
(the integer, rational, and real numbers, respectivelypralered by the usual less-than
relation<). In this exercise we usedgo abbreviateP¢ v ¢ V F¢, and Ap to abbreviate
Ho N ¢ A Go. Which of the following formulas are valid on these frames?

(@) GGp — p,
(b) (pA Hp) — FHp,
(¢) (BnAE-pAA(p — Hp) NA(=p = G—p)) = E(Hp A G-p).

1.3.4 Show that every formula that has the form of a propositioaatdlogy is valid.
Further, show thatl(p — ¢) — (dp — Qg) is valid.

1.3.5 Show that each of the following formulasnst valid by constructing a framg =
(W, R) that refutes it.

(a) OL,

(b) Op — Op,

(c) p— OOCp,
(d) ¢Op — Op.

Find, for each of these formulas, a non-empty class of fraznashich it is valid.

1.3.6 Show that the arrow formulaso (1) o x) > (¢ 0¢)) o x andl o ¢ «» ¢ are valid in
any square.

1.4 General Frames

At the level of models the fundamental concept is satissactirhis is a relatively
simple concept involving only a frame andiaglevaluation. By ascending to the
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level of frames we get a deeper grip on relational structurdsit there is a price to
pay. Validity lacks the concrete character of satisfagtfonit is defined in terms of
all valuations on a frame. However there is an intermediatd: levgeneral frame
(8, A) is a frame§ together with a restricted, but suitably well-behavedexilbn
A of admissible valuations

General frames are useful for at least two reasons. Fimstetmay be appli-
cation driven motivations to exclude certain valuationsr fastance, if we were
using (N, <) to model the temporal distribution of outputs from a compateal
device, it would be unreasonable to let valuations assignraoursively enumer-
able sets to propositional variables. But perhaps the mygstitant reason to work
with general frames is that they support a notion of valitligt is mathematically
simpler than the frame-based one, without losing too marthefconcrete prop-
erties that make models so easy to work with. This ‘simpldrav@r’ will only
really become apparent when we discuss the algebraic p#ksgpen complete-
ness theory in Chapter 5. It will turn out that there is a fundatal and universal
completeness resutir general frame validity, something that the frame seimant
lacks. Moreover, we will discover that general frames aseetally a set-theoretic
representation djoolean algebras with operatar§hus, thed in (W, R, A) stands
not only for Admissible but also forAlgebra

So what is a ‘suitably well-behaved collection of valuagi@éhlt simply means a
collection of valuations closed under the set-theoreterajons corresponding to
our connectives and modal operators. Now, fairly obvigulg boolean connec-
tives correspond to the boolean operations of union, velatomplement, and so
on — but what operations on sets do modalities corresponei&n@ is the answer.

Let us first consider the basic modal similarity type with ciemond. Given a
frameF = (W, R), letm be the following operation on the power seti&f.

me(X) ={w € W | Rwx for somer € X }.

Think of m (X)) as the set of states that ‘see’ a stateXin This operation corre-
sponds to the diamond in the sense that for any valuafi@amd any formulap:

V(©9) = mo(V(9)).

Moving to the general case, we obtain the following definitio

Definition 1.30 Let be a modal similarity type, argl= (W, Rx) rc- aT-frame.
For A € 7 we define the following functiom:, on the power set ofl/:

ma(Xy,...,Xn) = {weW| there arevy, ...,w, € W such that
Ryww; ... w, andw; € X;, foralli=1,...,n.} -

Example 1.31 Let ® be the converse operator of arrow logic, and consider a
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square fram&;;. Note thatm, is the following operation:
me(X) = {a€U?*| Rax for somer € X }.
But by the rather special nature Bfthis boils down to

mo(X) = {(ap,a1) € U? | ap = 1 anda; = x, for some(zg, 1) € X },
= {(:Cl,xo) S U2 | (:C(),xl) S X}

In other wordsyn, (X) is nothing but thesonverseof the binary relationY.

Definition 1.32 (General Frames) et 7 be a modal similarity type. Aeneralr-
frameis a pair(J, A) whereg = (W, R, )¢, IS aT-frame, andA is a non-empty
collection of subsets dii” closed under the following operations:

(i) union: iIf X,Y € AthenX UY € A.
(i) relative complement: ifX € A, thenWW \ X € A.
(i) modal operations: itXy, ..., X,, € A, thenm,(Xy,...,X,) € A for all
AET.

A model based on a general franeea triple (§, A, V') where(§, A) is a general
frame andV is a valuation satisfying the constraint that for each psitm letter
p, V(p) is an element ofi. Valuations satisfying this constraint are calbsdimnis-
siblefor (§,A). -

It follows immediately from the first two clauses of the deiiom that both the
empty set and the universe of a general frame are always sibiteis Note that

an ordinary frame§ = (W, R,),ecr Can be regarded as a general frame where
A =P(W) (that is, a general frame in which all valuations are adrbisyi Also,
note that if a valuatiory” is admissible for a general frani@, A), then the closure
conditions listed in Definition 1.32 guarantee thaty) € A, for all formulas

¢. In short, a set of admissible valuatiorsis a ‘logically closed’ collection of
information assignments.

Definition 1.33 A formula ¢ is valid at a statew in a general framgg, A) (no-
tation: (§,A),w IF ¢) if ¢ is true atw in every admissible modéls, A, V') on
(§,A); and¢ is valid in a general framég, A) (notation: (§, A) I- ¢) if ¢ is true
at every state in every admissible modgl A, V') on (§, A).

A formula ¢ is valid on a class of general framé&s (notation: G IF ¢) if it is
valid on every general fram@§, A) in G. Finally, if ¢ is valid on the class of alll
general frames we say that itgsvalid and writell-, ¢. We will learn in Chapter 4
(see Exercise 4.1.1) that a formulas valid if and only if it is g-valid.
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Clearly, for any frameg, if § I ¢ then for any collection of admissible assign-
mentsA on §, we have(§, A) I ¢ too. The converse does not hold. Here is a
counterexample that will be useful in Chapter 4.

Example 1.34 Consider the McKinsey formula]&p — SOp. It is easy to see
that the McKinsey formula isot valid on the frameN, <), for we obtain a coun-
termodel by choosing a valuation fprthat lets the truth value gf alternate in-
finitely often (for instance, by lettin§ (p) be the collection of even numbers).

However there is a general frame based&in<) in which the McKinsey for-
mulais valid. First some terminology: a setgs-finiteif its complement is finite.
Now consider the general franje= (N, <, A), where A is the collection of all
finite and co-finite sets. We leave it as an exercise to showf thatisfies all the
constraints of Definition 1.32; see Exercise 1.4.5.

To see that the McKinsey formula is indeed valid jotet V' be an admissible
valuation, and let. € N. If (f,V),n IF OCp, thenV (p) must be co-finite (why?),
hence for somé every staté > kisinV'(p). Butthis means thdf, V'), n I+ SOp,
as required. -

Although we will make an important comment about generahfain Section 3.2,
and use them to help prove an incompleteness result in 8ektdowe will not re-
ally be in a position to grasp their significance until Chaptewhen we introduce
boolean algebras with operators. Until then, we will corticga on modal lan-
guages as tools for talking about models and frames.

