2

Models

In Section 1.3 we defined what it means for a formula tsagsfiedat a state in
a model — but as yet we know virtually nothing about this fuméatal semantic
notion. What exactly can we say about models when we use niadagliages
to describe them? Which properties of models can modal Egegiexpress, and
which lie beyond their reach?

In this chapter we examine such questions in detail. We dice disjoint
unions, generated submodels, bounded morphiamsultrafilter extensionsthe
‘big four’ operations on models that leave modal satistactinaffected. We dis-
cuss two ways to obtain finite models and show that modal ges have thinite
model property Moreover, we define thstandard translatiorof modal logic into
first-order logic, thus opening the door ¢orrespondence thearyhe systematic
study of the relationship between modal and classical lofjfichis material plays
a fundamental role in later work; indeed, the basic tracki@es in this chapter are
among the most important in the book.

But the central concept of the chapter is that dbisimulation between two
models. Bisimulations reflect, in a particularly simple afietct way, the locality
of the modal satisfaction definition. We introduce themyean, and they gradually
come to dominate our discussion. By the end of the chapter Wé&ave a good
understanding of modal expressivity over models, and thet interesting results
all hinge on bisimulations.

Chapter guide

Section 2.1: Invariance Results (Basic track)/e introduce three classic ways of
constructing new models from old ones that do not affect mealésfac-
tion: disjoint unions, generated submodels, and boundagmsms. We
also meet isomorphisms and embeddings.

Section 2.2: Bisimulations (Basic track)We introduce bisimulations and show
that modal satisfaction is invariant under bisimulatione Will see that

50
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the model constructions introduced in the first section Hispacial cases
of bisimulation, learn that modal equivalence does not gdvitaply bisim-
ilarity, and examine an important special case in which ésdo

Section 2.3: Finite Models (Basic track)Here we show that modal languages en-
joy the finite model property. We do so in two distinct ways: thg se-
lection method (finitely approximating a bisimulation),daby filtration
(collapsing a model into a finite number of equivalence @sgss

Section 2.4: The Standard Translation (Basic track)Ve start our study of cor-
respondence theory. By defining the standard translatienlink modal
languages to first-order (and other classical) languagdgase the two
central questions that dominate later sections: What pérstorder logic
does modal logic correspond to? And which properties of rsogle de-
finable by modal means?

Section 2.5: Modal Saturation via Ultrafilter Extensions @ic track). The first
step towards obtaining some answers is to introduce utaaéktensions,
the last of the big four modal model constructions. We theawsthat al-
though modal equivalence does not imply bisimilarity, iedamply bisim-
ilarity somewhere else, namely in the ultrafilter extensiofhthe models
concerned.

Section 2.6: Characterization and Definability (Advancedtk). We prove the
two main results of this chapter. First, we prove van Benthgéheorem
stating that modal languages are the bisimulation invafi@gments of
first-order languages. Second, we show that modally denebkses of
(pointed) models are those that are closed under bisimakatnd ultra-
products and whose complements are closed under ultrapower

Section 2.7: Simulations and Safety (Advanced track)le prove two results that
give the reader a glimpse of recent work in modal model thebhg first
describes the properties that are preserved under siongata one-way
version of bisimulation), the second characterizes thednder definable
operations on binary relations which respect bisimilarity

2.1 Invariance Results

Mathematicians rarely study structures in isolation. Tasyusually interested in
the relationsbetweerdifferent structures, and ioperationsthat build new struc-
tures from old. Questions that naturally arise in such aedrtoncern the struc-
tural properties that are invariant under or preserved loh salations and opera-
tions. We'll not give precise definitions of these notionst ughly speaking, a
property ispreservedy a certain relation or operation if, whenever two struesur
are linked by the relation or operation, then the seconatsire has the property
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if the first one has it. We speak ofvarianceif the property is preserved in both
directions.

When it comes to this research topic, logic is no exceptidhéaule — indeed,
logicians add a descriptive twist to it. For instance, mddgicians want to know
when two structures, or perhaps two points in distinct $tmes, are indistinguish-
able by modal languages in the sense of satisfying the sardalfwwmulas.

Definition 2.1 Let9t and9t’ be models of the same modal similarity typeand
let w andw’ be states iMt andM’ respectively. The-theory(or 7-type of w is
the set of all--formulas satisfied ab: thatis,{¢ | 9, w IF ¢}. We say thatv and
w’ are(modally) equivalen{notation:w «~~ w') if they have the same-theories.

The r-theory of the modelt is the set of allr-formulas satisfied by all states
in M: that is,{¢ | M IF ¢}. Models andM’ are called(modally) equivalent
(notation: 9 «~~ M) if their theories are identical. -

We now introduce three important ways of constructing newdefmfrom old ones
which leave the theories associated with states unchardjsghint unions gen-
erated submodelsand bounded morphismsThese constructions (together with
ultrafilter extensionswhich we introduce in Section 2.5) play an important role
throughout the book. For example, in the following chapterwill see that they
lift to the level of frames (where they preserve validity)e will use them repeat-
edly in our work on completeness and complexity, and in Giraptwe will see
that they have important algebraic analogs.

Disjoint Unions
Suppose we have the following two models:

Vo U1 (%) U3
[ ] [ ] [ ] [ ]
m N

Don't worry that we haven't specified the valuations — theyifrelevant here. All
that matters is thabt and9t have disjoint domains, for we are now going to lump
them together to form the mod#h W 91:

w Vo U1 V9 U3

D [ ] [ ] [ ] [ ]

The model9t w N is called thedisjoint unionof Mt andN. It gathers together
all the information in the two smaller models unchanged: waeenot altered the
way the points are related, nor the way atomic informatiagistributed. Suppose

M YN
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we're working in the basic modal language, and suppose tfuatraula ¢ is true at
(say)v; in 91: is ¢ still true atv; in M W HN? More generally, is modal satisfaction
preservedfrom points in the original models to the points in the disjoiinion?
And what about the reverse direction: if a modal formula i®tat some state in
M w N, is it also true at that same state in the smaller model it daome?

The answer to these questions is clegieg modal satisfaction must bevariant
(that is, preserved in both directions) under the formaitdisjoint unions. Modal
satisfaction is intrinsically local: only the points acsiéde from the current state
are relevant to truth or falsity. If we evaluate a formdlat (say)w, itis completely
irrelevant whether we perform the evaluation9i or 9t W 91; ¢ simply cannot
detect the presence or absence of states in other islands.

Definition 2.2 (Disjoint Unions) We first define disjoint unions for the basic
modal language. We say that two models digoint if their domains contain
no common elements. For disjoint modé®; = (W;, R;, V;) (i € I), their
disjoint unionis the structured), M; = (W, R, V), whereW is the union of
the setsW;, R is the union of the relation®;, and for each proposition letter
P, V(P) = Uie[ Vz(P)

Now for the general case. For disjointstructuresdt; = (Wi, Rai, Vi)per
(« € I) of the same modal similarity type, their disjoint unionis the structure
; M = (W, Ra, V') acr Such that?” is the union of the setd/;; for eacha € 7,
R, is the union J,.; R,;; andV is defined as in the basic modal case.

If we want to put together a collection of models that aot disjoint, we first
have to make them disjoint (say by indexing the domains cfehmodels). To use
the terminology introduced shortly, we simply take mutyalisjoint isomorphic
copies of the models we wish to combine, and combine the sop&ead.

Proposition 2.3 Let 7 be a modal similarity type and, for all € I, let91; be a
7-model. Then, for each modal formula for eachi € I, and each element
of M;, we havedt;, w I ¢ iff [4;c; M;, w I ¢. In words: modal satisfaction is
invariant under disjoint unions.

Proof. We will prove the result for the basic similarity type. Theopf is by in-
duction ong (we explained this concept in Exercise 1.3.1). Lée some index;
we will prove, for each basic modal formua and each element of 9t;, that
M, w - ¢ iff M, w I- ¢, whereM is the disjoint uniort, -, M;.

First suppose thap contains no connectives. Now, dfis a proposition letter
p, then we havelt;,w I+ ¢ iff w € Vj(p) iff (by definition of V') w € V(p)
iff M, w I ¢. On the other handp could be L (for the purposes of inductive
proofs it is convenient to regart as a propositional letter rather than as a logical
connective). But triviallyL is false atw in both models, so we have the desired
equivalence here too.
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Our inductive hypothesis is that the desired equivalenddshior all formulas
containing at most: connectives (where. > 0). We must now show that the
equivalence holds for all formulagcontainingn + 1 connectives. Now, it is of
the form—1) or ¢ Vv 0 this is easily done — we will leave this to the reader — so
as we are working with the basic similarity type, it only réngato establish the
equivalence for formulas of the for/fx¢). So assume thabt;, w I+ &, Then
there is a state in 9; with R;wv and;, v I +. By the inductive hypothesis,
M, v IF . But by definition of)t, we haveRwwv, SO, w IF .

For the other direction, assume tB&t w I+ &4 holds for somew in 90t;. Then
there is a with Rwv and1, v I- v. It follows by the definition ofR that R ;wv for
somej, and by the disjointness of the universes we must havejthat. But then
we find thatv belongs todt; as well, so we may apply the inductive hypothesis;
this yieldsOt;, v I- ), so we find thadit;, w IF Gy A

We will use Proposition 2.3 all through the book — here is apt@mapplication
which hints at the ideas we will explore in Chapter 7.

Example 2.4 Defined modalities are a convenient shorthand for concegtina
useful. We have already seen some examples. In this bptke ‘true at all ac-
cessible states modality’, is shorthand fa»—¢, and we have inductively defined
a ‘'true somewhera-steps from here’ modality™ for each natural number (see
Example 1.22). But while it is usually easy to show that sonoeality is definable
(we need simply write down its definition), how do we show thaine proposed
operator isnot definable? Via invariance results! As an example, consider t
global modality The global diamond E has as its (intended) accessibillgtion
the relationi?” x W implicitly present in any model. That is:

M, w Ik E¢ iff M, v I- ¢ for somestatev in Ni.

Its dual, A, the global box, thus has the following interptein:

M, w - Agiff M, v IF ¢ for all statesy in M.

Thus the global modality brings a genuinely global dimensmmodal logic. But
is it definable in the basic modal language? Intuitively;, as < and O work
locally, it seems unlikely that they can define a truly glolaldality over arbitrary
structures. Fine — but how do weovethis?

With the help of the previous proposition. Suppose we coeling A. Then
we could write down an expressiar(p) containing only symbols from the basic
modal language such that for every mod8l 91, w I+ «(p) iff MM I p. We
now derive a contradiction from this supposition. Considenodel?t; where
p holds everywhere, and a mod#®t, wherep holds nowhere. Letv be some
point in 90t;. It follows that9;, w I a(p), so as (by assumption)(p) contains
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only symbols from the basic modal language, by PropositidhwZe have that
My WMy, w I ap). But this implies thatht; W My, v I p for everyv in My,
which, again by Proposition 2.3, in turn implies tBa, I p: contradiction. We
conclude that the global box (and hence the global diamardjtidefinable in the
basic modal language.

So, if we want the global modality, then we either have toodtice it as a
primitive (we will do this in Section 7.1), or we have to worktvrestricted classes
of models on which iis definable (in Exercise 1.3.3 we worked with a class of
models in which we could define A in the basic temporal langllag-

Generated submodels

Disjoint unions are a useful way of making bigger models fomnaller ones — but
we also want methods for doing the reverse. That is, we waddd know when it
is safe to throw points away from a satisfying model withdtécing satisfiability.
Disjoint unions tell us a little about this (if a model is ajdiat union of smaller
models, we are free to work with the component models), batishnot useful in
practice. We need something sharper, nargelyerated submodels

Suppose we are using the basic modal language to talk abootlel 9t based
on the framgZ, <), the integers with their usual order. It does not matter witneat
valuation is — all that’s important is th&it looks something like this:

C -3 -2 -1 0 1 2 3 )
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

First suppose that we formsabmoded)i™ of 9t by throwing away all the positive
numbers, and restricting the original valuation (whateveras) to the remaining
numbers. SO~ looks something like this:

The basic modal language certairdgin see thatt and 91~ are different. For
example, it sees that 0 has successoftifnote that)t, 0 I <T) but is a dead
end in?t~ (note thatt—, 0 If &T). So there’s no invariance result farbitrary

submodels. But now consider the submaiel of 90t that is formed by omitting
the negative numbers, and restricting the original vatumato the numbers that

remain:
G : 3 )
. . . ..

o
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Suppose a basic modal formuais satisfied at some point in 971. Is ¢ also
satisfied at the same pointin 9t™? The answer must s The only points that
are relevant t@’s satisfiability are the points greater than— and all such points
belong to?i ™. Similarly, it is clear that it * satisfies a basic modal formutsat
m, then?t must too.

In short, it seems plausible that modal invariance holdsstdymodels which
are closed under the accessibility relation of the origmatel. Such models are
calledgenerated submodeland they do indeed give rise to the invariance result
we are looking for.

Definition 2.5 (Generated Submodels)We first define generated submodels for
the basic modal language. Lt = (W, R, V) and9’' = (W', R',V’) be two
models; we say that’ is asubmodebf 9t if W’ C W, R’ is the restriction of?

to W' (thatis:R' = RN (W' x W')), andV' is the restriction o to 9’ (that is:
for eachp, V'(p) = V(p) N W'). We say thaD)t’ is agenerated submodef 9
(notation: M’ »— M) if M’ is a submodel oMt and for all pointsw the following
closure condition holds:

if w isin M and Rwv, thenw is in M.

For the general case, we say that a mageél= (W', R, V') ¢, is agenerated
submodebf the modebit = (W, R5, V) e, (notation: 0 — 2MT) whenevet
is a submodel ot (with respect taR, for all A € 7), and the following closure
condition is fulfilled for alla € 7

if we W andRauuy ... up, thenuy,...,u, € W'

Let 9t be a model, and( a subset of the domain 6ft; the submodel generated
by X is the smallest generated submode®fwhose domain contain¥ (such a
model always exists: why?). Finallyraotedor point generateanodel is a model
that is generated by a singleton set, the element of whichliscctheroot of the
frame. -

Proposition 2.6 Let 7 be a modal similarity type and |18t and 9" be 7-models
such thatt’ is a generated submodel 9f. Then, for each modal formulaand
each element of M’ we have thatt, w I+ ¢ iff ', w IF ¢. In words: modal
satisfaction is invariant under generated submodels.