Exercises for Section 1.4

1.4.1 Define, analogous tow., an operationng on the power set of a frame such that
for an arbitrary modal formula and an arbitrary valuatioll we have thaing (V(¢)) =
V' (Og¢). Extend this definition to the dual of a polyadic modal operat

1.4.2 Consider the basic modal formulgy — Cp.

(a) Constructaframg = (W, R) and a general framje= (§, A) such thaf I} ¢p —
Op, butf I+ Sp — Op.

(b) Construct a general frani@, A) and a valuatio’’ on§ such tha(§, A) I Op —
Op, but(§, V) IF Op — Op.

1.4.3 Show that if B is any collection of valuations over some fraiethen there is a
smallest general fram, A) such thatB C A. (‘Smallest’ means that for any general
frame(§, A’) suchthatB C A", A C A')

1.4.4 Show that for square arrow frames, the operationis nothing butcompositiorof
two binary relations. What ig1 ?

1.4.5 Consider the basic modal language, and the general ffaméN, <, A), whereA
is the collection of all finite and co-finite sets. Show that a general frame.
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1.4.6 Consider the structurg= (N, C, A) whereA is the collection of finite and cofinite
subsets ofN, andC is defined by

Cninang iff ny < ng +ng andnz <nsg+n andn3 <ni+ns.

If C'is the accessibility relation of a dyadic modal operatooygthatg is a general frame.

1.4.7 Let9M = (F, V) be some modal model. Prove that the structure
(&, {V(¢) | ¢ is aformula})

is a general frame.

1.5 Modal Consequence Relations

While the idea of validity in frames (and indeed, validitygeneral frames) gives
rise to logically interesting formulas, so far we have sathing about whalbgical
consequencmight mean for modal languages. That s, we have not exlaireat
it means for a set of modal formulas to logically entail a modal formula.

This we will now do. In fact, we will introducéwo families of consequence
relations: alocal one and a global one. Both families wildeénedsemantically
that is, in terms of classes of structures. We will defineetretations for all three
kinds of structures we have introduced, though in practieewill be primarily
interested in semantic consequence over frames. Befong daither, a piece of
terminology. IfS is a class of models, thenmodel fronS is simply a modedt in
S. On the other hand, B is a class of frames (or a class of general frames) then a
model fromS is a model based on a frame (general framé&).in

What is a modally reasonable notion of logical consequent&® things are
fairly clear. First, it seems sensible to hold on to the feanildea that a relation
of semantic consequence holds when the truth of the premisegsntees the truth
of the conclusion. Second, it should be clear that the infes we are entitled to
draw will depend on the class of structures we are workindp.w{For example,
different inferences will be legitimate on transitive amttansitive frames.) Thus
our definition of consequence will have to be parametric: ustrmake reference
to a class of structures.

Here’s the standard way of meeting these requirements.dSeppe are working
with a class of structureS. Then, for a formulap (the conclusion to be a logical
consequence af (thepremiseywe should insist that whenevér is true at some
point in some model fron$, then¢ should also be true in that same modethe
same point In short, this definition demands that the maintenanceuti tshould
be guaranteedoint to pointor locally.

Definition 1.35 (Local Semantic Consequencd)et 7 be a similarity type, and
let S be a class of structures of typgthat is a class of models, a class of frames,
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or a class of general frames of this type). Letand ¢ be a set of formulas and
a single formula from a language of type We say thatp is alocal semantic
consequence ol overS (notation: X' I-g ¢) if for all models9t from S, and all
pointsw in M, if M, w IF X thend, w Ik ¢.

Example 1.36 Suppose that we are working witfran, the class of transitive
frames. Then:

{OOp} Frian Op.

On the other hand¢p is not a local semantic consequence {gf<p} over the
class ofall frames.

Local consequence is the notion of logical entailment exgulan this book, but it
is by no means the only possibility. Here’s an obvious vdrian

Definition 1.37 (Global Semantic Consequence)Let 7, S, X' and ¢ be as in
Definition 1.35. We say thap is aglobal semantic consequence &f over S
(notation: X' I- ¢) if and only if for all structuresS in S, if & IF X then® IF ¢.
(Here, depending on the kind of structufesontains/+ denotes either validity in
a frame, validity in a general frame, or global truth in a mgde -

Again, this definition hinges on the idea that premises quaeaconclusions, but
here the guarantee covagi®bal notions of correctness.

Example 1.38 The local and global consequence relations are differeosider
the formulag andOp. It is easy to see thatdoes not locally implydp — indeed,
that this entailment shouldot hold is pretty much the essence of locality. On the
other hand, suppose that we consider a ma@tdetherep is globally true. Themp
certainly holds at all successors of all states)$d- Op, and sop IF9 Op.

Nonetheless, there is a systematic connection betweemvthednsequence rela-
tions, as the reader is asked to show in Exercise 1.5.3.

Exercises for Section 1.5

1.5.1 Let K be a class of frames for the basic modal similarity type, at¥l(K) denote
the class of models based on a frame<inProve thap II—’,{A(K) Op iff K = Va3y Ryx
(every point has a predecessor).

Does this equivalence hold as well if we work witt} instead?

1.5.2 Let M denote the class of all models, aRdhe class of all frames. Show that if
Y IH, ¢ thenX IH ¢, but that the converse is false.

1.5.3 Let X be a set of formulas in the basic modal language, anf detnote the class of
all frames. Show that IH ¢ iff {O0"c |0 € ¥,n € w} ke o.
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1.5.4 Again, letF denote the class of all frames. Show that the local conseguehation
does have the deduction theorem:IF ¢ iff IF ¢ — <, but the global one does not.
However, show that on the cla3san of transitive frames we have that IFS . =~ iff

H—%ran D¢ - ’l,/)

1.6 Normal Modal Logics

Till now our discussion has been largagmantic but logic has an importargtyn-
tactic dimension, and our discussion raises some obvious qusstiuppose we
are interested in a certain class of frarfreare there syntactic mechanisms capable
of generatingAr, the formulas valid or-? And are such mechanisms capable of
coping with the associated semantic consequence relaiibe?modal logician’s
response to such questions is embodied in the concept@iaal modal logic

A normal modal logic is simply a set of formulas satisfyingtaa syntactic clo-
sure conditions. Which conditions? We will work towards #imswer by defining a
Hilbert-style axiom system calleid. K is the ‘minimal’ (or ‘weakest’) system for
reasoning about frames; stronger systems are obtaineddbygeektra axioms. We
discusK in some detail, and then, at the end of the section, definealorndal
logics. By then, the reader will be in a position to see thatdéfinition is a more-
or-less immediate abstraction from what is involved in Hitbstyle approaches to
modal proof theory. We will work in the basic modal language.