Proof. By induction ong. The reader unused to such proofs should write out the
proof in full. In Proposition 2.19 we provide an alternatipeoof based on the
observation that generated submodels induce a bisimnlatid

Four remarks. First, note that the invariance result fojodis unions (Proposi-
tion 2.3) is a special case of the result for generated sublsodny component of
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a disjoint union is a generated submodel of the disjoint mniSecond, using an
argument analogous to that used in Example 2.4 to show teagldival box can’t
be defined in the basic modal language, we can use Propogi6da show that we
cannot define a backward looking modality in termsgfee Exercise 2.1.2. Thus
if we want such a modality we have to add it as a primitive — \ahigcexactly what
we did, of course, when defining the basic temporal languged, although we
have not explicitly discussed generated submodels fordki ltemporal language,
PDL, or arrow logic, the required concepts are all special cab&efinition 2.5,
and thus the respective invariance results are speciad ch$&oposition 2.6. But
it is worth making a brief comment about the basic temponadleage. When we
think explicitly in terms of bidirectional frames (see Exalm 1.25) it is obvious
that we are interested in submodels closed under BetAnd R p. But when work-
ing with the basic temporal language we usually leByeimplicit: we work with
ordinary model§ W, R, V'), and useR’, the converse of?, asRp. Thus atem-
poral generated submodel ¢V, R, V') is a submode{W’, R', V') that is closed
under bothR and R". Finally, generated submodels are heavily used throughout
the book: given a modélt that satisfies a formula at a statew, very often the
first thing we will do is form the submodel o9t generated byu, thus trimming
what may be a very unwieldy satisfying model down to a moreagaable one.

Morphisms for modalities

In mathematics the idea ofiorphismsor structure preserving maps of funda-

mental importance. What notions of morphism are apprapifiat modal logic?
That is, what kinds of morphism give rise to invariance ressuMe will approach
the answer bit by bit, introducing a number of important apts on the way. We
will start by considering the general notion mdmomorphisngthis is too weak to
yield invariance, but it is the starting point for bettereatipts), then we will define
strong homomorphismembeddingsandisomorphismgthese do give us invari-
ance, but are not particularly modal), and finally we will@én on the answer:
bounded morphisms

Definition 2.7 (Homomorphisms)Let 7 be a modal similarity type and 1&&t and
M’ be 7-models. By ehomomorphisny from M1 to 9’ (notation: f : 9 — M)
we mean a functiorf from W to W’ with the following properties.

(i) For each proposition letter and each element from 9, if w € V(p),
thenf(w) € V'(p).

(i) For eachn > 0 and eachm-ary A € 7, and(n + 1)-tuple w from 9, if
(wo, ..., wyp) € R, then(f(wo), ..., f(wy,)) € R (the homomorphic
condition).
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We call?t the sourceand M’ the target of the homomorphism.

Note that for the basic modal language, item (ii) is just:this
if RwuthenR'f(w)f(u).

Thus item (ii) simply says that homomorphisms preservdioglal links.

Are modal formulas invariant under homomorphisms? No:caigih homomor-
phisms reflect the structure of the source in the structurtheftarget, they do
not reflect the structure of the target back in the sources #asy to turn this
observation into a counterexample, and we will leave thik ta@ the reader as
Exercise 2.1.3.

So let us try and strengthen the definition. There is an olsvigay of doing
so: turn the conditionals into equivalences. This leads noraber of important
concepts.

Definition 2.8 (Strong Homomorphisms, Embeddings and Isomgphisms) Let

7 be a modal similarity type and 181t and9t" be 7-models. By astrong homo-
morphismof 9 into 91" we mean a homomorphisyh: 9t — 9" which satisfies
the following stronger version of the above items (i) any (i

(i) For each proposition letterand elements from 91, w € V (p) iff f(w) €
V'(p).

(i) For eachn > 0 and eact-ary A in 7 and(n + 1)-tuple@ from 9, (wy,
oo, wy) € Ry ff (f(wo), ..., f(wy)) € R, (the strong homomorphic
condition).

An embeddingdf 90t into 91’ is a strong homomorphisrfi : 9 — 9" which is
injective. Anisomorphismis a bijective strong homomorphism. We say thst
is isomorphicto M, in symbolstt = N, if there is an isomorphism froMn to
m'. A

Note that for the basic modal language, item (ii) is just:
Rwu iff R'f(w)f(u).

That is, item (ii) says that relational links are preserveht the source model to
the targeand back againSo it is not particularly surprising that we have a number
of invariance results.

Proposition 2.9 Let be a modal similarity type and 18t and 2’ be 7-models.
Then the following holds:

(i) For all elementsw and w' of 9t and M, respectively, if there exists a
surjective strong homomorphisy: 9t — 9 with f(w) = w', thenw
andw' are modally equivalent.
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(i) If 901 = 9, thenM e~ M.

Proof. The first item follows by induction om; the second one is an immediate
consequence.

None of the above results is particularly modal. For a stetin all branches of
mathematics, ‘isomorphic’ basically means ‘mathemadiicalentical’. Thus, we

do not want to be able to distinguish isomorphic structuresddal (or indeed,
any other) logic. Quite the contrary: we want to be free tokmeith structures
‘up to isomorphism’ — as we did, for example, in our discussid disjoint union,

when we talked of taking isomorphic copies. Item (ii) telistbat we can do this,
but it isn't a surprising result.

But why is item (i), the invariance result for strong homoptasms, not ‘gen-
uinely modal’? Quite simply, because there are many monphihich do give
rise to invariance, but which fail to qualify as strong honawphisms. To ensure
modal invariance we need to ensure that some target steuistueflected back in
the source, but strong morphisms do this in a much too heaugdd way. The
crucial concept is more subtle.

Definition 2.10 (Bounded Morphisms — the Basic Cas@a)Ve first define bound-
ed morphisms for the basic modal language. Wetand 9’ be models for the
basic modal language. A mappirig 9 = (W, R, V) — M = (W', R, V')isa
bounded morphisni it satisfies the following conditions:

(i) wandf(w) satisfy the same proposition letters.
(i) f is a homomorphism with respect to the relatiBr(that is, if Rwwv then
R'f(w) f(v).
(i) If R'f(w)v' then there exists such thatRwv and f(v) = o' (the back
condition.

If there is asurjectivebounded morphism fromt to 9V, then we say thadt' is a
bounded morphic imagef M1, and writedt — M’.

The idea embodied in the back condition is utterly fundamietot modal logic —
in fact, it is the idea that underlies the notion of bisimidat— so we need to get
a good grasp of what it involves right away. Here’s a usefahegle.

Example 2.11 Consider the model®nt = (W, R, V) andO' = (W', R', V'),
where

e W = N (the natural numbersRmn iff n = m + 1, andV(p) = {n € N |
nis every
o W' ={e,o0}, R ={(e,0),(0,e)}, andV’(p) = {e}.
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4
®

N

7 )
o
o

Fig. 2.1. A bounded morphism

Now, let f : W — W' be the following map:

e if niseven
f(")_{ o if nisodd
Figure 2.1 sums this all up in a simple picture.

Now, f is nota strong homomorphism (why not?), buisii (surjective) bounded
morphism fromt to 9. Let’s see why. Triviallyf satisfies item (i) of the defi-
nition. As for the homomorphic condition consider an adsigrpair(n,n + 1) in
R. There are two possibilitiesy is either even or odd. Supposds even. Then
n + lis odd, sof (n) = eandf(n + 1) = o. But then we have&®'f(n)f(n + 1),
as required. The argument ferodd is analogous.

And now for the interesting part: the back condition. Takeaditrary element
n of W and assume thak' f(n)w’. We have to find amn € W such thatRnm
and f(m) = w'. Let's assume that is odd (the case for evemis similar). As
n is odd, f(n) = o, so by definition ofR’, we must have that’ = e. But then
f(n+1) =« sincen + 1is even, and by the definition @t we have that + 1
is a successor of. Hencen + 1 is them that we were looking for. -

Definition 2.12 (Bounded Morphisms — the General Case)The definition of
a bounded morphism for general modal languages is obtamed the above by
adapting the homomorphic and back conditions of Definitidi® s follows:

(i) Foralla € 7, Rywuvy ... v, impliesR, f(w)f(v1) ... f(vy).
@(ii)" If R, f(w)v]...v!, then there exist; ...v, such thatR,wv; ...v, and
f(v) =0} (forl1 <i<n). H

Example 2.13 Suppose we are working in the modal similarity type of arrow
logic; see Example 1.16 and 1.27. Recall that the language Imaodal constant
', a unary operator» and a single dyadic operator Semantically, to these oper-
ators correspond a unary relatiéna binaryR and a ternary”. We will define a
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bounded morphism from a square model to a model based on ditoadf the
integer numbers. We will use the following notationzifs an element of. x Z,
thenxo denotes its first component, amg its second component.

Consider the two mode®t = (W, C, R, I,V) and' = (W', C', R, I',V")
where

o W = 7Z X 7, Caxyz iff zg = yo, y1 = zp andz; = z1, Ray if g = 1
andx; = yo, Lz iff xg = 21, and finally, the valuatioi” is given byV (p) =
{(:C(),xl) | Tl — X is even},

o W' =27,C'stuliff s =t+u, Rstiff s = —t, I'siff s = 0, and the valuation
V'is given byV'(p) = {s € Z | s is even}.

This example is best understood by looking at Figure 2.2.|&H@icture shows a
fragment of the modeDt; the points ofZ x Z are represented as disks or circles,
depending on whether is true or not. The diagonal is indicated by the dashed
diagonal line. The picture on the right-hand side shows tieege undeyf of the
points inZ x Z.

o o //

: o /10 /
-1

. . . -g

o -/o . o

Fig. 2.2. Another bounded morphism.

We claim that the functiorf : Z x Z — Z given by
f(z) =21 -2

is a bounded morphism for this similarity type. The clausetifie propositional
variables is trivial. For the unary relatidnwe only have to check that for anyin
7 x 7, zyg = = iff z1 — 290 = 0. This is obviously true. We leave the case of the
binary relationR to the reader.

So let’s turn to the clauses for the ternary relat@n To check item (ii) (the
homomorphic condition), assume th@ty= holds forz, y andz in W. That is,
we have thatry = y9, y1 = 29 andz; = 1. But then we find that

fle)=x1—xzo=21—yo=21—2+y1 —vo = f(2)+ f(y),
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so by definition ofC” we do indeed find that” f () f (v) f (2).

For item (i) (the back condition) assume that we havéf (x)tu for some
x € Z x Z andt, u € Z. In other words, we have that — o = t + u. Consider
the pairsy := (xg,x9 +t) andz := (xo + ¢, x1). Itis obvious thaCzyz; we also
findthatf(y) =tandf(z) = x1 — (xg +t) = (x1 — x9) — t = u. Hencey andz
are the elements 6" that we need to satisfy item (ili) -

Definition 2.12 covers the basic temporal languag®,, and arrow logic, as spe-
cial cases — but once more it is worth issuing a warning camiagrthe basic
temporal language. AlthougRp is usually presented implicitly (as the converse
of the relationR in some modelW, R, V")) we certainly cannot ignore it. Thus
a temporalbounded morphism froniiWy, Ry, V1) to (Ws, R, V5) is a bounded
morphism from(Wy, Ry, Ry, V1) to (Wa, Ry, Ry, Va).

Proposition 2.14 Letr be a modal similarity type and 182t and 0" be 7-models
such thatf : 9t — 9. Then, for each modal formula, and each element of
9 we havelt, w |- ¢ iff M', f(w) IF ¢. In words: modal satisfaction is invariant
under bounded morphisms.

Proof. Let 9, 9" and f be as in the statement of the proposition. We will prove
that for each formulas and statew, MM, w I+ ¢ iff M| f(w) Ik ¢. The proof is
by induction on¢. We will assume that is the basic similarity type, leaving the
general case to the reader.

The base step and the boolean cases are routine, so let®tilma case where
¢ is of the form<¢. Assume first thafdt, w IF 0. This means there is a state
v with Rwv and, v |- 7. By the inductive hypothesisit’, f(v) I+ ¢. By the
homomorphic conditionR’ f (w) f (v), SO, f(w) IF O,

For the other direction, assume tBa, f(w) I <. Thus there is a successor
of f(w) in M, sayv’, such thatht’, v’ I . Now we use the back condition
(of Definition 2.10). This yields a point in 9t such thatRwv and f (v) = v'.
Applying the inductive hypothesis, we obtalii, v I- ¢, SO, w IF Cep.

Here is a simple application: we will now show that any satts# formula can be
satisfied in dree-likemodel. To put it another way: modal logic has thee model
property.

Let 7 be a modal similarity type containing only diamonds (thuifis a
T-model, it has the form{W, Ry, Rs,...,V), where eachr; is a binary rela-
tion on ). In this context we will call ar-model 97t tree-like if the structure
(W,UU; Ri, V) is atree in the sense of Example 1.5.

Proposition 2.15 Assume that is a modal similarity type containing only dia-
monds. Then, for any rootedmodel9 there exists a tree-like-model9’ such
that9 — M. Hence any satisfiable-formula is satisfiable in a tree-like model.
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Proof. Let w be the root oft. Define the modedt’ as follows. Its domairiv’
consists of all finite sequenceés, vy, ... ,u,) such that. > 0 and for some modal
operators(a,), ..., (a,) € 7 there is a pathvR,, u; - - - Rayu, in M. Define
(wyu1y ... up) R, (w,v1,...,vp)t0holdifm=n+1,u;=v;fori=1,...,n,
and R,u, v, holds in9t. That is, R,, relates two sequences iff the second is an
extension of the first with a state frofit that is a successor of the last element
of the first sequence. Finally/’ is defined by puttindw, u1,...,u,) € V'(p)

iff u, € V(p). As the reader is asked to check in Exercise 2.1.4, the mgppin
f i (w,uy ... u,) — u, defines a surjective bounded morphism frém to 911,
thus9’ andt are equivalent.

But then it follows that any satisfiable-formula is satisfiable in a tree-like
model. For suppose is satisfiable in some-model at a points. Let 91 be
the submodel generated by By Proposition 2.3971, w I+ ¢, and at is rooted
we can form an equivalent tree-like moddl as just described. -

The method used to construg®’ from 91 is well known in both modal logic
and computer science: it is calleshravelling (or unwinding or unfolding. In
essence, we buill’ by treating the paths throudht as first class citizens: this
untangles the (possibly very complex) way information @edtl in9)t, and makes
it possible to present it as a tree. We will make use of unlageseveral times in
later work; in the meantime, Exercise 2.1.7 asks the readextend the notion of
‘tree-likeness’ to arbitrary modal similarity types, arehgralize Proposition 2.15.

Exercises for Section 2.1

2.1.1 Suppose we wanted an operator D with the following satigfaatefinition: for any
model?t and any formulap, 9, w I D¢ iff there is au # w such thatt, u I+ ¢. This
operator is called thdifference operatoand we will discuss it further in Section 7.1. Is
the difference operator definable in the basic modal langRag

2.1.2 Use generated submodels to show that the backward lookidglityo(that is, theP”
of the basic temporal language) cannot be defined in terntedbtward looking operator
.

2.1.3 Give the simplest possible example which shows that tha timodal formulas is
notinvariant under homomorphisms, even if condition 1 is gitkaned to an equivalence.
Is modal truth preserved under homomorphisms?

2.1.4 Show that the mapping defined in the proof of Proposition 2.15 is indeed a surjec-
tive bounded morphism.

2.1.5Let® = (B, R) be the transitive binary tree; that i8, is the set of finite strings
of 0s andls, andRo T holds if o is a proper initial segment af. Let9t = (N, <) be the
frame of the natural numbers with the usual ordering.
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(a) LetV; be the valuation ofit given byVy(p) = {2n | n € N} for each proposition
letter p. Define a valuatiorl/y on B and a bounded morphism froffB, Uy) to
(m7 VO)

(b) LetlU; be the valuation of8 given byl (p) = {10 | o € B} for each proposition
letter p. Give a valuationV; on 9t and a bounded morphism frof®, Uy) to
(m7 VO)

(c) Canyou also findurjectivebounded morphisms?

2.1.6 Show that every model is the bounded morphic image of theidisjinion of point-
generated (that is: rooted) models. This exercise may lattier technical, but in fact it is
very straightforward — think about it!

2.1.7 This exercise generalizes Proposition 2.15 to arbitrarglahsimilarity types.

(a) Define a suitable notion of tree-like model that worksdidaitrary modal similarity
types. (Hint: in case oR,sps; - . - sy, think of s as being the parent node and of
s1,---,8y, asthe children.)

(b) Generalize Proposition 2.15 to arbitrary modal sinitjaypes.

2.2 Bisimulations

What do the invariance results of the previous section haw®immon? They all
deal with special sorts o€lationsbetween two models, namely relations with the
following properties: related states carry identical atimformation, and when-
ever it is possible to make a transition in one model, it isspgae to make a match-
ing transition in the other. For example, with generatedrsudiels the inter-model
relation is identity, and every transition in one model istchad by an identical
transition in the other. With bounded morphisms, the imb@del relation is a func-
tion, and the notion of matching involves both the homomirfihk from source
to target, and the back condition which reflects target &iredn the source.

This observation leads us to the central concept of the ehapisimulations
Quite simply, a bisimulation is a relation between two medel which related
states have identical atomic information and matchingsiteom possibilities. The
interesting part of the definition is the way it makes the orotf ‘matching transi-
tion possibilities’ precise.

Definition 2.16 (Bisimulations — the Basic Case)We first give the definition
for the basic modal language. LBt = (W, R, V) and' = (W', R', V') be two
models.

A non-empty binary relatio C W x W'is called abisimulation betweeft
and9’ (notation: Z : 9 & ') if the following conditions are satisfied.

() If wZw' thenw andw’ satisfy the same proposition letters.
(i) If wZw' and Rwo, then there exists’ (in 9') such that Zv' and R'w'v’
(theforth conditior).



2.2 Bisimulations 65

(iii) The converse of (ii): ifwZw' and R'w'v’, then there exists (in 9t) such
thatvZv' and Rwv (theback conditioi.

WhenZ is a bisimulation linking two states in 9t andw’ in 9" we say thatw
andw'’ arebisimilar, and we writeZ : 9, w < M’ w'. If there is a bisimulation
Z such thatZ : MM, w & M, w', we sometimes writ@t, w & M, w'; likewise,
if there is some bisimulation betwe@hi and9t’, we write9t & 9.

Think of Definition 2.16 pictorially. Figure 2.3 shows thentent of the forth
clause. Suppose we know thaZw' and Rwv (the solid arrow irf)t and theZ-
link at the bottom of the diagram display this informatiomhen the forth condition
says that it is always possible to find'ahat ‘completes the square’ (this is shown
by the dashed arrow i’ and the dottedZ-link at the top of the diagram). Note
the symmetry between the back and forth clauses: to visuéthie back clause,
simply reflect the picture through its vertical axis.

Fig. 2.3. The forth condition.

In effect, bisimulations are a relational generalizatidlh@unded morphisms: we
drop the directionality from source to target (and with i& thomomorphic con-
dition) and replace it with a back and forth system of matghimoves between
models.

Example 2.17 The modelt and9’ shown in Figure 2.4 are bisimilar. To see
this, define the following relatior¥ between their statesZ = {(1,a), (2,b),
(2,¢), (3,d), (4,¢), (5,¢e)}. Condition (i) of Definition 2.16 is obviously satisfied:
Z-related states make the same propositional letters troeeder, the back-and-
forth conditions are satisfied too: any mové@lhcan be matched by a similar move
in 9, and conversely, as the reader should check.

This example also shows that bisimulation is a genuine gdination of the
constructions discussed in the previous section. Althddighnd)t’ are bisimilar,
neither is a generated submodel nor a bounded morphic infdage other.
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Fig. 2.4. Bisimilar models.

Definition 2.18 (Bisimulations — the General Case).et  be a modal similarity
type, and lett = (W, Rx, V) per andO = (W', R, ,V')ae, beT-models. A
non-empty binary relatioor C W x W' is called abisimulationbetweert)t and
9’ (notation: Z : M & M) if the above condition (i) from Definition 2.16
is satisfied (that isZ-related states satisfy the same proposition letters) and i
addition the following conditions (if)and (iii)’ are satisfied:

(i) If wZw" and Rywu; ... v, then there are, ..., v}, (in W') such that
R, w'vy ... v}, and for alli (1 < i < n) v;Zv; (theforth condition).
(iii)" The converse of (if) if wZw’ andR,w'v] ... v], then there arey, ... v,

(in W) such thatR,wv; ... v, and for alli (1 < i < n) v;Zv, (the back
condition). -

Examples of bisimulations abound — indeed, as we have alreshtioned, the
constructions of the previous section (disjoint unions)egated submodels, iso-
morphisms, and bounded morphisms), are all bisimulations:

Proposition 2.19 Let 7 be a modal similarity type, and 181, 9 and; (i € I)
be r-models.

(i) Ifom =9, thenon < N,

(i) Foreveryi € I and everyw in 90, M, w < 4, M, w.
(i) If 9 — 01, thenM', w < M, w for all w in NV,
(iv) If f: 91 — O, thend, w < M, f(w) for all win M.

Proof. We only prove the second item, leaving the others as Exefcis@. As-
sume we are working in the basic modal language. Define daelat between
M; andly, M; by puttingZ = {(w,w) | w € M;}. ThenZ is a bisimulation.
To see this, observe that clause (i) of Definition 2.16 isdliy fulfilled, and as to
clauses (i) and (iii), any?-step in9; is reproduced i), M;, and by the disjoint-
ness condition everz-step inly, M; that departs from a point that was originally
in M1;, stems from a corresponding-step inMt;. The reader should extend this
argument to arbitrary similarity types.—
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We will now show that modal satisfiability is invariant undasimulations (and
hence, by Proposition 2.19, provide an alternative proaf thodal satisfiability is
invariant under disjoint unions, generated submodelsp@phisms, and bounded
morphisms). The key thing to note about the following praohbw straight-
forward it is — the back and forth clauses in the definition @Hirbulation are
preciselywhat is needed to push the induction through.

Theorem 2.20 Let7 be a modal similarity type, and |81, " ber-models. Then,
for everyw € W andw' € W', w € w' implies thatw «~ w'. In words, modal
formulas are invariant under bisimulation.

Proof. By induction on¢. The case where is a proposition letter follows from
clause (i) of Definition 2.16, and the case wheris | is immediate. The boolean
cases are immediate from the induction hypothesis.

As for formulas of the form® ), we havedlt, w I+ O iff there exists a in O
such thatRwv andd, v I+ . Asw € w' we find by clause (ii) of Definition
2.16 that there exists @ in M’ such thatkR'«'v' andv < o'. By the induction
hypothesis D', v" I+ 1, henced’, w' I &4p. For the converse direction use
clause (iii) of Definition 2.16.

The argument for the general modal case, with triangleis an easy extension
of that just given, as the reader should checkl.

This finishes our discussion of the basics of bisimulation e4e$'s now try and
understand the concept more deeply. Some of the remarkiotiost are concep-
tual, and some are technical, but they all point to ideasdtogt up throughout the
book.

Remark 2.21 (Bisimulation, Locality, and Computation)In the Preface we sug-
gested that the reader think of modal formulas as automatalu&ing a modal
formula amounts to running an automaton: we place it at sdate mside a struc-
ture and let it search for information. The automaton is qgudymitted to explore
by making transitions to neighboring states; that is, itkgdocally.

Suppose such an automaton is standing at a stéea model9t, and we pick
it up and place it at a state’ in a different modeD)t’; would it notice the switch?
If w andw’ are bisimilar,no. Our automaton cares only about the information
at the current state and the information accessible by rgakitransition — it is
indifferent to everything else. Thus the definition of bisiation spells out exactly
what we have to do if we want to fool such an automaton as to evités being
evaluated. Viewed this way, it is clear that the concept sinilation is a direct
reflection of the locality of the modal satisfaction defioiti

But there is a deeper link between bisimulation and comjautahan our infor-
mal talk of automaton might suggest. As we discussed in Elah3, labelled
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Fig. 2.5. Equivalent but not bisimilar.

transition systems (LTSs) are a standard way of thinkingiabomputation: when
we traverse an LTS we build a sequence of state transitions te-put it another

way, we compute. When are two LTSs computationally equnt&leMore pre-

cisely, if we ignore practical issues (such as how long iesato actually perform
a computation) when can two different LTSs be treated adyfreechangeable
(‘observationally equivalent’) black boxes? One naturaveer is: when they are
bisimilar. Bisimulation turns out to be a very natural natif equivalence for both
mathematical and computational investigations. For marghe history of bisim-

ulation and the connection with computer science, see thiesNo-

Remark 2.22 (Bisimulation and First-Order Logic) According to Theorem 2.20
modal formulas cannot distinguish between bisimilar statebetween bisimilar
models, even though these states or models may be quiteediffe It follows
that modal logic is very different from first-order logic,rfarbitrary first-order
formulas are certainlyot invariant under bisimulations. For example, the model
oM’ of Example 2.17 satisfies the formula

Jyryays (y1 # y2 Ayr # yz Ay2 # y3 A Rxyr A Reys A Ryiys A Ryays),

if we assign the state to the free variabler. This formula says that there is a
diamond-shaped configuration of points, which is true ofghat a in 9, but
not of the statd in 9M1. But as far as modal logic is concernédt! and97, being
bisimilar, are indistinguishable. In Section 2.4 we wikgtexamining the links
between modal logic and first-order logic more systemadyical-

Now for a fundamental question: is the converse of Theor&@ Rue? That is, if
two models are modally equivalent, must they be bisimilan@ @nswer iso.

Example 2.23 Consider the basic modal language. We may just as well wadtk wi
an empty set of proposition letters here. Define motlgland9t as in Figure 2.5,
where arrows denot&-transitions. Each dit andt has, for eachn > 0, a finite
branch of lengti; the difference between the models is that, in addit)inas an
infinite branch.
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One can show that for all modal formulas M, w I+ ¢ iff N, w' IF ¢ (this is
easy if one is allowed to use some results that we will provethéu on, namely
Propositions 2.31 and 2.33, but it is not particularly harghitove from first prin-
ciples, and the reader may like to try this). But even thougdndw’ are modally
equivalent, there is no bisimulation linking them. To ses,tbuppose that there
was such a bisimulatio#: we will derive a contradiction from this supposition.

Sincew andw’ are linked byZ, there has to be a successongfsayuv,, which
is linked to the first pointy, on the infinite path fromy’. Suppose that is the
length of the (maximal) path leading from throughvy, and letw, vy, ..., v,—1
be the successive points on this path. Using the bisimulatanditionsn — 1
times, we find pointsy, ..., v/, ; on the infinite path emanating from’, such
thatvjR'v} ... R'v],_, andv; Zv; for eachi. Now v/, , has a successor, but_;

0

does not; hence, there is no way that these two points carsivgilair.

Nonetheless, it is possible to prove a restricted conver3déorem 2.20, namely
the Hennessy-Milner Theorem. Letbe a modal similarity type, antt a -
model. 21 is image-finiteif for each state, in 9t and each relatio® in 901, the
set{ (v1,...,v,) | Ruvy...vy,} is finite; observe that we aneot putting any
restrictions on the total number of different relatidRén the modeb)t — just that
each of them is image-finite.

Theorem 2.24 (Hennessy-Milner Theorem)Let 7 be a modal similarity type,
and let9 and M’ be two image-finite--models. Then, for every € W and
w eW', we wiff wew w'.

Proof. Assume that our similarity type only contains a single diamond (that is,
we will work in the basic modal language). The direction friaft to right follows
from Theorem 2.20; for the other direction, we will provettttze relation«~ of
modal equivalence itself satisfies the conditions of Deéini2.16 — that is, we
show that the relation of modal equivalence on these moslétseif a bisimulation.
(This is an important idea; we will return to it in Section 3.5

The first condition is immediate. For the second one, asstmaieut «~~ w’
and Rwv. We will try to arrive at a contradiction by assuming thatréhes nov’
in M’ with R'w'v" andv « o', Let S’ = {u' | R'w'u’}. Note thatS’ must
be non-empty, for otherwis®?’,w' I O, which would contradicty «~ w'
sinceM,w - ©T. Furthermore, a§it’ is image-finite,S” must be finite, say
S" = {wl,...,w;,}. By assumption, for every, € S’ there exists a formula;
such thatit, v I ¢; but ', wi I ;. It follows that

M, w b O A Athy,) and M, w’ I Sy A -+ Athy),

which contradicts our assumption that«w w’. The third condition of Defini-



70 2 Models

tion 2.16 may be checked in a similar way. Extending the ptoaither similarity
types is routine.

Theorem 2.20 (together with the Hennessy-Milner Theoremthe one hand, and
Example 2.23 on the other, mark important boundaries. yldasimulations have
something important to say about modal expressivity ovedets but they don't
tell us everything. Two pieces of the jigsaw puzzle are mgsFor a start, we are
still considering modal languages in isolation: as yet, weehmade no attempt to
systematically link them to first-order logic. We will remetihis in Section 2.4 and
this will eventually lead us to a beautiful result, the VamBem Characterization
Theorem (Theorem 2.68): modal logic is the bisimulatioramant fragment of
first-order logic.

The second missing piece is the notion ofudtnafilter extensionWe will intro-
duce this concept in Section 2.5, and this will eventualadles to Theorem 2.62.
Informally, this theorem says: modal equivalence implisglarity-somewhere-
else. Where is this mysterious ‘somewhere else’? In thafilter extension. As
we will see, although modally equivalent models need notisienilar, they must
have bisimilar ultrafilter extensions.

Remark 2.25 (Bisimulations for the Basic Temporal LanguagePDL, and Ar-
row Logic) Although we have already said the most fundamental thingisrtbed
to be said on this topic (Definition 2.18 and Theorem 2.20 rotleese languages),
a closer look reveals some interesting resultsPior and arrow logic. But let us
first discuss the basic temporal language.

First we issue our (by now customary) warning. When workinthwhe basic
temporal language, we usually work with mod@lg, R, V') and implicitly takeR
to beR". Thus we need a notion of bisimulation which takesinto account, and
so we define é&emporalbisimulation between model$V, R, V') and(W', R', V")
to be a relationZ between the states of the two models that satisfies the slause
of Definition 2.16, and in addition the following two claug@g and (v) requiring
that backward steps in one model should be matched by sistédas in the other
model:

(iv) If wZw" and Rvw, then there existg’ (in 9') such that Zv' and R'v'w'.
(v) The converse of (iv): ifvZw' and R'v'w’, then there exists (in 90t) such
thatvZv" and Rvw.