Definition 1.39 A K-proof is a finite sequence of formulas, each of which is an
axiom or follows from one or more earlier items in the sequence fighang a
rule of proof. The axioms oK areall instances of propositional tautologigdus:

(K) O(p — q) = (Op — Og)
(Dual) <p < —O-p.

The rules of proof oK are:

e Modus ponensgiven¢ and¢ — 1, provei.

¢ Uniform substitution given ¢, proved, whered is obtained fromp by uniformly
replacing proposition letters in by arbitrary formulas.

e Generalization given ¢, provedg.

A formula ¢ is K-provableif it occurs as the last item of sonke-proof, and if this
is the case we writekg ¢. -

Some comments. Tautologies may contain modalities (famgia, OqV —Oqgis a
tautology, as it has the same formpag —p). As tautologies are valid on all frames
(Exercise 1.3.4), they are a safe starting point for modadaring. Our decision
to addall propositional tautologies as axioms is an example of aximnaaerkill;
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we could have chosen a small set of tautologies capable efgimg the rest via
the rules of proof, but this refinement is of little interest dbur purposes.

Modus ponens is probably familiar to all our readers, butalzee two important
points we should make. Firsfjodus ponens preserves validifyhat is, ifl- ¢ and
IF ¢ — « thenl- ¢. Given that we want to reason about frames, this property is
crucial. Note, however, that modus ponens also presenedurther properties,
namelyglobal truth (if 9t IF ¢ and9t IF ¢ — + thent IF ) andsatisfiability
(if M, w Ik ¢ andMM, w IF ¢ — ¥ thenM, w I- ). That is, modus ponens is not
only a correct rule for reasoning about frames, it is alsoreecorule for reasoning
about models, both globally and locally.

Uniform substitution should also be familiar. It mirrorsetfact that validity ab-
stracts away from the effects of particular assignmenta: fdrmula is valid, this
cannot be because of the particular value its propositispabols have, thus we
should be free to uniformly replace these symbols with aimgioformula what-
soever. And indeed, as the reader should cheokprm substitution preserves
validity. Note, however, that it doasot preserve either global truth or satisfiabil-
ity. (For exampleg is obtainable fromp by uniform substitution, but just because
p is globally true in some model, it doest follow that ¢ is too!) In short, uniform
substitution is strictly a tool for generating new validgifrom old.

That’s the classical core of our Hilbert system, so let's tiarthe the genuinely
modalaxioms and rules of proof. Firstthe axioms. The K axiom isftimelamental
one. ltis clearlyvalid (as the reader who has not done Exercise 1.3.4 should now
check) but why is it a useful addition to our Hilbert system?

K is sometimes called thdistribution axiom and is important because it lets us
transformd(¢ — ) (a boxed formula) intad¢ — Ot (an implication). This
box-over-arrow distribution enables further purely prsifional reasoning to take
place. For example, suppose we are trying to prove and have constructed a
proof sequence containing both(¢ — ) andO¢. If we could apply modus
ponens under the scope of the box, we would have prawed And this is what
distribution lets us do: ak contains the axiond(p — ¢) — (Op — Og),
by uniform substitution we can prove(¢ — ) — (D¢ — O). But then a
first application of modus ponens proveg® — O, and a second provesy as
desired.

The Dual axiom obviously reflects the duality ©fandd; nonetheless, readers
familiar with other discussions df (many of which have K as the sole modal
axiom) may be surprised at its inclusion. Do we really ne@dris, we do. In this
book, < is primitive andd is an abbreviation. Thus our K axiom is really shorthand
for =O=(p — ¢) —» (=O—-p — =<C—g). We need a way to maneuver around
these negations, and this is thentacticrole that Dual plays. (Incidentally had we
chosernd as our primitive operator, Dual woultbt have been required.) We prefer
working with a primitive< (apart from anything else, it is more convenient for the
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algebraic work of Chapter 5) and do not mind adding Dual ascaa exiom. Dual,
of course, is valid.

It only remains to discuss the modal rule of prog&neralization(another com-
mon name for it i;iecessitation Generalization ‘modalizes’ provable formulas by
stacking boxes in front. Roughly speaking, while the K axieis us apply classi-
cal reasoning inside modal contexts, necessitation reew modal contexts for
us to work with; modal proofs arise from the interplay of #taéso mechanisms.

Note that generalization preserves validity: if it is impitde to falsify ¢, then
obviously we will never be able to falsify at any accessible state! Similarly,
generalization preservegobal truth. But it does notpreserve satisfaction: just
because is true in some state, we cannot conclude thattrue at all accessible
states.

K is the minimal modal Hilbert system in the following senses e have
seen, its axioms are all valid, and all three rules of infeeepreserve validity,
hence allK-provable formulas are valid. (To use the terminology idtrced in
Definition 4.9,K is soundwith respect to the class of all frames.) Moreover, as we
will prove in Theorem 4.23, the converse is also triiex basic modal formula is
valid, then it isK -provable (That is,K is completewith respect to the class of all
frames.) In shortK generates precisely the valid formulas.

Example 1.40 The formula(0Op A Og) — O(p A q) is valid on any frame, so
it should beK-provable. And indeed, it is. To see this, consider the Vaihg
sequence of formulas:

I. Fp—=(qg—=(pAq) Tautology
2. FOpP—=(¢g—(ANq)) Generalization: 1
3. FO(p—q) — (Op— Uq) K axiom
4 FOp—=(¢—=(pAg)— (Ep—=D0(¢— (pA4))

Uniform Substitution: 3
5. FOp—0(qg— (pAq)) Modus Ponens: 2, 4
6. FO(¢— (pAq)) — (Og— O(pAgq)) Uniform Substitution: 3
7. F0Op— (Og— O(pAq)) Propositional Logic: 5, 6
8. F(OpADOq)— O(pAq) Propositional Logic: 7

Strictly speaking, this sequencenistaK -proof — it is a subsequence of the proof
consisting of the most important items. The annotationséright-hand column
should be self-explanatory; for example ‘Modus Ponens:” B3kkls the formula
obtained from the second and fourth formulas in the sequeynepplying modus
ponens. To obtain the full proof, fill in the items that leadnfrline 6 to 8. -

Remark 1.41 Warning: there is a pitfall that iseryeasy to fall into if you are used
to working with natural deduction systems: wannotfreely make and discharge
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assumptions in the Hilbert systekh. The following ‘proof’ shows what can go
wrong if we do:

1. p Assumption
2. Op Generalization: 1
3. p— Op Discharge assumption

So we have ‘provedp — Op! This is obviously wrong: this formula isot valid,
hence it isnot K-provable. And it should be clear where we have gone wrong:
we cannotuse assumptions as input to generalization, for, as we Heeadg re-
marked, this rule doesot preserve satisfiability. Generalization is there to enable
us to generate new validities from old. It is not a local rulénerence. -

For many purpose is too weak. If we are interested in transitive frames, we
would like a proof system which reflects this. For example kwew thatoOp —
<pis valid on all transitive frames, so we would want a prootsgsthat generates
this formula;K does not do this, fo>Cp — <Opis not valid on all frames.