If we don’t do this, we are in trouble. For exampleifis a model whose underly-

ing frame is the integers, amd’ is the submodel ofJt generated by, then these

two models are bisimilar in the sense of Definition 2.16, aedde equivalent as

far as the basimodallanguage is concerned. But they are not equivalent as far as
the basidemporallanguage is concerne@t, 0 I- PT, butdt, 0 I PT.
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Given our previous discussion, this is unsurprising. Whbafpieasantly) sur-
prising is that things do not work this way PDL. Suppose we are given two
regular models. Checking that these models are bisimilathinlanguage ofDL
means checking that bisimilarity holds for all the (infilytenany) relations that
exist in regular models (see Definition 1.26). But as it twas most of this work
is unnecessary. Once we have checked that bisimilarityshfoldall the relations
which interpret the basic programs, we don't have to chegkhamg else: the
relations corresponding to complex programs ailkomaticallybe bisimilar. In
Section 2.7 we will introduce some special terminology teatide this: the oper-
ations in regulapbL’s modality building repertoirel(, ;, andx) will be calledsafe
for bisimulation Note that taking the converse of a relatiome an operation that
is safe for bisimulation (in effect, that's what we just rbt@hen discussing the
basic temporal language); see Exercise 2.2.6.

What about arrow logic? The required notion of bisimulatismgiven by Def-
inition 2.18; note that the clause féirreads that for bisimilar pointa anda’ we
havela iff I'a. -

Remark 2.26 (The Algebra of Bisimulations) Bisimulations give rise to alge-
braic structure quite naturally. For instance/Zif is a bisimulation betweet,
and?ty, andZ; a bisimulation betweet; andi,, then the composition af
and Z; is a bisimulation linkingDt, andi,. It is also a rather easy observation
that the set of bisimulations between two models is closeteutaking arbitrary
(finite or infinite) unions. This shows that if two points arnsitmilar, there is al-
ways amaximalbisimulation linking them; see Exercise 2.2.8. Furtheoiniation
on closure properties of the set of bisimulations betweenmadels can be found
in Section 2.7. 4

Exercises for Section 2.2

2.2.1 Consider a modal similarity type with two diamon@s and(b), and with® = {p}.
Show that the following two models are bisimilar.

a

v wWo Vo w1 U1
° ° ° ° ° ®: -
p p p p

2.2.2 This exercise asks the reader to complete in detail the pb&froposition 2.19,
which links bisimulations and the model constructions désed in the previous section.
You should prove these results for arbitrary similarityegp

(&) Show that it = 9V, thendt < M

(b) Show that ifi), 901; is the disjoint union of the modef8t; (: € I), then, for each,
M; & 1, M;

(c) Show that if’ is a generated submodel®t, thend’ & M

(d) Show that ift’ is a bounded morphic image #R, then9t’ & M
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2.2.3 This exercise is abow¢mporalbisimulations.

(a) Showfrom first principlesthat the truth of basic temporal formulas is invariant
under temporal bisimulations. (That is, don't appeal to afthe results proved in
this section.)

(b) Let?Mt andM’ befinite rooted models for basic temporal logic withand P. Let
w andw’ be the roots oMt and’, respectively. Prove that ifi andw’ satisfy
the same basic temporal formulas withand P, then there exists a basic temporal
bisimulation that relates andw’.

2.2.4 Consider the binary until operatdr. In a modeb)t = (W, R, V') its truth definition
reads:
M, tI-U(p,y) iff thereis av such thatRtv andv IF ¢, and
for all u such thatRtu and Ruv: u IF 1.
Prove thatV is not definable in the basic modal language. Hint: think aftoelfollowing
two models, but with arrows added to make sure that the oglare transitive:

Vg o v

TGN T

2.2.5 Consider the following two models, which we are going to usiterpret the basic
temporallanguageM, = (R, <, Vy) and9M; = (R, <, V1), wherelV, makesy true at all
non-zero integers ant; in addition makeg true at all points of the form /z with z a
non-zero integer number.

(a) Prove that there is a temporal bisimulation betw®gnandt,, linking 0 (in the
one model) td) (in the other model).
(b) LetII be theprogressiveoperator defined by the following truth table:

M, s - ITp iff there aret andu such that < s < v and
M, x I+ ¢ for all x betweent andu.

Prove that this operator is not definable in the basic tenjeorguage.

2.2.6 Suppose we have two bisimilar LTSs. Show that bisimilaestat these LTSs satisfy
exactly the same formulas ebL.

2.2.7 Prove that two square arrow modéls = (&, V) and9’ = (S, V') are bisim-
ilar if and only if there is a relatiol betweerpairs overU andpairsoverU’ such that

(@) if (u,0)Z(u',v"), then(u,v) € V(p) iff (u',v") € V'(p),

(i) if (u,v)Z(u',v"), thenu = v iff ' =v’,

(i) if (u,v)Z(u',v"), then(v,u)Z(v',u'),

(iv) if (u,v)Z (u’m’ then for anyw € U there exists av’ € U’ such that both

),
(u7w) (u',w") and(w, v) Z (w',v"),
(v) and vice versa
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Must any two bisimilar square arrow models be isomorphicthtHhink of V' (p) and
V'(p) as the natural ordering relations of the rational and themeabers, respectively.)

2.2.8 SupposethafZ; | i € I}is anon-empty collection of bisimulations betwegrand
9. Prove that the relatiol),, Z; is also a bisimulation betweelit andt’. Conclude
that if Mt andO’ are bisimilar, then there is a maximal bisimulation betwg&mandt’;
that is, a bisimulatior¥Z,,, such that for any bisimulatiod : 9t < 9" we haveZ C Z,,.

2.3 Finite Models

Preservation and invariance results can be viewed eitha&tiy@y or negatively.
Viewed negatively, they map the limits of modal expresgivithey tell us, for
example, that modal languages are incapable of distinigisth model from its
generated submodels. Viewed positively, they are a tofikitransforming mod-
els into more desirable forms without affecting satisfiébilProposition 2.15 has
already given us a taste of this perspective (we showed tbdahtanguages have
the tree model property) and it will play an important roleenhwe discuss com-
pleteness in Chapter 4.

The results of this section are similarly double-edged. Yéegaing to investi-
gate modal expressivity over finite models, and the basidtre® will prove is that
modal languages have tfiaite model propertyif a modal formula is satisfiable
on an arbitrary model, then it is satisfiable on a finite model.

Definition 2.27 (Finite Model Property) Letr be a modal similarity type, and
let M be a class of--models. We say that has thefinite model property with
respect taM if the following holds: if¢ is a formula of similarity typer, and¢ is
satisfiable in some model i, then¢ is satisfiable in dinite model inM.

In this section we will mostly be concerned with the specadecin whichM in
Definition 2.27 is the collection oéll 7-models, so to simplify terminology we
will use the term ‘finite model property’ for this special eas'he fact that modal
languages have the finite model property (in this sense) eavidwed as a lim-
itative result: modal languages simply lack the expressivength to force the
existence of infinite models. (By way of contrast, it is easywrite down first-
order formulas which can only be satisfied on infinite moglébs the other hand,
the result is a source of strength: we do not need to bothert gaditrary) infinite
models, for we can always find an equivalent finite one. Thensghe door to the
decidability results of Chapter 6. (The satisfiability gesh for first-order logic,
as the reader probably knows, is undecidable over arbitrargels.)

We will discuss two methods for building finite models foris@éble modal
formulas. The first is to (carefully!) select a finisabmodelof the satisfying
model, the second (called the filtration method) is to defirsuigablequotient
structure.
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Selecting a finite submodel

The selection method draws together four observationse dehe first. We know
that modal satisfaction is intrinsicallpcal: modalities scan the states accessible
from the current state. How much of the model can a modal farsee from the
current state? That obviously depends on how deeply thelitiegld contains are
nested.

Definition 2.28 (Degree) We define thelegreeof modal formulas as follows.

deg(p) = 0
deg(l) = 0
deg(—¢) = deg(o)
deg(¢ V) = max{deg(¢),deg(v)}

deg(A(p1,...,0n)) = 14 max{deg(¢y),...,deg(dn)}.
In particular, the degree of a basic modal formtlais 1 + deg(¢). -

Second, we observe the following:

Proposition 2.29 Let 7 be a finite modal similarity type, and assume that our col-
lection of proposition letters is finite as well.

(i) For all n, up to logical equivalence there are only finitely many folasiof
degree at most.

(i) For all n, and every--model)t and statew of 91, the set of all--formulas
of degree at most that are satisfied by, is equivalent to a single formula.

Proof. We prove the first item by induction an The case: = 0 is obvious. As
for the caser+ 1, observe that every formula of degree: + 1 is a boolean combi-
nation of proposition letters and formulas of the fofmp, wheredeg(v)) < n. By
the induction hypothesis there can only be finitely many equivalent such for-
mulasy. Thus there are only finitely many non-equivalent booleamtmoations
of proposition letters and formula, wherevy has degree at most. Hence,
there are only finitely many non-equivalent formulas of éegat most. + 1.
Item (ii) is immediate from item (i). -

Third, we observe that there is a natural way of finitely agpnating a bisimula-
tion. These finite approximations will prove crucial in oeasch for finite models.

Definition 2.30 (n-Bisimulations) Here we define:-bisimulations for modal
similarity types containing only diamonds, leaving the aiéfin of the general
case as part of Exercise 2.3.2. 198t and 9" be models, and letr andw’ be
states ofJt and9V, respectively. We say that andw’ aren-bisimilar (notation:
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w €, w') if there exists a sequence of binary relatidfis C --- C Z; with the
following properties (fori + 1 < n):

() wz,w'

(i) If vZyo' thenv ando’ agree on all proposition letters;
(i) If vZ;11v" and Rvu, then there exists’ with R'v'v’ anduZ;u/;
(iv) If vZ;110" andR'v'u/, then there exists with Rvu anduZ;u'. -

The intuition is that ifw <, w’, thenw andw’ bisimulate up to depth. Clearly,
if w € W, thenw &, w' for all n — but the converse need not hold; see Exer-
cise 2.3.1.

Fourth, we observe that for languages containing only finiteany proposition
letters, there is amxactmatch between modal equivalence an@isimilarity for
all n. Thatis, for such languages not only deebisimilarity for all » imply modal
equivalence, but the converse holds as well.

Proposition 2.31 Let 7 be a finite modal similarity typeb a finite set of proposi-
tion letters, and lef)t and9t’ be models for this language. Then for everin 9t
andw’ in M, the following are equivalent.

(i) we, u
(i) w andw’ agree on all modal formulas of degree at mast

It follows that »-bisimilarity for all »* and modal equivalence coincide as rela-
tions between states.

Proof. The implication (i)=- (ii) may be proved by induction on. For the con-
verse implication one can use an argument similar to the ead in the proof of
Theorem 2.24; we leave the proof as part of Exercise 2.3-2.

Itis time to draw these observations together. The follgndefinition and lemma,
which are aboutootedmodels, give us half of what we need to build finite models.

Definition 2.32 Let 7 be a modal similarity type containing only diamonds. Let
M = (W,Ry, ..., R,, ...) be arootedr-model with rootw. The notion of the
heightof states ir0)t is defined by induction. The only element of height O is the
root of the model; the states of height+ 1 are those immediate successors of
elements of height that have not yet been assigned a height smaller ithan.
Theheight of a modeMt is the maximunmm such that there is a state of heighin

91, if such a maximum exists; otherwise the heigh9®fis infinite.

For a natural numbek, therestriction of 91 to & (notation: 9t | k) is defined
as the submodel containing only states whose height is atinddore precisely,
M | k) = (Wi, Rigy.-., Rpky- -, Vi), whereWy, = {v | height(v) < k},
R, = R, N (W x Wy), and for eachy, Vi.(p) = V(p) N W. A
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In words: the restriction ofit to k£ contains all states that can be reached from
the root in at mosk steps along the accessibility relations. Typically, thil mot

give ageneratedsubmodel, so why does it interest us? Because, as we can now
show, given a formula& of degreek that is satisfiable in some rooted mod®#| the
restriction of9)t to £ contains all the states we need to satisfyTo put it another

way: we are free to simply delete all states that lie beyoedithorizon.

Lemma 2.33 Let 7 be a modal similarity type that contains only diamonds. Let
M be a rootedr-model, and let: be a natural number. Then, for every stateof
(M | k), we have | k), w < M, w, wherel = k — height(w).

Proof. Take the identity relation oftt | k). We leave the reader to work out the
details as Exercise 2.3.3. The following comment may beflkelp essence this
lemma tells us that if we are only interested in the satidftglof modal formulas
of degree at most, then generating submodels of heighsuffices to maintain
satisfiability. -

Putting together Proposition 2.31 and Lemma 2.33, we colectbat every satis-
fiable modal formula can be satisfied on a model of fihiggght This is clearly
useful, but we are only halfway to our goal: the resulting eladay still be infi-
nite, as it may be infinitely branching. We obtain the finitedelowe are looking
for by a further selection of points; in effect this discatasvanted branches and
leads to the desired finite model.

Theorem 2.34 (Finite Model Property — via Selection)Let 7 be a modal simi-
larity type containing only diamonds, and lgtbe ar-formula. If ¢ is satisfiable,
then it is satisfiable on a finite model.

Proof. Fix a modal formulap with deg(¢) = k. We restrict our modal simi-
larity type 7 and our collection of proposition letters to the modal ofmsaand
proposition letters actually occurring ifn Let 9%, w; be such thaiiy, w; I+ ¢.
By Proposition 2.15, there exists a tree-like mofg} with root w- such that
Mo, ws |- ¢. LetMs := (Ms [ k). By Lemma 2.33 we ha®ly, wo < M3, wo,
and by Proposition 2.31 it follows thaits, ws IF ¢.

By induction onn < k we define finite sets of states), ..., S, and a (final)
modelNt, with domainSy U - - - U Si; the points in eacly,, will have heightn.

Define Sj to be the singletodws }. Next, assume th&y, ..., S, have already
been defined. Fix an elemenif S,,. By Proposition 2.29 there are only finitely
many non-equivalent modal formulas whose degree is at M@=y, ..., Um.
For each such formula that is of the forfa) x and holds irti; atv, select a state
u from M3 such thatR,vu andMs, u I+ y. Add all theseus to S, 11, and repeat
this selection process for every stateSin S, is defined as the set of all points
that have been selected in this way.
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Finally, definedt, as follows. Its domain i$yU- - -US}; as eact; is finite, Ny
is finite. The relations and valuation are obtained by reistig the relations and
valuation of)t; to the domain of)i4. By Exercise 2.3.4 we have thait,, wy &,
M3, w2, and hencéy, ws Ik ¢, as required.

How well does the selection method generalize to other mizalgjuages? For
certain purposes it is fine. For example, to deal with aryitraodal similarity
types, the notion of a tree-like model needs to be adapteth¢in we explained
how to do this in Exercise 2.1.7), but once this has been daneam prove a
general version of Proposition 2.15. Next, the notiomddisimilarity needs to
be adapted to other similarity types, but that too is stithigtvard (it is part of
Exercise 2.3.2). Finally, the selection process in the fpobd heorem 2.34 needs
adaptation, but this is unproblematic. In short, we can sti@t the finite model
property holds for arbitrary similarity types using theesgion method.

The method has a drawback: the input model for our constmughay satisfy
important relational properties (such as being symmetboig) the end result is al-
ways a finite tree-like model, and the desired relationaperoes may be (and
often are) lost. So if we want to establish the finite modepprty with respect
to a class of models satisfying additional properties — gbing that is very im-
portant in practice — we may have to do additional work oncehase obtained
our finite tree-like model. In such cases, the selection otetends to be harder
to use than the filtration method (which we discuss next). dtfoeless, the idea of
(intelligently!) selecting points to build submodels isgortant, and (as we will
see in Section 6.6 when we discuss NP-completeness) theadiya comes into
its own when the model we start with is already finite.

Finite models via filtrations

We now examine the classic modal method for building finitedeis: filtration.
Whereas the selection method builds finite modelddlgtingsuperfluous material
from large, possibly infinite models, the filtration methawguces finite models
by taking a large, possibly infinite model argntifyingas many states as possible.
We first present the filtration method for the basic modal eaage.

Definition 2.35 A set of formulasY' is closed under subformulgsr: subformula
closed if for all formulas ¢, ¢": if ¢V ¢' € ¥ then so are and¢’; if -¢ € ¥ then

sois¢; and if A(¢1,...,¢,) € X then so arepy, ..., ¢,. (For the basic modal
language, this means thatifp € ¥, then soisp.) -

Definition 2.36 (Filtrations) We work in the basic modal language. LBt =
(W, R, V) be a model and’ a subformula closed set of formulas. let s, be the
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Fig. 2.6. A model and its filtration

relation on the states 6t defined by:
w e~y v iff forall ¢in X0 (9, w Ik ¢ iff M, v Ik @).

Note that«~x is an equivalence relation. We denote the equivalence ofaas
statew of 9t with respect to~~ 5, by |w| s, or simply by|w| if no confusion will
arise. The mapping — |w| that sends a state to its equivalence class is called the
natural map

Let Wy = {|w|s | w € W}. Supposelt), is any model(W/, Rf, v/} such
that:

() W/ =ws.

(i) If Rwv thenR/|w]|v].
(iii) If Rf|w||v| then for all®og € X, if M, v IF ¢ thenM, w I- Oo.
(v) VI (p) = {|w| | M, w I p}, for all proposition letterp in .

ThenDﬁfE is called dfiltration of 90t throughX.

Because of item (ii), the natural map associated with amafiitin is guaranteed to
be a homomorphism (see Definition 2.7). And at first glanceay reeem that it
is even guaranteed to be a bounded morphism (see Definitl@), Zor item (iii)
seems reminiscent of the back condition. Unfortunatelg, ifnotthe case, as the
following example shows.

Example 2.37 Let Mt be the mode(N, R, V'), whereR = {(0, 1), (0,2), (1,3)}U
{(n,n+1) | n > 2}, andV hasV(p) = N\ {0} andV (¢) = {2}.

Further, assume thal' = {<p,p}. Clearly X' is subformula closed. Then,
the modelt = ({[0], |11}, {([0], [1]), (|1}, 1))}, V"), whereV'(p) = {|1]}, is a
filtration of 9t through Y. See Figure 2.6.

Clearly,91 cannot be a bounded morphic image ®t: any bounded morphism
would have to preserve the formujaand the natural map does not preseyvend
need not, becausgis not an element of our subformula closed Set
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But in many other respects filtrations are well-behaved. &etart, the method
gives us a bound (albeit an exponential one) on the size oéthdting finite model:

Proposition 2.38 Let X' be a finite subformula closed set of basic modal formulas.
For any modebnt, if 9t/ is a filtration of Mt through a subformula closed sé&t,
thend/ contains at most®*4(*) nodes (whereard(X) denotes the size df).

Proof. The states of)t/ are the equivalence classesiif. Let g be the function
with domainWy, and rangeP(Y) defined byg(|w|) = {¢ € ¥ | M, w IF ¢}.

It follows from the definition of« > thatg is well defined and injective. Thus
card(Wy) < card(P(X)) = 2¢ad(¥) -

Moreover — crucially — filtrations preserve satisfactiorttie following sense.

Theorem 2.39 (Filtration Theorem) Consider the basic modal language. Let
M/ (= (W, R/, V) be afiltration of9)t through a subformula closed sé&t.
Then for all formulasy € Y, and all nodesw in 901, we havedt, w I+ ¢ iff
M/, jwl I .

Proof. By induction on¢. The base case is immediate from the definitior/éf
The boolean cases are straightforward; the factXhest closed under subformulas
allows us to apply the inductive hypothesis.

So suppose>¢ € X anddM, w |- G¢. Then there is a such thatRwv and
M, v - ¢. AsM/ is a filtration, R/ |w||v|. As ¥ is subformula closedp € ¥,
thus by the inductive hypothesi®”, |v| IF ¢. Hence/, |w| IF & ¢.

Conversely, suppose¢ € ¥ andM/, |w| IF ©¢. Thus there is a state| in
M/ such thatk/ |w||v| and9/, |v| IF ¢. As ¢ € X, by the inductive hypothesis
M, v IF ¢. So the third clause in Definition 2.36 is applicable, and wectude
that, w IF Gp. A

Observe that clauses (ii) and (iii) of Definition 2.36 areigesd to make the modal
case of the induction step go through in the proof above.

But we still have not done one vital thing: we have not acjusliown that fil-
trations exist! Observe that the clauses (ii) and (iii) ifiDidon 2.36 only impose
conditions on candidate relatiods’ — but we have not yet shown that a suitable
R/ can always be found. In fact, there are always at least tws weaglefine binary
relations that fulfill the required conditions. Defifé and R’ as follows:

() R*|wl||v|iff Ju' € |w|F' € Jv| Rw'v'.
(i) R'|wl||v| iff for all formulas ©¢ in X: 9, v IF ¢ implies M, w - Oé.

These relations — which are not necessarily distinct — gise to thesmallest
andlargestfiltrations respectively.
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Lemma 2.40 Consider the basic modal language. 128t be any modelY any
subformula closed set of formulagl/s the set of equivalence classes induced
by «~ 5, and V/ the standard valuation of’s. Then both(Wx, R*,V/) and
(W, RY, V1) are filtrations of 0 through . Furthermore, if(Ws, Rf, V) is
any filtration oft through ¥ thenR® C Rf C R'.

Proof. We show that Wy, R*, V') is a filtration; the rest is left as an exercise.
It suffices to show thaf* fulfills clauses (ii) and (iii) of Definition 2.36. But
R? satisfies clause (ii) by definition, so it remains to checlusta(iii). Suppose
R*|w||v|, and further suppose thatp € X' andd, v I- ¢. As R®|w||v|, there exist
w' € |w| andv’ € |v| such thatRw'v'. As ¢ € ¥ and9, v Ik ¢, then because
v ey v, we getht, v’ Ik ¢. But Rw'v', soM, w' IF ¢, But$g € X, thus as
w' e~ w it follows thatMt, w IF G¢.

Theorem 2.41 (Finite Model Property — via Filtrations) Let ¢ be a basic mo-
dal formula. If¢ is satisfiable, then it is satisfiable on a finite model. Indeed
satisfiable on a finite model containing at m@8t nodes, wheren is the number
of subformulas 0.

Proof. Assume that is satisfiable on a modéR; take any filtration oD)t through
the set of subformulas @f. That¢ is satisfied in the filtration is immediate from
Theorem 2.39. The bound on the size of the filtration is imaedirom Proposi-
tion 2.38. -

There are several points worth making about filtrations. fifs¢ has to do with
the possible loss of properties when moving from a model ®afrits filtrations.
As we have already discussed, a drawback of the selectidmochés that it can be
hard to preserve such properties. Filtrations are far biett@is respect — but they
certainly are not perfect. Let us consider the matter margety.

Suppose Wy, Rf, V1) is a filtration of (W, R, V). Now, clause (ii) of Defi-
nition 2.36 means that the natural map fréfto 9t/ is a homomorphism with
respect to the accessibility relatidh Thus any property of relations which is pre-
served under such maps will automatically be inherited kyyfatnation. Obvious
examples include reflexivity and right unboundedn@ssly Rzy).

However, many interesting relational properties moépreserved under homo-
morphisms: transitivity and symmetry are obvious couniameples. Thus we need
to find special filtrations which preserve these propert&mnetimes this is easy;
for example, the smallest filtration preserves symmetryn&ones we need new
ideas to find a good filtration; the classic example involvasditivity. Let's see
what this involves.

Lemma 2.42 Let9t be a model X' a subformula closed set of formulas, aid:
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Fig. 2.7. Filtrating a model based ¢@), <)

the set of equivalence classes induced®by «~ 5.. Let R be the binary relation
on Wy defined by:

R|wl|v| iff for all ¢, if O¢ € X and9, v - ¢ vV O thend, w I .
If R is transitive then Wy, R', V/) is a filtration andR! is transitive.
Proof. Left as Exercise 2.3.5. 4

In short, filtrations are flexible — but it is not a matter ofugland play’. Creativity
is often required to exploit them.

The second point worth making is that filtrations of an inénitodel through a
finite set manage to represent an infinite amount of infoilwnan a finitary manner.
It seems obvious, at least from an intuitive point of viewattthis can only be
achieved bydentifyinglots of points. As we have seen in Example 2.37, an infinite
chain may be collapsed onto a single reflexive point by afiidtma An even more
informative example is provided by models based on themat&® For instance,
what happens to the density condition in the filtration? Det= (Q, <, V'); then
any (finite) filtration of9t has the form displayed in Figure 2.7. What is going
on here? Instead of viewing models as structures made uptelsand relations
between them, in the case of filtrations it can be useful tov\tleem assetsof
states (namely, the sets of identified states) and relakietvgeen those sets. The
following definition captures this idea.

Definition 2.43 Let (W, R, V') be a transitive frame. Alusteron (W, R,V) is
a subset”' of W that is a maximal equivalence relation under That is, the
restriction of R to C' is an equivalence relation, and thisnet the case for any
other subseD of W such thatC' C D.

A cluster issimpleif it consists of a single reflexive point, amaoper if it con-
tains more than one point.—

As Figure 2.7 shows, a (finite) filtration 6f), <) can be thought of as resulting in
a finite linear sequence of clusters, perhaps interspergbdsingleton irreflexive
points (no two of which can be adjacent). The reader is asketi¢ck this claim
in Exercise 2.3.9. Clusters will play an important role irctan 4.5.

To conclude this section we briefly indicate how the filtratimethod can be
extended to other modal languages. Let us first consider Infaguages based
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on arbitrary modal similarity types. Fix ar-modeldt = (W, R,, V)aer and a
subformula closed seéf as in Definition 2.36. Suppoﬁmf = Wy, Rﬁ, VI aer
is ar-model wherdVy; andV/ are as in Definition 2.36, and far € 7, Rﬁ satisfy

(i)’ If Rywoy ... v, thenR wl||vy]. .. v,
(i) If R |wl||vy|...|vy|, then for allgy, ..., ¢, € X, if A(d1,...,¢n) € X
anddMt, vy Ik éq, ..., M, v, IF &y, thend, w I- A(py, ..., dn).

Then,‘)ﬁfz is ar-filtration of 9t through X

With this definition at hand, Proposition 2.38 and Theoreg®2an be reformu-
lated and proved for-filtrations, and suitable versions of the smallest anddstrg
filtrations can also be defined, resulting in a general mauklbg of Theorem 2.41,
the Finite Model Property.

What about basic temporal logiepL, and arrow logic? It turns out that the
filtration method works well for all of these. For basic termrgddogic we need to
issue the customary warning (we need to be explicit about Wiedfiltration does
to R'), but with this observed, matters are straightforward.r&ige 2.3.7 asks the
reader to define transitive filtrations for the basic templaraguage.

Matters are far more interesting (and difficult) witbL — but here too, by
making use of a clever idea called the Fisher-Ladner cloduigepossible to use a
filtration style argument to show thabL has the finite model property; we will do
this in Section 4.8 as part of a completeness proof (Theor8f) 4Exercise 2.3.10
deals with the finite model property for arrow logic.

Exercises for Section 2.3

2.3.1 Find two model$t and9’ and states andw’ in these models such that < ,, w’
for all n, but it isnotthe case that < w' are bisimilar. (Hint: we drew a picture of such
a pair of models in the previous section.)

2.3.2 Generalize the definition af-bisimulations (Definition 2.30) from diamond-only
to arbitrary modal languages. Then prove Proposition 284t { bisimilarity for all n
implies modal equivalence and conversely) for arbitrargleddanguages.

2.3.3 Lemma 2.33 tells us that if we are only interested in the Baliity of modal for-
mulas of degree at most we can delete all states that lie beyond khleorizon without
affecting satisfiability. Prove this.

2.3.4 The proof of Theorem 2.34 uses a selection of points argutoergtablish the finite
model property. But no proof details were given for the lasti€ial) claim in the proof,
namely thabiy, w- is k-bisimilar to9ts, w-. Fill in this gap.

2.3.5 First show that not every filtration of a transitive modelransitive. Then prove
Lemma 2.42. That is, show that the relatiBhdefined there is indeed a filtration, and that
any filtration of a transitive model that makes usd¥fis guaranteed to be transitive.
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2.3.6 Finish the proof of Lemma 2.40. That is, prove that the filtnag R° and R’ are
indeed the smallest and the largest filtration, respegtiveladdition, give an example of
amodel and a set of formulas for whiétf andR' coincide.

2.3.7 Show that every transitive mod@lV, R, V') has a transitiveemporalfiltration. (Take
care to specify what the filtration does®.)

2.3.8 Call a frame or modetuclideanif it satisfiesVxyz ((Rxy A Rxz) — Ryz), and let
E be the class of euclidean models. Fix a formgland letY be the smallest subformula
closed set of formulas containirggthat satisfies, for all formulag: if ¢¢ € Y, then
OOy € Y. (Recall thatd is an abbreviation of-&—.) Note that in generall’ will be
infinite.
(a) Provethak IF Oy — OO,
(b) Prove that every euclidean model can be filtrated thratigh a euclidean model.
(c) Showthatevery euclidean model satisfies the followinglai reduction principles:
QOO = 00,000 +» ¢0, OO0 «+» OO andodd «» ¢0O. That s, prove that
the formulasC OO+ OO, ... are true throughout every euclidean model.
Conclude that” is finite modulo equivalence on euclidean models.
(d) Prove that the basic modal similarity type has the finiteled property with respect
to the class of euclidean models. Can you prove this resuiplgi by filtrating
through any subformula closed set of formulas contaigihg

2.3.9 Show that any finite filtration of a model based on the ratismdth their usual or-
dering is a finite linear sequence of clusters, perhapssipgesed with singleton irreflexive
points, no two of which can be adjacent.

2.3.10 Consider the similarity type_, of arrow logic.

(i) Show thatr_, has the finite model property with respect to the class ofrativa

models.

(i) Consider the class of arrow models based on arrow fregnes(IV, C, R, I) such
that for all s, t andw in W we have (i)C'stu iff Csut iff Ctus and (ii) C'stu and
Iu iff s = t. Prove that arrow formulas have the finite model properti\néspect
to this class of arrow models.