But we can extendk to cope with many such restrictions by adding extra ax-
ioms. For example, if we enrick by addingoOp — <Op as an axiom, we obtain
the Hilbert-system called4. As we will show in Theorem 4.2°K4 is sound and
complete with respect to the class of all transitive frantieat(is, it generatepre-
ciselythe formulas valid on transitive frames). More generallyeg any set of
modal formulas/”, we are free to add them as extra axiom&tdhus forming the
axiom systenKTI'. As we will learn in Chapter 4, in many important cases it is
possible to characterize such extensions in terms of frafidity.

One final issue remains to be discussed: do such axioma&osgns oK give
us a grip on semantic consequence, and in particular, tte $mmantic conse-
quence relation over classes of frames (see Definition 2.35)

In many important cases they do. Here’s the basic idea. Seppe are inter-
ested in transitive frames, and are working Wih. We capture the notion of local
consequence over transitive framed<i as follows. LetY be a set of formulas,
and¢ a formula. Then we say thatis a localsyntacticconsequence of’ in K4
(notation: X' Fk4 ¢) if and only if there is some finite subsét,...,o0,} of ¥
suchthatk4 o1 A -+ Aoy, — ¢. In Theorem 4.27 we will show that

b)) |_K4 Qb iff X H_Tran ¢7

wherell1,,, denotes local semantic consequence over transitive fraimeshort,
we have reduced the locaémanticconsequence relation over transitive frames to
provability inK4.

Definition 1.42 (Normal Modal Logics) A normal modal logicA is a set of for-
mulas that contains all tautologie€s(p — ¢) — (Op — Og), and<Op < ~0O-p,
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and that is closed undenodus ponenauniform substitutionand generalization
We call the smallest normal modal logic

This definition is a direct abstraction from the ideas undeg modal Hilbert sys-
tems. It throws away all talk of proof sequences and conagzgron what is really
essential: the presence of axioms and closure under theatijgoof.

We will rarely mention Hilbert systems again: we prefer torkvavith the more
abstract notion of normal modal logics. For a start, althiotige two approaches
are equivalent (see Exercise 1.6.6), it is simpler to worththe set-theoretical
notion of membership than with proof sequences. More inamblt, in Chapters 4
and 5 we will prove results that link the semantic and syitgo¢rspectives on
modal logic. These results will hold fany set of formulas fulfilling the normality
requirements. Such a set might be the formulas generatedHiipext-style proof
system — but it could just as well be the formulas provable matral-deduction
system, a sequent system, a tableaux system, or a displayiusal Finally, the
concept of a normal modal logic makes good semantic senseanfo class of
framesF, we have thatir, the set of formulas valid oR, is a normal modal logic;
see Exercise 1.6.7.

Exercises for Section 1.6
1.6.1 GiveK-proofs of (Op A Oq) — O(pAg) andO(pV q) < (Op V <q).

1.6.2 Let o~ be the ‘demodalized’ version of a modal formulathat is,¢~ is obtained
from ¢ by simply erasing all diamonds. Prove thkat is a propositional tautology when-
everg is K-provable. Conclude that not every modal formul&igorovable.

1.6.3 The axiom system known &4 is obtained by adding the axioj — <p to K4.
Show that/s, p — OCp; that is, show thaB4 doesnot prove this formula. (Hint: find an
appropriate class of frames for whi&4is sound) If we add this formula as an axiom to
S4we obtain the system call&$b. Give anS5-proof of &Op — Op.

1.6.4 Try adaptingk to obtain a minimal Hilbert system for the basic temporaglaage.
Does your system cope with the fact that we only interpret ldsnguage on bidirectional
frames? Then try and define a minimal Hilbert system for tinglege of propositional
dynamic logic.

1.6.5 This exercise is only for readers who like syntactical maf@pons and have a lot
of time to spareKL is the axiomatization obtained by adding the Lob forniul(@p —
p) — Op as an extra axiom t&. Try and find &KL proof of Op — OOp. That is, show
thatKL = KL4.

1.6.6 In Chapter 4 we will us&T to denote the smallest normal modal logic containing
I"; the point of the present exercise is to relate this notatioour discussion of Hilbert
systems. So (as discussed above) suppose we form the axaemdg I’ by adding as
axioms all the formulas id” to K. Show that theHilbert systenKT" proves precisely the
formulas contained in theormal modal logid<T".
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1.6.7 Let F be a class of frames. Show th&t is a normal modal logic.

1.7 Historical Overview

The ideas introduced in this chapter have a long historyy Ekelved as responses
to particular problems and challenges, and knowing somegtbof the context in
which they arose will make it easier to appreciate why they @nsidered im-
portant, and the way they will be developed in subsequerter® Some of the
discussion that follows may not be completely accessibtbisstage. If so, don’t
worry. Just note the main points, and try again once you hepieeed the chapters
that follow.

We find it useful to distinguish three phases in the develograémodal logic:
the syntacticera, theclassicalera, and thenodernera. Roughly speaking, most of
the ideas introduced in this chapter stem from the classiegland the remainder
of the book will explore them from the point of view of the modera.

The syntactic era (1918-1959)

We have opted for 1918, the year that C.I. Lewis publishedSuisrey of Sym-
bolic Logic[306], as the birth of modal logic as a mathematical disoggliLewis
was certainly not the first to consider modal reasoning,edd® was not even the
first to construct symbolic systems for this purpose: Huglt@®l, who explored
the consequences of enriching propositional logic withrafmese (‘it is certain
that’) andn (‘it is impossible that’) seems to have been the first to do tbee his
book Symbolic Logic and its Applicatiorj812], and for an overview of his work,
see [373]). But MacColl's work is firmly rooted in the 19-thntery algebraic
tradition of logic (well-known names in this tradition imcle Boole, De Morgan,
Jevons, Peirce, Schroder, and Venn), and linking Mac€obntributions to con-
temporary concerns is a non-trivial scholarly task. Thie between Lewis’s work
and contemporary modal logic is more straightforward.

In his 1918 book, Lewis extended propositional calculussitunary modality
| (‘it is impossible that’) and defined the binary modality< ) (¢ strictly implies
1) to be (¢ A —). Strict implication was meant to capture the notion of ladjic
entailment, and Lewis presented<abased axiom system. Lewis and Langford’s
joint book Symbolic Logid307], published in 1932, contains a more detailed de-
velopment of Lewis’ ideas. Her€ (‘it is possible that’) is primitive and < ¢
is defined to be-<C(¢ A —1)). Five axiom systems of ascending stren@@ii-S5
are discusseds3is equivalent to Lewis’ system of 1918, and o8y andS5are
normal modal logics. Lewis’ work sparked interest in theaid# ‘modalizing’
propositional logic, and there were many attempts to axi@@auch concepts as
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obligation, belief and knowledge. Von Wright's monografth Essay in Modal
Logic[456] is an important example of this type of work.

But in important respects, Lewis’ work seems strange to moeges. For a
start, his axiomatic systems are not modular. Instead ehebitg a base system of
propositional logic with specifically modal axioms (as wd @i this chapter when
we definedK), Lewis defines his axioms directly in terms ef The modular
approach to modal Hilbert systems is due to Kurt Godel. &@8i81] showed
that (propositional) intuitionistic logic could be traatgd intoS4in a theorem-
preserving way. However instead of using the Lewis and Lemighxiomatization,
Godel tookO as primitive and formulate84in the way that has become standard:
he enriched a standard system for classical propositiagat lwith the rule of
generalization, th& axiom, and the additional axiom8l) — p andOp — OOp).

But the fundamental difference between current modal lagid the work of
Lewis and his contemporaries is that the latter is essgnsghtactic Propositional
logic is enriched with some new modality. By consideringimas axioms, the
logician tries to pin down the logic of the intended intetpt®n. This simple view
of logical modeling has its attractions, but is open to seyiobjections. First, there
are technical difficulties. Suppose we have several rivedraatizations of some
concept. Forget for now the problem of judging which is thetpbéor there is a
more basic difficulty: how can we tell if they are really diéat? If we only have
access to syntactic ideas, proving that two Hilbert-systgemerate different sets
of formulas can be extremely difficult. Indeed, even shovéwgtactically that two
Hilbert systems generate teameset of formulas can be highly non-trivial (recall
Exercise 1.6.5).

Proving distinctness theorems was standard activity irsyimactic era; for in-
stance, Parry [359] showed tHa2andS3are distinct, and papers addressing such
problems were common till the late 1950s. Algebraic metheese often used to
prove distinctness. The propositional symbols would bevetk as denoting the
elements of some algebra, and complex formulas interpretety the algebraic
operations. Indeed, algebras were the key tool driving eébhrtical development
of the period. For example, McKinsey [328] used them to arely2 and S4
and show their decidability; McKinsey and Tarski [330], MoKey [329], and
McKinsey and Tarski [331] extended this work in a variety okdtions (giving,
among other things, a topological interpretatiorSdj; while Dummett and Lem-
mon [125] built on this work to isolate and analy3d.2and S4.3 two important
normal logics betwee84andS5 But for all their technical utility, algebraic meth-
ods seemed of limited help in providing reliable intuiticdsout modal languages
and their associated logics. Sometimes algebraic elemamesviewed as multiple
truth values. But Dugundji [124] showed that no logic betw8& andS5could be
viewed as am-valued logic forfinite n, so the multi-valued perspective on modal
logic was not suited as a reliable source of insight.
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The lack of a natural semantics brings up a deeper probleimgfdlce syntac-
tic approach: how do we know we have considered all the retgyassibilities?
Nowadays the normal logi€ (that is,K enriched with the axiomp — <p) would
be considered a fundamental logic of possibility; but LeswsrlookedT (it is in-
termediate betweeB2andS4and neither contains nor is contained®§). More-
over, although Lewis did isolate two logics still considimportant (namel\54
andS5), how could he claim that either system was, in any intangssensegcom-
plete? Perhaps there are important axioms missing from bothrag&telhe exis-
tence of so many competing logics should make us skepticdhions that it is easy
to find all the relevant axioms and rules; and without precdigeitively acceptable,
criteria of what the the reasonable logics are (in shortiythe of criteria a decent
semantics provides us with) we have no reasonable basitaforicg success.

For further discussion of the work of this period, the reasteuld consult the
historical section of Bull and Segerberg [73]). We close digcussion of the syn-
tactic era by noting three lines of work that anticipaterd&velopments: Carnap’s
state-description semantics, Prior's work on temporaiclognd the Jonsson and
Tarski Representation Theorem for boolean algebras wighadprs.

A state descriptionis simply a collection of propositional letters. (Actually
Carnap used state descriptions in his pioneering work ondider modal logic,
so a state for Carnap could be a set of first-order formuldéss)is a collection of
state descriptions, ande S, then a propositional symbelis satisfied at if and
only p € s. Boolean operators are interpreted in the obvious way.llgin&¢ is
satisfied at € S if and only if there is some’ € S such thats’ satisfiesp. (See,
for example, Carnap [83, 84].)

Carnap’s interpretation a¢ in state descriptions is strikingly close to the idea
of satisfaction in models. However one crucial idea is migsithe use of an
explicit relation R over state descriptions. In Carnap’s semantics, satisfafmr
<& is defined in terms of membership h(in effect, R is taken to be5 x S). This
implicit fixing of R reduces the utility of his semantics: it yields a semantics f
one fixed interpretation o, but deprives us of the vital parameter needed to map
logical options.

Arthur Prior founded temporal logic (or as he calledéfse logi¢ in the early
1950s. He invented the basic temporal language and many t@imporal lan-
guages, both modal and non-modal. Like most of his conteanjgs;, Prior viewed
the axiomatic exploration of concepts as one of the logisikey tasks. But there
the similarity ends: his writings are packed with an extdamary number of se-
mantic ideas and insights. By 1955 Prior had interpretedbtmc modal lan-
guage in models based dn, <) (see Prior [368], and Chapter 2 of Prior [369]),
and used what would now be called soundness arguments iogdish logics.
Moreover, the relative expressivity of modal and classiaaguages (such as the
Prior-Meredith U-calculus [333]) is a constant theme ofvigings; indeed, much
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of his work anticipates later work in correspondence theorgt extended modal
logic. His work is hard to categorize, and impossible to samee, but one thing
is clear: because of his influence temporal logic was an gagrsemantically

driven enterprise. The best way into his work is via PriordB6

With the work of Jénsson and Tarski [260, 261] we reach thstniroportant
(and puzzling) might-have-beens in the history of modaldodriefly, Jonsson
and Tarski investigated the representation theory of lzooddgebras with operators
(that is, modal algebras). As we have remarked, while mddebaas were useful
tools, theyseemeddf little help in guiding logical intuitions. The represatibn
theory of Jonsson and Tarski should have swept this appsinericoming away for
good, for in essence they showed how to represent modalrakgab the structures
we now call models! In fact, they did a lot more than this. Thepresentation
technique is essentially a model building technique, hehe& work gave the
technical tools needed to prove the completeness resuttahzinated the classical
era (indeed, their approach is an algebraic analog of thentead model technique
that emerged 15 years later). Moreover, they provided @liftin modal languages
of arbitrary similarity type, not simply the basic modal ¢aage.

Unfortunately, their work was overlooked for 20 years; notiltthe start of the
modern era was its significance appreciated. It is uncleas why this happened.
Certainly it didn’t help matters that Jonsson and Tarskindomention modal logic
in their classic article; this is curious since Tarski hagadly published joint pa-
pers with McKinsey on algebraic approaches to modal logiayihé Tarski didn’t
see the connection at all: Copeland [94, page 13] writesTiheki heard Kripke
speak about relational semantics at a 1962 talk in Finlasalkan which Kripke
stressed the importance of the work by Jénsson and Tarskiording to Kripke,
following the talk Tarski approached him and said he was lenabsee any con-
nection between the two lines of work.