(iii) Prove thatr_, does not have the finite model property with respect to thesad@all
square models. (Hint: try to express that the extensioneoptbpositional variable
pis a dense, linear ordering.)

2.4 The Standard Translation

In the Preface we warned the reader against viewing modal bxyan isolated
formal system (remember Slogan 37?), yet here we are, haliwaygh Chapter 2,
and we still haven'’t linked modal logic with the wider logiaaorld. We now put
this right. We define a link called thetandard translation This paves the way
for the results on modal expressivity in the sections thibvig for the study of
frames in the following chapter, and for the introductiontloé guarded fragment
in Section 7.4.

We first specify oucorrespondence languages that is, the languages we will
translate modal formulas into.
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Definition 2.44 For 7 a modal similarity type and a collection of proposition
letters, letZ1 (&) be the first-order language (with equality) which has unaegp
icates Py, P, P, ... corresponding to the proposition letters p1, p2, ... In
&, and an(n + 1)-ary relation symbolR, for each f-ary) modal operaton in
our similarity type. We writex(x) to denote a first-order formula with one free
variable,z. -

We are now ready to define the standard translation.

Definition 2.45 (Standard Translation) Letx be a first-order variable. Ttstan-
dard translation ST, taking modal formulas to first-order formulas &t (&) is
defined as follows:

STe(p) = Pz
ST.(L) = xw#x
STo(m0) = —5Tu(0)
STe(oVY) = STa(d)V STe(1)
)

= dyi...3dyn (RAmyl S Yn A
ST?A (¢1) ASERRA STyn(¢n))a
wherey, ...,y, are fresh variables (that is, variables that have not besth ssfar

in the translation). When working with the basic modal leaqgge, the last clause
boils down to:

ST (C¢) =y (Rxy A STy ().
Note that (to keep notation simple) we prefer to useather thanR.,, and we
will continue to do this. We leave to the reader the task ofkigy out what

ST (V(¢1,...,0,)) is, but we will point out that for the basic modal language
the required clause is:

ST.(O¢) =Vy (Rey — ST ,(¢)). 4

Example 2.46 Let’s see how this works. Consider the formgtadp — ¢).

ST.(C(Fp —q)) =
Y1
= dn
= dn

Rxyy A STy, (Op — q))

Ry, A (ST, (Op) = 5Ty, (q)))

Ry A (Vy2 (Ry1y2 — STy, (p) — Qur))
Rayr A (Vyz2 (Ryry2 = Pya) — Qu1))

Note that (this version of) the standard translation ledkeschoice of fresh vari-

ables unspecified. For exampl&ysss (Rxyase A (Vy14 (Ry2seyia — Pyra) —
Qy256)) Is a legitimate translation of(0Op — ¢), and indeed there are infinitely

LLI
—~~ I~/
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many others, all differing only in the bound variables theytain. Later in the
section we remove this indeterminacy — elegantly

It should be clear that the standard translation makes gewsks it is essentially
a first-order reformulation of the modal satisfaction défom. For any modal for-
mula¢, ST (o) will contain exactly one free variable (namety; the role of this
free variable is to mark the current state; this use of a feg@lile makes it pos-
sible for the global notion of first-order satisfaction tomic the local notion of
modal satisfaction. Furthermore, observe that modaktiesranslated asounded
quantifiers and in particular, quantifiers bounded to act only on relatates; this
is the obvious way of mimicking the local action of the moties in first-order
logic. Because of its importance it is worth pinning downt ju$y the standard
translation works.

Models for modal languages based on a modal similarity tyaed a collection
of proposition lettersp can also be viewed as models 6t (®). For example,
if 7 contains just a single diamon®, then the corresponding first-order language
L1(®) has a binary relation symbd and a unary predicate symbol corresponding
to each proposition letter ir — and a first-order model for this language needs to
provide an interpretation for these symbols. But a (modajiet = (W, R, V')
supplies precisely what is required: the binary relatidoan be used to interpret
the relation symbaR, and the seY’(p;) can be used to interpret the unary predicate
P;. This shouldhotcome as a surprise. As we emphasized in Chapter 1 (especially
Sections 1.1 and 1.3) there is no mathematical distincteiwden modal and first-
order models — both modal and first-order models are simpéyiomal structures.
Thus it makes perfect sense to write things Bk = ST, (¢)[w], which means
that the first-order formule&T,(¢) is satisfied (in the usual sense of first-order
logic) in the modeb)t whenw is assigned to the free variable

Proposition 2.47 (Local and Global Correspondence on Mods) Fix a modal
similarity typer, and let¢ be ar-formula. Then:

(i) Forall 9t and all statesv of Mt M, w I+ ¢ iff M = ST, (o) [w].
(i) Forall ot M I ¢ iff M = Vo ST,(9).

Proof. By induction ong. We leave this to the reader as Exercise 2.4.4.

Summing up: when interpreted on models, modal formulas que/alent to first-
order formulas in one free variable. Fine — but what does ghat us? Lots!
Proposition 2.47 is a bridge between modal and first-ordgc le- and we can use
this bridge to import results, ideas, and proof technique fone to the other.

Example 2.48 First-order logic has the compactness property@ifs a set of
first-order formulas, and every every finite subse®ois satisfiable, then so 9
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itself. It also has the downward Lowenheim-Skolem propefta set of first-order
formulas has an infinite model, then it has a countably irgimbdel.

It follows that modal logic must have both these propert@se( models) too.
Consider compactness. Suppdsés a set of modal formulas every finite subset
of which is satisfiable — is itself satisfiable? Yes. Consider the $&t,(¢) |
¢ € X}, As every finite subset o has a model it follows (reading item (i) of
Proposition 2.47 left to right) that every finite subset{6f",(¢) | ¥ € ¥} does
too, and hence (by first-order compactness) that this wiebls satisfiable in some
model, sayt. But then it follows (this time reading item (i) of Propositi 2.47
right to left) thatY' is satisfiable irt)t, hence modal satisfiability over models is
compact.

And there’s interesting traffic from modal logic to first-erdogic too. For ex-
ample, a significant difference between modal and firstyolaggc is that modal
logic is decidable (over arbitrary models) but first-ordagit is not. By using our
understanding of modal decidability, it is possible to kecaovel decidable frag-
ments of first-order logic, a theme we will return to in Seetib4 when we discuss
the guarded fragment. -

Just as importantly, the standard translation gives us arasearch agenda for
investigating modal expressivitycorrespondence thearylhe central aim of this
chapter is to explore the expressivity of modal logic ovedeis — but how is ex-
pressivity to be measured? Proposition 2.47 suggestsenesting strategy: try to
characterize the fragment of first-order logic picked outh®ystandard translation.
It is obvious on purely syntactic grounds that the standeadstation is not
surjective (standard translations of modal formulas dantaly bounded quan-
tifiers) — but could every first-order formula (in the appliepe correspondence
language) bequivalentto the translation of a modal formula? No. This is very
easy to see: whereas modal formulas are invariant undenddeions, first-order
formulas need not be; thus any first-order formula which isineariant under
bisimulations cannot be equivalent to the translation ofoalahformula. We have
seen such a formula in Section 2.2, (nam&dyvyoys (y1 # y2 Ay1 # yz A ys #
y3 A Rry1 A Rrys A Ryyys A Ryoys)), and it is easy to find simpler examples.
Thus the (first-order formulas equivalent to) standardsfistions of model for-
mulas are a proper subset of the correspondence languageh ¥uset? Here’s
a nice observation. The standard translation can be refatetuso that it maps
every modal formula into a very small fragment@f(®), namely a certaifinite-
variable fragment Suppose the variables 6 (¢) have been ordered in some way.
Then then-variable fragment of’1(®) is the set ofC! (&) formulas that contain
only the firstn variables. As we will now see, by judicious reuse of variapke
modal language with operators of arity at mastan be translated into the+ 1-
variable fragment ofZ(¢). (Reuse of variables is the name of the game when
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working with finite variable fragments. For example, we capress the existence
of threedifferent points in a linear ordering using ontyo variables as follows:
Jry(x <y ATz (y <x)).)

Proposition 2.49 (i) Let7 be a modal similarity type that only contains di-
amonds. Then, every-formula ¢ is equivalent to a first-order formula
containing at most two variables.

(i) More generally, ifr does not contain modal operators whose arity ex-
ceedsn, all 7-formulas are equivalent to first-order formulas contaupiat
mostn + 1 variables.

Proof. Assumer contains only diamondéa), (b), ...; proving the general case
is left as Exercise 2.4.2. Fix two distinct individual vdiies z andy. Define two
variantsST', and ST, of the standard translation as follows.

ST.(p) = P Ty(p) =
ST&:( )=xFw ( )-y#y

Tw(—9) -ﬁST ) ( )=ﬁST (¢)
(¢V¢) Ty(9) V ST (¥) (¢vw> Ty(¢) Vv STy()

ST ((a)¢) = ﬂy (Raxy A STy(9)) ST y((@)9) = ﬂx (R yr A ST ().

Then, for anyr-formula ¢, its ST ,-translation contains at most the two variables
x andy, andST,(¢) is equivalent to the original standard translatioryof

Example 2.50 Let’'s see how this modified standard translation works. @emns
again the formula>(0Op — q).

ST(C(0Op—q)) = 3Fy(RxyAST,(Op — q))
= 3Jy(Ray A (Y (Ryx — Px) = Qy))

That is, we just keep flipping between the two variabhieandy. The result is
a translation containing only two variables (instead of timee used in Exam-
ple 2.46). As a side effect, the indeterminacy associatéd thve original version
of the standard translation has disappeared.

This raises another question: is every first-order formula) in two variables
equivalent to the translation of a basic modal formula? Adhe answer iso.
There is even a first-order formula in a single variablerhich is not equivalent

to any modal formula, nameljRz2. To see this, assume for the sake of a con-
tradiction thato is a modal formula such th&t7',(¢) is equivalent toRxx. Let

9 be a singleton reflexive model and letbe the unique state iM1; obviously
(irrespective of the valuation)t = Rxx[w]. Let91 be a model based on the strict
ordering of the integers; obviously (again, irrespecti’¢he valuation), for every
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integerv, N |= ~Rxx[v]. Let Z be the relation which links every integer with the
unique state iMt, and assume that the valuationsdinandt are such tha¥ is

a bisimulation (for example, make all proposition lettetgetat all points in both
models). A9 = Rxax|w], it follows by Proposition 2.47 thabt, w I- ¢ (after all,

by assumptiorRzx is equivalent taST',(¢)). But for any integew, we have that

w < v, henceM,v IF ¢. Hence (again by Proposition 2.47 and our assumption
that ST, (¢) is equivalent toRxx) we have thadt = Rxxz[v], contradicting the
fact that)l = = Rxx[v].

We will not discuss correspondence theory any further Harein Section 2.6
we will prove one of its central results, the Van Benthem @btarization Theo-
rem: a first-order formula is equivalent to the translatiba modal formula if and
only if it is invariant under bisimulations.

Proposition 2.47 is also going to help us investigate moxatessivity in other
ways, notably via the concept of definability.

Definition 2.51 Let 7 be a modal similarity typeC a class ofr-models, and™ a
set of formulas over. We say that ' definesor characterizesa classK of models
within C if for all models 9t in C we have thab)t is in K iff 9t I I". If Cis
the class of ali--models, we simply say thdt defines or characterizég§ we omit
brackets whenevdr is a singleton. We will say that a formuadefines groperty
wheneverp defines the class of models satisfying that property.

It is immediate from Proposition 2.47 that if a class of madsldefinable by a set
of modal formulas, then it is also definable by a set a firseonfdrmulas — but
this is too obvious to be interesting. The important way incliiProposition 2.47
helps, is by making it possible to exploit standard modekstiction techniques
from first-order model theory. For example, in Section 2.6wi prove Theo-
rem 2.75 which says that a class of (pointed) models is mpdaifinable if and
only if it is closed under bisimulations and ultraproducs {mportant construc-
tion known from first-order model theory; see Appendix A)dats complement
is closed under ultrapowers (another standard model ttieaenstruction). It
would be difficult to overemphasize the importance of thadad translation; it
is remarkable that such a simple idea can lead to so much.

To conclude this section, let's see how to adapt these idethe tasic temporal
languagepDL, and arrow logic. The case of basic temporal logic is eadywal
have to do is add a clause for translating the backward lgosperatorP:

ST.(Pg) = 3y (Rya A ST, (9)).

Note that we are using the more sophisticated approachdintes in the proof
of Proposition 2.49: flipping between two translatio$$,, and S7',. (Thus we
really need to add a mirror clause which flips the variableskaSo, just like
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the basic modal language, the basic temporal language carapped into a two
variable fragment of the correspondence language. Mordagain, as with the
basic modal language) not every first-order formula in twoaldes is equivalent
to (the translation of) a basic temporal formula (see Esergi4.3).

Propositional dynamic logic calls for more drastic changes's first look at the
x-free fragment — that is, &pL formulas without occurrences of the Kleene star.
In PDL both formulas and modalities are recursively structuredys’re going to
need two interacting translation functions: one to hanéeformulas, the other to
handle the modalities. The only interesting clause in thetga translation is the
following:

ST ((m)p) = Fy (ST yy(m) A STy(9)).

That s, instead of returning a fixed relation symbol (8ythe formula translation
ST, calls onSTy, to start recursively decomposing the programWhy does this
part of the translation require two free variables? Becatsse@sk is to define a
binary relation.

STwy(a) = Ryxy (and similarly for other pairs of variables)
STxy(ﬂjUTl'g) == STIy(Tl'l)\/STxy(TI'Q)
ST:{;y(Wl ;'/TZ) = 3z (STa:z(Wl) /\Ssz('/TZ))'

It follows that we can translate thefree fragment ofPDL into athree variable
fragment of the correspondence language. The details arth \wbecking; see
Exercise 2.4.4.

But the really drastic change comes when we consider théafudluage oPDL
(that is, with Kleene star). Recall that a prograris interpreted using the reflex-
ive, transitive closure of?,. But the reflexive, transitive closure of an arbitrary
relations isnot a first-order definable relation (see Exercise 2.4.5). Settnedard
translation forPDL needs to take us to a richer background logic than first-order
logic, one that can express this concept. Which one shouldse® There are
many options here, but to motivate our actual choice reballdefinition of the
meaning of DL programa’*:

Ro- = (Ra)".
whereR. is defined by
Ry iff z =y and R""lzyiff 32 (R"xz A Rzy).

Thus, if we were allowed to write infinitely long disjunctignit would be easy to
capture the meaning of an iterated program

(Ro)*xy iff (x =y) V Razy V \/ Jz1 ...z (Razz1 A A Rozny).
n>1
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In infinitary logic we can do this. More precisely, if,, ., we are allowed to form
formulas as in first-order logic, and, in addition, to builduatably infinite dis-
junctions and conjunctions. We will také, ., as the target logic for the standard
translation ofPbL. We have seen most of the clauses we need: we use the clauses
for the x-free fragment given above, and in addition the followinguse to cater

for the Kleene star:

ST py(a®) =

(x=y) VST yy(a) V \/ 210 2y (ST (@) Ao - AST ().
n>1

This example ofPDL makes an important point vividly: we cannot always hope
to embed modal logic into first-order logic. Indeed in thddwing chapter we
will see that when it comes to analyzing the expressive paf@nodal logic at
the level of frames, the natural correspondence languaga fer the basic modal
language) is second-order logic.

There is nothing particularly interesting concerning ttendard translation for
the arrow language of Example 1.16. However, this changesnwie turn to
squaremodels: in Exercise 2.4.6 the reader is asked to prove th#tisclass of
models, the arrow language corresponds to a first-ordeu&gewithbinary pred-
icate symbols, and that, in fact, it is expressivetwivalentto the three variable
fragment of such a language.

Exercises for Section 2.4
2.4.1 Prove Proposition 2.47. That is, check that the standandlation really is correct.

2.4.2 Prove Proposition 2.49 for arbitrary modal languages. Thathow that ifr does
not contain modal operators whose arity exceeds, all T-formulas are equivalent to
first-order formulas containing at mast+ 1 variables.

2.4.3 Show that there are first-order formuta&e) using at most two variables that are not
equivalent to the standard translation of a basic temporaidla.

2.4.4 In this exercise you should fill in some of the details for thenglard translation for
PDL.

(&) Check that the translation for thefree fragment oPDL really does map all such
formulas into the three variable fragment of the correspapfirst-order language.

(b) Show that in fact, there is a translation into the variable fragment of this corre-
sponding first-order language.

2.4.5 The aim of this exercise is to show that taking the reflexikenditive closure of a
binary relation is not a first-order definable operation.

(a) Show that the class of connected graphs is not first-alefgrable:



2.5 Modal Saturation via Ultrafilter Extensions 91
(i) Forl € N, let¢, be the graph given by a cycle of lendth 1:
¢ =({0,.... 0}, {(G,i+1),(i +1,4) | 0 <i <1} U{(0,1),(1,0)})

Show that for every: € N andl > 2* the graph¢; satisfies the same first-
order sentences of quantifier rank at mbsis the disjoint unio; ¥ ¢;.
(i) Conclude that the class of connected graphs is notdirder definable.

(b) Use item (a) to conclude that the reflexive transitivesate of a relation is not
first-order definable.

2.4.6 Consider the class of square models for arrow logic. Obstratea square model
M = (6y,V) can be seen as a first-order mod@Bl = (U,V(p)),eqs if we let each
propositional variable € ¢ correspond to dyadicrelation symbolP.

(a) Work out this observation in the following sense. Defirmigable translatiof)*
mapping an arrow formulato a formulag*(zo, ;) in this ‘dyadic correspondence
language’. Prove that this translation has the propertyftinall arrow formulasp
and all square modefBt the following correspondence holds:

E)JL (a07a1) H’ ¢ |ﬁ mx ': ¢*(x075€1)[(107a1].

(b) Show that this translation can be done within the thre@iée fragment of first-
order logic.

(c) Prove that conversely, every formuléz,, 1) that uses only three variables, in a
first-order language with binary predicates only, is edenato the translation of
an arrow formula on the class of square models.

2.5 Modal Saturation via Ultrafilter Extensions

Bisimulations and the standard translation are two of tléstave need to under-
stand modal expressivity over models. This section intceduhe thirdultrafilter
extensions To motivate their introduction, we will first discustennessy-Milner
model classeandmodally saturated modelboth generalize ideas met in our ear-
lier discussion of bisimulations. We will then introducdrafilter extensions as a
way of building modally saturated models, and this will lesdo an elegant result:
modal equivalence implies bisimilarity-somewhere-else.

M-saturation

Theorem 2.20 tells us that bisimilarity implies modal ealgnce, but we have
already seen that the converse does not hold in generall (Fégare 2.5). The
Hennessy-Milner theorem shows that the converse does mdhe ispecial case of
image-finite models. Let’s try and generalize this theorem.

First, when proving Theorem 2.24, we exploited the fact,thatween image-
finite models, the relation of modal equivalentself is a bisimulation. Classes of
models for which this holds are evidently worth closer study
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Definition 2.52 (Hennessy-Milner Classes).et T be a modal similarity type, and
K a class ofr-models.K is aHennessy-Milneclass, oihas the Hennessy-Milner
property; if for every two model9)t and9?’ in K and any two states), w’ of 9
andM’, respectivelyw « w' impliesM, w € M, w'.

For example, by Theorem 2.24, the class of image-finite nsdukes the Hennessy-
Milner property. On the other hand, no class of models coirgithe two models
in Figure 2.5 has the Hennessy-Milner property.

We generalize the notion of image-finiteness; doing so leads the concept of
modally-saturatear (briefly) m-saturatednodels. Suppose we are working in the
basic modal language. Lg% = (W, R, V') be a model, letv be a state i/, and
let ¥ = {¢o, ¢1, ...} be an infinite set of formulas. Suppose thahas successors
vg, V1, U2, . .. Where (respectively)o, ¢o A ¢1, o Ad1 Apa, ... hold. If there is no
successov of w whereall formulas fromX' hold at the same timehen the model
is in some sense incomplete. A model is called m-saturategtdimpleteness of
this kind does not occur.

To put it another way: suppose that we are looking for a ssoresf w at
which every formulag; of the infinite set of formulasy’ = {¢y, ¢1,...} holds.
M-saturation is a kind of compactness property, accordingttich it suffices to
find satisfying successors af for arbitrary finite approximations of.

Definition 2.53 (M-saturation) Let M = (W, R,V) be a model of the basic
modal similarity type,X a subset o’ and X' a set of modal formulas.y is
satisfiablein the setX if there is a state: € X such thatht, = = ¢ for all ¢ in X
Y isfinitely satisfiabldn X if every finite subset ot is satisfiable inX.

The model9t is called m-saturatedif it satisfies the following condition for
every statev € W and every set’ of modal formulas.

If X is finitely satisfiable in the set of successorsof
then Y is satisfiable in the set of successorswof

The definition of m-saturation for arbitrary modal simitgiriypes runs as follows.
Let  be a modal similarity type, and 8% be ar-model.9 is calledm-saturated
if, for every statew of 91 and every {-ary) modal operaton € T and sequence

Xy, ..., X, of sets of modal formulas we have the following.
If for every sequence of finite subsets C Xy, ..., 4, C X, there are
statesvy, ...,v, such thatRwuv, ...v, andvy IF Ay, ...,0, IF 4,
thenthere are states, ...,v, in M such thatRwuv, ... v, andvy I+ Xy, ...,
op IE X, A

Proposition 2.54 Let 7 be a modal similarity type. Then the class of m-saturated
7-models has the Hennessy-Milner property.
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Proof. We only prove the proposition for the basic modal languaget 9t =
(W,R,V)and' = (W', R', V') be two m-saturated models. It suffices to prove
that the relation~» of modal equivalence between stateSJirand states i’ is a
bisimulation. We confine ourselves to a proof of the forthdittan of a bisimula-
tion, since the condition concerning the propositionalakaes is trivially satisfied,
and the back condition is completely analogous to the cagerowe.

So, assume that, v € W andw’ € W' are such thaRwv andw «w w'.
Let X' be the set of formulas true at It is clear that for every finite subset of
Y we haveMt,v I A A, hencedt,w F G A\ A Asw «~ ', it follows that
Mm w' IF O A A, sow has anR'-successow such thathit’, v, I A A. In
other words,Y is finitely satisfiable in the set of successorsudf but, then, by
m-saturation Y itself is satisfiable in a success@rof w’. Thusv e v'. A

Ultrafilter extensions

So the class of m-saturated models satisfies the HennedsgrNdroperty — but
how do we actuallypuild m-saturated models? To this end, we will now introduce
the last of the ‘big four’ model constructionaltrafilter extensionsThe ultrafilter
extension of a structure (model or frame) is a kindcompletionof the original
structure. The construction adds states to a model in ood®iake it m-saturated.
Sometimes the result is a model isomorphic to the originail ékxample, when
the original model is finite) but when working with infinite mhels, the ultrafilter
extension always adds lots of new points. power set algebaaframe; we have
met this operation already in Section 1.4 when we introdgmatkeral frames, but
we repeat the definition here.

Definition 2.55 Let be a modal similarity type, argl= (W, Rx) nc- aT-frame.
For each(n + 1)-ary relationR,, we define the following two operations,, and
m9, on the power seP (W) of V.

ma(Xi,...,Xy) = {we W | there existwy,...,w, such that
Ryww; ... w, andw; € X; for all i}
md(X1,...,X,) = {weW | forallwi,... ,w,:if Rywwi ...wy,

then there is anwith w; € X;}.

In the basic modal language. (X ) is the set of points that ‘can see’ a state\in
andm’ (X) is the set of points that ‘only see’ statesin It follows that for any
model9t

V(0¢) = mo(V(¢)) and V(D) = md(V(9)).

Similar identities hold for modal operators of higher arigurthermorem, and
m?, are each other’s dual, in the following sense:



94 2 Models

Proposition 2.56 Let 7 be a modal similarity type, an§ = (W, Rp)acr @ 7-
frame. For everyn-ary modal operatora and for everyn-tuple X, ..., X,, of
subsets ofl/, we have

mo(X1,..., Xp) = W\ ma(W\ X1,..., W\ X,,).
Proof. Left to the reader. H

We are ready to define ultrafilter extensions. As the name @nirte suggest, the
states of the ultrafilter extension of a mod#&lare the ultrafilters over the universe
of M. Filters and ultrafilters are discussed in Appendix A. Resitleat encounter
this notion for the first time, are advised to make the Exescs5.1-2.5.4.

Definition 2.57 (Ultrafilter Extension) Let 7 be a modal similarity type, and
§ = (W, Ry)aer a7-frame. Theultrafilter extensionue § of § is defined as
the frame(Uf (W), RY¢) ne,. Here Uf (W) is the set of ultrafilters ovel” and
RY% upuy ... uy, holds for a tupleuy, . . . , u,, of ultrafilters overlv" if we have that
ma(Xy,...,X,) € up wheneverX; € u; (for all i with 1 < i < k).

The ultrafilter extensiorof a7-model9t = (F, V') is the modeke N = (ue §,
Vve) whereV “¢(p;) is the set of ultrafilters of which’(p;) is a member. -

What are the intuitions behind this definition? First, ndigttthe main ingredients
have a logical interpretation. Any subset of a frame canriimciple, be viewed as
(the extension or interpretation of)paoposition A filter over the universe of the
frame can thus be seen athaory in fact as a logically closed theory, since filters
are both closed under intersection (conjunction) and ugwhrsed (entailment).
Viewed this way, a proper filter is eonsistenttheory, for it does not contain the
empty set (falsum). Finally, an ultrafilter iscampletetheory, or as we will call it,
astate of affairs for each proposition (subset of the universe) an ultrafdexides
whether the proposition holds (is a member of the ultrajilbemot.

How does this relate to ultrafilter extensions? In a givem&g not every state
of affairs need be ‘realized’, in the sense that there is & datisfying all and
only the propositions belonging to the state of affairsydhk states of affairs that
correspond to therincipal ultrafilters are realized, namely, as the points of the
frame. We buildue § by adding every state of affairs f@ras a new element of the
domain — that isye § realizes every proposition .

How should we relate these new elements:if§ to each other and to the original
elements from§? The obvious choice is to stipulate th&tuguy ... u, If ug
‘sees’ then-tuple uy, ...,u,. Thatis, wheneveXy, ..., X,, are propositions of
ui, ..., uy respectively, then, ‘sees’ this combination: that is, the proposition
ma(X1,...,X,) is a member ofy. The definition of the valuatio ¢ is self-
explanatory.
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One final comment: a special role in this section is playecbysb-callegrin-
cipal ultrafilters overlV. Recall that, given an element € W, the principal
ultrafilter 7, generated by is the filter generated by the singleton $et}: that
is, my = {X C W | w € X}. By identifying a statev of a frameg with the prin-
cipal ultrafilterr,, it is easily seen that any franggis (isomorphic to) aubmodel
(but in general not generatedsubmodel) of its ultrafilter extension. For we have
the following equivalences (here proved for the basic meuilarity type):

Rwv iff  w € me(X) forall X € W such that € X
iff  mo(X) € m, forall X C W such thatX € r, (2.1)

iff  R"m,m,.
Let’s make our discussion more concrete by considering amgle.
Example 2.58 Consider the fram&t = (N, <) (the natural numbers in their usual
ordering):

0 1 2 3 4
° ° ° ° °

What is the ultrafilter extension &t? There are two kinds of ultrafilters over an
infinite set: the principal ultrafilters that are in 1-1 cependence with the points
of the set, and the non-principal ones which contain all nitefisets, and only
infinite sets, cf. Exercise 2.5.4. We have just remarked (&4¢) that the principal
ultrafilters form an isomorphic copy of the frand@ inside ue 9. So where are
the non-principal ultrafilters situated? The key fact her#nat for any pait, v’ of
ultrafilters, ifu’ is non-principal, theR““uv’. To see this, let’ be a non-principal
ultrafilter, and letX € u’. As X is infinite, for anyn € N there is ann such that
n < m andm € X. This shows thatn.(X) = N. ButN is an element of every
ultrafilter w.

This shows that the ultrafilter extensionfflooks like a gigantic balloon at the
end of an infinite string: it consists of a copyHf followed by an large (uncount-
able) cluster consisting of all the non-principal ultrafik:

[ ] [ ] [ ] [ ] [ ]
_|

We will prove two results concerning ultrafilter extensiom$e first one, Proposi-
tion 2.59, is an invariance result: any state in the origmatlel is modally equiv-

alent to the corresponding principal ultrafilter in the afilter extension. Then, in
Proposition 2.61 we show that ultrafilter extensions areatorated. Putting these
two facts together leads us to the main result of this sectiva states are modally
equivalent iff their representatives in the ultrafilterendgions are bisimilar.




96 2 Models

Proposition 2.59 Let 7 be a modal similarity type, an®t a 7-model. Then, for
any formulag and any ultrafilteru overW, V (¢) € w iff ue M, u I+ ¢. Hence, for
every statev of M we havew «~ m,.

Proof. The second claim of the proposition is immediate from thé éire by the
observation that I ¢ iff w € V(o) iff V(@) € my.

The proof of the first claim is by induction o The basic case is immediate
from the definition oft’“¢. The proofs of the boolean cases are straightforward
consequences of the defining properties of ultrafilters. W&xample, we treat
negation; suppose thatis of the form—1, then

V(=) eu iff WA\V(@)eu
iff  V(¢)&u
iff  ued, ulf ¢ (induction hypothesis)
iff  ue, u - —2h.

Next, consider the case whepds of the form<+) (we only treat the basic modal
similarity type, leaving the general case as an exercidectodader). Assume first
thatue 901, u IF O4p. Then, there is an ultrafilter’ such that?“¢uv’ andue M, v’ I+
. The induction hypothesis implies th&tv') € u’, so by the definition ofR"¢,
me(V(¥)) € u. Now the result follows immediately from the observatioatth
mo V(1)) = V(Oy).

The left-to-right implication requires a bit more work. Asse thatl’ ($) € w.
We have to find an ultrafilter’ such thati’(¢) € « and R*“wu/. The latter con-
straint reduces to the condition that, (X) € v wheneverX € «/, or equivalently
(see Exercise 2.5.5):

up == {Y | m&(Y) eu} Cu'.