Even if we admit that a connection which nows seems obvioug mo&a have
been so at the time, a puzzle remains. Tarski was based ifo@a, which in
the 1960s was the leading center of research in modal logianyall those years,
the connection was never made. For example, in 1966 Lemniso fased in
California) published a two part paper on algebraic apgreat¢o modal logic [302]
which reinvented (some of) the ideas in Jonsson and Takgknnon attributes
these ideas to Dana Scott), but only cites the earlier TarskiMcKinsey papers.

We present the work by Jonsson and Tarski in Chapter 5; Beiresentation
Theorem underpins the work of the entire chapter.

The classical era (1959-1972)

‘Revolutionary’ is an overused word, but no other word adgeely describes the
impact relational semantics (that is, the concepts of fmmedels, satisfaction,
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and validity presented in this chapter) had on the study adahtmgic. Problems
which had previously been difficult (for example, distirghing Hilbert-systems)
suddenly yielded to straightforward semantic argumenistedver, like all revolu-
tions worthy of the name, the new world view came bearing abitons research
program. Much of this program revolved around the concepibafpleteness: at
last is was possible to give a precise and natural meaningitogthat a logic gen-
erated everything it ought to. (For examplk&4 could now be claimed complete
in a genuinely interesting sense: it generaadidthe formulas valid on transitive
frames.) Such semantic characterizations are both simgl®eautiful (especially
when viewed against the complexities of the preceding erd)tlae hunt for such
results was to dominate technical work for the next 15 yelne. two outstanding
monographs of the classical era — the existing fragment afirhben and Scott’s
Intensional Logid303], and Segerberg&n Essay in Classical Modal Logj896]
— are largely devoted to completeness issues.

Some controversy attaches to the birth of the classical Brefly, relational
semantics is often called Kripke semantics, and Kripke [ZB0which S5-based
modal predicate logic is proved complete with respect to efdith an implicit
global relation), Kripke [291] (which introduces an exgl@ccessibility relation?
and gives semantic characterization of some propositimaalal logics in terms of
this relation) and Kripke [292] (in which relational semiastfor first-order modal
languages is defined) were crucial in establishing theioslat approach: they are
clear, precise, and ever alert to the possibilities inhtdrethe new framework: for
example, Kripke [292] discusses provability interpretas of propositional modal
languages. Nonetheless, Hintikka had already made uséatibreal semantics to
analyze the concept of belief and distinguish logics, andtikia’s ideas played
an important role in establishing the new paradigm in pbitbscal circles; see,
for example, [230]. Furthermore, it has since emerged tlaaiger, in a series of
papers and monographs published in 1957, had introduceoiagie idea of rela-
tional semantics for propositional and first-order modajidp see, for example,
Kanger [266, 267]. And a number of other authors (such asuirBrior, and
Richard Montague [341]) had either published or spoken efimiliar ideas ear-
lier. Finally, the fact remains that Jonsson and Tarski &laglady presented and
generalized the mathematical ideas needed to analyze gitiopal modal logics
(though they do not discuss first-order modal languages).

But disputes over priority should not distract the reademfithe essential point:
somewhere around 1960 modal logic was reborn as a new figidireng new
questions, methods, and perspectives. The magnitude dhifte not who did
what when, is what is important here. (The reader interestedore detail on
who did what when, should consult Goldblatt [188]. Incidglyt after carefully
considering the evidence, Goldblatt concludes that Kigp&entributions were the
most significant.)
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So by the early 1960s it was was clear that relational secswis an important
tool for classifying modal logics. But how could its poteitbe unlocked? The
key tool required — thecanonical modelsve discuss in Chapter 4 — emerged
with surprising speed. They seem to have first been used innslatk [314] and
in Cresswell [97] (although Cresswell's so-called suboation relation differs
slightly from the canonical relation), and in Lemmon and t6{203] they appear
full-fledged in the form that has become standard.

Lemmon and Scott [303] is a fragment of an ambitious mondgthpt was in-
tended to cover all then current branches of modal logichAtime of Lemmon’s
death in 1966, however, only the historical introductionl &#me chapter on the ba-
sic modal languages had been completed. Nonetheless,gésa Although for
the next decade it circulated only in manuscript form (it was$ published until
1977) it was enormously influential, setting much of the agefor subsequent
developments. It unequivocally established the poweret#dnonical model tech-
nique, using it to prove general results of a sort not hitheeen. It also introduced
filtrations, an important technique for building finite models we wilkdiss in
Chapter 2, and used them to prove a number of decidabilitytses

While Lemmon and Scott showed how to exploit canonical modklectly,
many important normal logics (notablgL and the modal and temporal logic of
structures such @, <), (Z, <), (@, <), and(RR, <), and their reflexive counter-
parts) cannot be analyzed in this way. However, as Segef886ég 395] showed,
it is possible to use canonical models indirectly: one cangdform the canonical
model into the required form and prove these (and a great rogdr®y) complete-
ness results. Segerberg-style transformation proofsiscasted in Section 4.5.

But although completeness and canonical models were théndatrissues of
the classical era, there is a small body of work which ardiiep more recent
themes. For example, Robert Bull, swimming against the ¢fd&ashion, used
algebraicarguments to prove a striking result: all normal extensiohS4.3are
characterized by classes of finiteodelg(see Bull [72]). Although model-theoretic
proofs of Bull's Theorem were sought (see, for example, 8eyg [396, page
170]), not until Fine [136] did these efforts succeed. Kité-ivas shortly to play a
key role in the birth of the modern era, and the technical stighation which was
to characterize his later work is already evident in thisgpamve discuss Fine’s
proof in Theorem 4.96. As a second example, in his 1968 Ph&igti263], Hans
Kamp proved one of the few (and certainly the most intergyempressivityesult
of the era. He defined two natural binary modalities, sinag wattil (discussed in
Chapter 7), showed that the standard temporal language atatrang enough to
define them, and proved that over Dedekind continuous s$tiiak orders (such as
(R, <)) his new modalities offered full first-order expressive pow

Summing up, the classical era supplied many of the fundaahenhcepts and
methods used in contemporary modal logic. Nonethelesaieddrom a modern
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perspective, it is striking how differently these ideas evput to work then. For
a start, the classical era took over many of ¢joals of the syntactic era. Modal
investigations still revolved round much the same groupasfcepts: necessity,
belief, obligation and time. Moreover, although modal egsk in the classical era
was certainly not syntactical, it was, by and larggntactically driven That is —
with the notable exception of the temporal tradition — rielal semantics seems
to have been largely viewed as a tool for analyzing logicsngoess results could
distinguish logics, and completeness results could gimmthice characterizations.
Relational structures, in short, weren't really there todescribed— they were
there to fulfill an analytic role. (This goes a long way towsaskplaining the lack
of expressivity results for the basic modal language; Kam@sult, significantly,
was grounded in the Priorean tradition of temporal logicgrébver, it was a self-
contained world in a way that modern modal logic is not. Mddalguages and
relational semantics: the connection between them seetaad adequate, and
well understood. Surely nothing essential was missing filumparadise?

The modern era (1972—present)

Two forces gave rise to the modern era: the discovery of fraicmmpleteness re-
sults, and the adoption of modal languages in theoretigalpcer science. These
unleashed a wealth of activity which profoundly changedctinese of modal logic
and continues to influence it till this day. The incomplesmeesults results forced
a fundamental reappraisal of what modal languages actasdjywhile the influ-
ence of theoretical computer science radically changedaapons ofwhatthey
could be used for, andowthey were to be applied.

Frame-based analyses of modal logic were revealing anddattingly success-
ful — but waseverynormal logic complete with respect to some class of frames?
Lemmon and Scott knew that this was a difficult question; thagt shown, for
example that there were obstacles to adapting the canona@l method to ana-
lyze the logic yielded by McKinsey axiom. Nonetheless, thegjectured that the
answer wayes

However, it seems reasonable to conjecture that, if a demsismormal K-
system S iglosed with respect to substitution instancesthensS determines
a classl's of world systems such thats A iff =/ A. We have no proof of
this conjecture. But to prove it would be to make a considerdifference to
our theoretical understanding of the general situatiof3[®age 76]

Other optimistic sentiments can be found in the literatditb@period. Segerberg’s
thesis is more cautious, simply identifying it as ‘probatiig outstanding question
in this area of modal logic at the present time’ [396, page 29]

The question was soon resolved regatively In 1972, S.K. Thomason [426]
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showed that there were incomplete normal logics in the kdasnporal language,
and in 1974 Thomason [427] and Fine [137] both published g@kasnof incom-

plete normal logics in the basic modal language. Moreoweaniimportant series
of papers Thomason showed that these results were inebdalies tools for talk-
ing about frames, modal languages were essentially mosadand-order logic in
disguise, and hence were intrinsically highly complex.

These results stimulated what remains some of the mosestieg and innova-
tive work in the history of the subject. For a start, it was radar that it no longer
sufficed to view modal logic as an isolated formal system;hmndontrary, it was
evident that a full understanding of what modal language®wequired that their
position in the logical universe be located as accuratelyoasible. Over the next
few years, modal languages were to be extensively mappettfre perspective of
bothuniversal algebraandclassical model theory

Thomason [426] had already adopted an algebraic perspeamiithe basic tem-
poral language. Moreover, this paper introduced genegahds, showed that
they were equivalent to semantics based on boolean algefittasperators, and
showed that these semantics were complete in a way thataimefbased seman-
tics was not. every normal temporal logic was characterizgdsome algebra.
Goldblatt introduced the universal algebraic approachatd®& modal logic and
developed modal duality theory (the categorical study efrtation between rela-
tional structures endowed with topological structure andhe hand, and boolean
algebras with operators on the other). This led to a belgipdegiation of the fun-
damental contributions made in Jonsson and Tarski’'s pigmg work. Goldblatt
and Thomason showed that the concepts and results of waliaggebra could be
applied to yield modally interesting results; the best knaxample of this is the
Goldblatt-Thomason theorem a model theoretic charaeti@viz of modally defin-
able frame classes obtained by applying the Birkhoff varieeorem to boolean
algebras with operators. We discuss such work in ChaptenditaChapter 3 we
discuss the Goldblatt-Thomason theorem from the persgeatifirst-order model
theory). Work by Blok made deeper use of algebras, and wsalaigebra became
a key tool in the exploration of completeness theory (weflyridiscuss Blok’s
contribution in the Notes to Chapter 5). The revival of algébsemantics — to-
gether with a genuine appreciationvalfiyit was so important — is one of the most
enduring legacies of this period.

But the modern period also firmly linked modal languages wi#tssical model
theory. One line of inquiry that led naturally in this direct was the following:
given that modal logic was essentially second-order inreatuhy was it so often
first-order, and very simple first-order at that? That ispfrine modern perspec-
tive, incomplete normal logics were to be expected — it wasalegant results of
the classical period that now seemed in need of explana@ure type of answer
was given in the work of Sahlqvist [388], who isolated a lasgeof axioms which
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guaranteed completeness with respect to first-order dédirddsses of frames.
(We define the Sahlqgvist fragment in Section 3.6, where weudss the Sahlqvist
Correspondence Theorem, an expressivity result. The tahig8ist Complete-
ness Theorem is proved algebraically in Theorem 5.91.) Reratype of answer
was developed in Fine [140] and van Benthem [39, 40]; we dsthis work (albeit
from an algebraic perspective) in Chapter 5.

A different line of work also linked modal and classical laages: an investi-
gation of modal languages viewed purelydescription languagesAs we have
mentioned, the classical era largely ignored expressinifgvor of completeness.
The Sahlqvist Correspondence Theorem showed the narrevafidkis perspec-
tive: here was a beautiful result about the basic modal lagguhat did not even
mention normal modal logics! Expressivity issues were sgbently explored by
van Benthem, who developed the subject now knowragespondence theary
see [41, 42]. His work has two main branches. One views meagjuages as
tools for describingframes(that is, as second-order description languages) and
probes their expressive power. This line of investigattogether with Sahlqvist's
pioneering work, forms the basis of Chapter 3. The seconacbraxplores modal
languages as tools for talking abauiodels an intrinsically first-order perspec-
tive. This lead van Benthem to isolate the concept bisanulation and prove the
fundamental Characterization Theorem: viewed as a todialimg about mod-
els, modal languages are the bisimulation invariant fragroéthe corresponding
first-order language. Bisimulation driven investigatiaisnodal expressivity are
now standard, and much of the following chapter is devotesiitd issues.

The impact of theoretical computer science was less drartiain the discov-
ery of the incompleteness results, but its influence has leegeally profound.
Burstall [80] already suggests using modal logic to reasmubprograms, but the
birth of this line of work really dates from Pratt [367] (theger which gave rise
to ppL) and Pnueli [363] (which suggested using temporal logicetmson about
execution-traces of programs). Computer scientists tendelevelop powerful
modal languagesDL in its many variants is an obvious example (see Harel [215]
for a detailed survey). Moreover, since the appearance bb&eget al. [167], the
temporal languages used by computer scientists typicalhyain the until opera-
tor, and often additional operators which are evaluateti véspect tgaths(see
Clarke and Emerson [92]). Gabbay also noted the significahd®abin’s theo-
rem [372] for modal decidability (we discuss this in Chag@jrand applied it to a
wide range of languages and logics; see Gabbay [155, 15, 154

Computer scientists brought a new array of questions tatity ®f modal logic.
For a start, they initiated the study of the computationahglexity of normal log-
ics. Already by 1977 Ladner [299] had showed that every nblogéc betweerkK
andS4had a PSPACE-hard satisfiability problem, while the resaflfSischer and
Ladner [143] and Pratt [366] together show thai. has an EXPTIME-complete
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satisfiability problem. (These results are proved in Chapie Moreover, the in-

terest of the modal expressivity studies emerging in cpoedence theory was
reinforced by several lines of work in computer science. Ve gne particularly

nice example, computer scientists studying concurreresysindependently iso-
lated the notion of bisimulation (see Park [358]). This mhtree way for the work

of Hennessy and Milner [225] who showed that weak modal lagge could be
used to classify various notions of process invariance.

But one of the most significant endowments from computemseiéhas actu-
ally been something quite simple: it has helped remove &ting tendency to see
modal languages as intrinsically ‘intensional’ formalgrauitable only for analyz-
ing such concepts as knowledge, obligation and belief. igutie 1990s this point
was strongly emphasized when connections were discovettegebn modal logic
and knowledge representation formalisms. In particidascription logicsare a
family of languages that come equipped with effective reasp methods, and a
special focus on balancing expressive power and compogtend algorithmic
complexity; see Doninet al. [123]. The discovery of this connection has lead to
a renewed focus on efficient reasoning methods, dedicatgddaes that are fine-
tuned for specific modeling tasks, and a variety of novel o$@sodal languages;
see Schild [392] for the first paper to make the connectiowéen the two fields,
and De Giacomo [102] and Areces [12, 15] for work exploitihg tonnection.

And this is but one example. Links with computer science aheéradisciplines
have brought about an enormous richness and variety in ntexigliages. Com-
puter science has seen a shift of emphasis from isolatedgmsgto complex enti-
ties collaborating in heterogeneous environments; thissgiise to new challenges
for the use of modal logic in theoretical computer sciencer iRstance, agent-
based theories require flexible modeling facilities togetwith efficient reason-
ing mechanisms; see Wooldridge and Jennings [455] for ausléson of the agent
paradigm, and Bennet al. [33] for the link with modal logic. More generally,
complex computational architectures call for a variety @hbinations of modal
languages; see the proceedings of Fnentiers of Combining Systemmorkshop
series for references [16, 160, 273].

Similar developments took place in foundational reseamadconomics. Game
theory (Osborne and Rubinstein [354]) also shows a niceglate between the no-
tions of action and knowledge; recent years have witness@tteeasing tendency
to give a formal account of epistemic notions, cf. Battigafid Bonanno [30] or
Kaneko and Nagashima [265]. For modal logics that combimeadyc and epis-
temic notions to model games we refer to Baltag [20] and vamaxisch [117].

Further examples abound. Database theory continues to hetfalfsource
of questions for logicians, modal or otherwise. For instgndevelopments in
temporal databases have given rise to new challenges f@omMmogicians (see
Finger [142]), while decription logicians have found newpbgations for their
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modeling and reasoning methods in the area of semistructia (see Calvanese
et al. [82]). In the related, but more philosophically oriente@arof belief re-
vision, Fuhrmann [152] has given a modal formalization oé a@f the most in-
fluential approaches in the area, the AGM approach [4]. Astlsoch as Fried-
man and Halpern [150], Gerbrandy and Groeneveld [177], DieeR112], and
Segerberg [403] have discussed various alternative modakfizations.

Cognitive phenomena have long been of interest to modatikngg. This is clear
from examples such as belief revision, but perhaps even swfeom language-
related work in modal logic. The feature logic mentioned waiple 1.17 is but
one example; authors such as Blackburn, Gardent, Meyerafiol Spaan [59, 53],
Kasper and Rounds [271, 386], Kurtonina [294], Kracht [2&f]d Reape [378]
have offered a variety of modal logical perspectives on gnanformalisms, while
others have analyzed the semantics of natural language dglmeans; see Fer-
nando [134] for a sample of modern work along these lines.

During the 1980s and 1990s a number of new themes on thesicéeof modal
logic and mathematics received considerable attentiore @these themes con-
cerns links between modal logic and non-wellfounded satrthework that we
should certainly mention here includes Aczel [2], Barwisd &oss [26], and Bal-
tag [19, 21]; see the Notes to Chapter 2 for further discassibon-wellfounded
sets and many other notions, such as automata and labefesititna systems,
have been brought together under the umbrella of co-algébfaJacobs and Rut-
ten [248]), which form a natural and elegant way to modekskatsed dynamic sys-
tems. Since it was discovered that modal logic is as closdated to co-algebras
as equational logic is to algebras, there has been a weaittsolts reporting on
this connection; we only mention Jacobs [247], Kurz [294] R®Riger [385] here.

Another 1990s theme on the interface of modal logic and nnadities concerns
an old one: geometry. Work by Balbiaat al. [18], Stebletsova [416] and Ven-
ema [441] indicates that modal logic may have interestimggthto say about ge-
ometry, while Aiello and van Benthem [3] and Lemon and P13®4] investigate
the potential of modal logic as a tool for reasoning aboutspa

As should now be clear to all our readers, the simple quegiieed by the modal
satisfaction definition — what happens at accessible $tategyives us a natural
way of working withany relational structure. This has opened up a host of new
applications for modal logic. Moreover, once the relatlgperspective has been
fully assimilated, it opens up rich new approaches to ti@uil subjects: see van
Benthem [44] and Fagin, Halpern, Moses, and Vardi [133]fioroughly modern
discussions of temporal logic and epistemic logic respelsti

1.8 Summary of Chapter 1
» Relational StructuresA relational structure is a set together with a collection
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of relations. Relational structures can be used to modeldess from a wide
range of disciplines.

Description LanguagesModal languages are simple languages for describing
relational structures.

Similarity Types The basic modal language contains a single primitive unary
operator$. Modal languages of arbitrary similarity type may contaiany
modalitiesa of arbitrary arity.

Basic Temporal Languagelhe basic temporal language has two operafors
and P whose intended interpretations are ‘at some time in thedu@and ‘at
some time in the past.’

Propositional Dynamic Logic The language of propositional dynamic logic
has an infinite collection of modal operators indexed by ot « built up
from atomic programs using unian composition;, and iteration*; additional
constructors such as intersectiorand test’ may also be used. The intended
interpretation of(w)¢ is ‘some terminating execution of prograimleads to a
state where) holds.’

Arrow Logic The language of arrow logic is designed to talk about angaibj
that may be represented by arrows; it has a modal constélskip’), a unary
operator® (‘converse’), and a dyadic operate‘composition’).

Satisfaction Thesatisfaction definitioms used to interpret formulas inside mod-
els. This satisfaction definition has an obvious local flameodalities are inter-
preted as scanning the states accessible from the cura¢at st

Validity: A formula isvalid on a frame when it is globally true, no matter what
valuation is used. This concept allows modal languages taidveed as lan-
guages for describing frames.

General FramesModal languages can also be viewed as talking about general
frames. A general frame is a frame together with a set of aibiésvaluations.
General frames offer some of the advantages of both modélsames and are
an important technical tool.

Semantic Consequenc8emantic consequence relations for modal languages
need to be relativized to classes of structures. The chldsiea that the truth

of the premises should guarantee the truth of the conclusarbe interpreted
either locally or globally. In this book we almost excludivese the local inter-
pretation.

Normal Modal Logics Normal modal logics are the unifying concept in modal
proof theory. Normal modal logics contain all tautologitee K axiom and the
Dual axiom; in addition they should be closed under moduspsnuniform
substitution and generalization.