We will first show thatu, is closed under intersection. L&t, Z be members of
upy. By definition, m% (V) andmi (Z) are inu. But thenm& (Y N Z) € u, as
m& (Y N Z) =m&(Y)Nm&(Z), as a straightforward proof shows. This proves
thatY' N Z € w.

Next we make sure that for aiy € uj, Y NV (¢y) # @. LetY be an ar-
bitrary element ofuj), then by definition ofujy, m%(Y) € u. Aswu is closed
under intersection and does not contain the empty set, thast be an element
zin md(Y) NV (O). But thenz must have a successgrin V(«). Finally,
€ md(Y)impliesy € Y.

¢From the fact thatj, is closed under intersection, and the fact that for ny
ug, Y NV (¢) # @, it follows that the seti; U {V(¢)} has the finite intersection
property. So the Ultrafilter Theorem (Fact A.14 in the Appgh@drovides us with
an ultrafilterw’ such thatug, U {V (¢)} C «/. This ultrafilter«’ has the desired
properties: it is clearly a successor@fand the fact thate 9, v’ IF ¢ follows
from V' (¢) € v/ and the induction hypothesis.—
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Example 2.60 As with the invariance results of Section 2.1 (disjoint urspgen-
erated submodels, and bounded morphisms), our new ingariasult can be used
to compare the relative expressive power of modal languagessider the modal
constant whose truth definition in a model for the basic modal language

M, w - Oiff M = Rax[v] for somev in M.

Can such a modality be defined in the basic modal language? Hisimulation
based argument given at the end of the previous sectiondglrestablishes this.
Alternatively, we can see this by comparing the picturedefftameqN, <) and

its ultrafilter extension given in Example 2.58. The fornseloiop-free (thus in any
model over this frameye 91, 7 I ), but the later contains uncountably many
loops (thuste M, my IF ). So if we want we have to add it as a primitive.

Proposition 2.61 Let T be a modal similarity type, and 181t be ar-model. Then
ue 91 is m-saturated.

Proof. We only prove the proposition for the basic modal similatipe. Let
M = (W, R, V') be a model; we will show that its ultrafilter extensioat is m-
saturated. Consider an ultrafilterover W, and a set”’ of modal formulas which
is finitely satisfiable in the set of successors.ofWe have to find an ultrafiltex’
such thatR“¢uu’ andue M, v’ I X. Define

A={V(¢)| ¢ € X}U{Y |m&(Y) € u},

whereX’ is the set of (finite) conjunctions of formulas i We claim that the set
A has the fip. Since bothV (¢) | ¢ € X'} and{Y | m&(Y) € u} are closed
under intersection, it suffices to prove that for an arbjtrarc X’ and an arbitrary
setY C W for whichm& (Y) € u, we haveV (¢) NY # @. Butif ¢ € X7, then
by assumption, there is a successbrof v such thate 9, v IF ¢, or, in other
words,V (¢) € u”. Then,m%(Y) € v impliesY € " by Exercise 2.5.5. Hence,
V(¢) NY is an element of the ultrafilter” and, therefore, cannot be identical to
the empty set.

It follows by the Ultrafilter Theorem thafi can be extended to an ultrafiltef.
Clearly,u’ is the required successor @fin which X' is satisfied. -

We have finally arrived at the main result of this section: arahterization of
modal equivalence as bisimilarity-somewhere-else — ngnibeltween ultrafilter
extensions.

Theorem 2.62 Let 7 be a modal similarity type, and 181t and 9" be 7-models,
andw, w' two states it and9’, respectively. Then

M, w s M w' iff ue M, m, € ue M, my.
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Proof. Immediate by Propositions 2.59, 2.61 and 2.54

Three remarks. First, it is easy to define ultrafilter extemsiand prove an analog
of Theorem 2.62 for the basic temporal logic and arrow logex Exercises 2.5.8
and 2.5.9. WithpDL the situation is a bit more complex; see Exercise 2.5.11e (Th
problem is that the property of one relation being the reflexransitive closure
of another is not preserved under taking ultrafilter extams) Second, we have
not seen the last of ultrafilter extensions. Like disjoinioms, generated submod-
els, and bounded morphisms, ultrafilter extensions aredafuental modal model
construction technique, and we will make use of them whenigaids frames (in
Chapter 3) and algebras (in Chapter 5). We will shortly seé dkirafilter exten-
sions tie in neatly with ideas from first-order model theoryard we will use this
to prove a second bisimilarity-somewhere-else result, har2.66. Finally, some
readers may still have the feeling that taking the ultrafdbetension of a model is
a far less natural construction than the other model operstihat we have met.
These readers are advised to hold on until (or take a peekl &vwards) Chapter 5,
where we will see that ultrafilter extensions are indeed g matural byproduct of
modal logic’s duality theory.

Exercises for Section 2.5
2.5.1 Let £ be any subset gP(WW), and letF" be the filter generated hy.

(a) Prove thatindeed; is a filter overi¥/. (Show that in general, the intersection of a
collection of filters is again a filter.)

(b) Show thatF is the set of allX € P(WW) such that eitheX = W or for someY,
LY, €E,

Vin---nY, C X.

(c) Prove that is proper (that is: it does not coincide with W)) iff E has the finite
intersection property.

2.5.2 Let W be a non-empty set, and letbe an element ofi’. Show that the principal
ultrafilter generated by, that is, the se{X € P(WW) | w € X}, is indeed an ultrafilter
overW.

2.5.3 Let F' be afilter ovenV'.

(a) Prove that" is an ultrafilter if and only if it is proper and maximal, that it has
no proper extensions.

(b) Prove that" is an ultrafilter if and only if it is proper and for each pairsfbsets
X, YofWwehavethak UY € F'iff X € ForY € F.

2.5.4 Let W be an infinite set. Recall thaf C 1V is co-finiteif W \ X is finite.

(a) Prove that the collection of co-finite subsetdidthas the finite intersection prop-
erty.
(b) Show that there are ultrafilters oviéf that do not contain any finite set.
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(c) Prove that an ultrafilter is non-principal if and onlyftifciontains only infinite sets
if and only if it contains all co-finite sets.
(d) Prove that any ultrafilter ové#” has uncountably many elements.

2.5.5 Given a modebn = (W, R,V) and two ultrafiltersu andv over W, show that
Reyvifand only if {Y | m%(Y) € u} C v.

2.5.6 Let®B = (B, R) be the transitive binary tree; that B, is the set of finite strings of
0s andls, andRoT holds if o is a proper initial segment of. The aim of this exercise is
to prove that any non-principal ultrafilter ovBrdetermines ainfinite string of0s andls.

To this end, leB“ be the set of finite and infinite strings of 0s and 1s, Bfidhe relation
on B¥ given byRo if o is an initial segment of. Define a functionf : Uf(B) — B¥
such that for all ultrafilters oveB we haveuR*¢v iff f(u)RY f(v).

2.5.7 Give an example of a mod@lt which is point-generated while its ultrafilter exten-
sion is not.

2.5.8 Develop a notion of ultrafilter extension for basic tempdogjlic, and establish an
analog of Theorem 2.62 for basic temporal logic.

2.5.9 Develop a notion of ultrafilter extension for the arrow laage introduced in Exam-
ple 1.14, and establish an analog of Theorem 2.62 for thipuage.

2.5.10 Show that, in general, first-order formulas are not presenreler ultrafilter ex-
tensions. That is, give a mod®l, a statew, and a first-order formula(z) such that
M E a(z)[w], butue M ¥~ ax)[r,], wherer, is the principal ultrafilter generated by
w.

2.5.11 Consider a modal similarity type with two diamond3,and (), and take any
model?t = (S, R, R.., V) with

S = NU{},
R = {(n+1,n),(s0,n) |neN},
R. = {(m,n)[m,neNm >n}U({oc} xS).

Note thatR.. is the reflexive transitive closure &.

(a) Show thabit, oo I+ O(x)OL.

(b) Letw be an arbitrary non-principal ultrafilter ovet Prove thatR™¢ 7, u.

(c) Letwu be an arbitrary non-principal ultrafilter ovéf. Prove thatw has anR“*-
successor ine M, and that each of itfR“¢-successors is again a non-principal
ultrafilter.

(d) Now suppose that we add an new diamdrfito the language, and that in the
modelue M we takeR, to be the reflexive transitive closure &“¢. Show that
ue M, moo IF OHOT.

(e) ProvethaRR“c # R, (hint: use Proposition 2.59), and conclude that the ultesfil
extension of a regulabL-model need not be a regulabL-model.

() Prove that every non-principal ultrafilter ov€rhas auniqueR"¢-successor.
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2.6 Characterization and Definability
In Section 2.3 we posed two important questions about mogteessivity:

(i) What is the modal fragment of first-order logic? That ijieh first-order
formulas are equivalent to the standard translation of aaifodmula?
(i) Which properties of models are definable by means of rmifmtenulas?

In this, the first advanced track section of the book, we anbwth questions. Our
main tool will be a second characterization of modal eqeneé as bisimilarity-
somewhere-else, the Detour Lemma. Unlike the charactenzpust proved (The-
orem 2.62), the Detour Lemma rests on a number of non-modelepds and re-
sults, all of which are centered @aturated modelg¢a standard concept of first
order model theory). We start by introducing saturated rtsoded use them to
describe the modal fragment of first-order logic. After that show how to build
saturated models. As corollaries we obtain results on rhodafinable proper-
ties of models. For background information on first-orderdeldheory, see Ap-
pendix A.

The Van Benthem Characterization Theorem

To define the notion of saturated models, we need the contepsaturation, but
before giving a formal definition of the latter, we provideiaformal description,
which the reader may want to use as a ‘working’ definition.

Informally, then, the notion ofi-saturation can be explained as follows. First of
all, let I'(x) be a set of first-order formulas in which a single individuatiablex
may occur free — such a set of formulas is callely@e A first-order modebit
realizes () if there is an element in 91 such that for ally € 1", M |= ~[w].

Next, let 9t be a model for a given first-order languagé with domain V.
For a subsetd C W, £![A] is the language obtained by extendidg with new
constants: for all elements: € A. 94 is the expansion di to a structure for
L[A] in which eachu is interpreted as.

Assume thatd is of size at mostv. For the sake of our informal definition
of a-saturation, assume that = 3 and A = {a1, a2}. LetI'(a;,ay,x) be a
type of the languagé&'[A]; it is not difficult to see thaf'(a,, a,, x) iS consistent
with the first-order theory dit 4 iff I'(a,, a,, x) is finitely realizable it 4, (that
is, M 4 realizes everyinite subsetA of I'(a;, a,,x)). So, for this particular set
I'(a;, ay, x), 3-saturation obt means that il "(a;, a,, x) is finitely realizable in
My, thenl'(a;, ay,x) is realizable iMiy.

Yet another way of looking ai-saturation for this particular set of formulas is
the following. Consider a formula(a, a,, ©), and lety(x1, x4, x) be the formula
with the fresh variables; andx, replacing each occurrence inof ¢, andas,
respectively. Then we have the following equivalence:
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M 4 realizes{~(a,,as,x)} iff there is ab such thabll |= ~(x1, 9, x)[a1, az, b].

So, a model is-saturated iff the following holds for every < «, and every sef’
of formulas of the formy(x1,...,z,,x).

If (ai,...,ay) is ann-tuple such that for everfinite A C I" there is abx
such thablt = ~(x1,...,x,, x)[ay,...,a,, ba for everyy € A,
thenwe have that there islasuch thatht = ~v(xy,...,zn, x)[a,. .., ay, b

for everyy € I'.

This way of looking ata-saturation is useful, for it makes the analogy with m-
saturation of the previous section clear. Both m-saturateticountably saturated
models are rich in the number of typE$z) they realize, but the latter are far richer
than the former: they realize the maximum number of types.

Now, for the ‘official’ definition ofa-saturation.

Definition 2.63 Let « be a natural number, ar. A model9 is a-saturatedif for
every subsetl C W of size less than, the expansiof)t 4 realizes every sdft'(x)

of £L[A]-formulas (with onlyz occurring free) that is consistent with the first-order
theory of9J1 4. An w-saturated model is usually calleduntably saturated -

Example 2.64 (i) Every finite model is countably saturated. Forit is finite,
and['(x) is a set of first-order formulas consistent with the firstesrtheory of
M, there exists a modél that is elementarily equivalent tt and that realizes
I'(x). But, as?)t andM are finite, elementary equivalence implies isomorphism,
and hencd () is realized iroi.

(i) The ordering of the rational numbe(§), <) is countably saturated as well.
The relevant first-order languagg' has < and=. Take a subsetl of Q and
let I'(x) be a set of formulas in the resulting expansidt{A] of this first-order
language that is consistent with the theory(@f <, a),c4. Then, there exists a
modelN of the theory of(Q, <, a).c4 that realized (). Now take a countable
elementary submod8t’ of 91 that contains at least one object realizifigr). Then
N’ is a countable dense linear ordering without endpoints,hemde the ordering
of 91" is isomorphic to(Q, <). The interpretations (iA1) of the constants for
elements: in A may be copied across fd’. Hence, ad1 realizesI"(x), so does
2, and hence, so dog¢g), <), as required.

(iii) The ordering of the natural numbe(sl, <) is not countably saturated. To
see this, consider the following set of formulas.

@) = By <a),....3..yn(y1 < <yn <2),...}.

I'(x) is clearly consistent with the theory @f, <) as each of its finite subsets is
realizable in(N, <). Yet, I'(x) is clearly not realizable if, <).
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The following result explains why countably saturated niedeatter to us.

Theorem 2.65 Letr be a modal similarity type. Any countably saturatedhodel
is m-saturated. It follows that the class of countably sated 7-models has the
Hennessy-Milner property.

Proof. We only consider the basic modal language. Assumeithat (W, R, V),
viewed as a first-order model, is countably saturated. qLle¢ a state iV, and
consider a set’ of modal formulas which is finitely satisfiable in the sucossset
of a. Define X’ to be the set

Y ={Rax}U ST, (),

whereST,(X) is the sef{ ST, (¢) | ¢ € X'} of standard translations of formulas
in . Clearly, X" is consistent with the first-order theory®t,: 91, realizes every
finite subset o', namely in some successor@fSo, by the countable saturation
of M, X' itself is realized in some state By 9, = Rax[b] it follows thatb is a
successor ofi. Then, by Theorem 2.47 and the fact tB&f, = ST, (¢)[b] for all

¢ € X, it follows thatO, b IF X'. ThusY' is satisfiable in a successoraf -

In fact, we only need 2-saturation for the proof of Theore®b2o go through.
This is because we restricted ourselves tolthsic modal similarity type. We
leave it to the reader to check to which extent the ‘amounabfration’ needed to
make the proof of Theorem 2.65 go through depends on the rathle @perators
of the similarity type.

We have yet to show that countably saturated models actezidy; this issue
will be addressed below (see Theorem 2.74). For now, we gneaait to record the
following important use of saturated models; you may wametall the definition
of an elementary embedding before reading the result (spegix A)).

Lemma 2.66 (Detour Lemma) Let 7 be a modal similarity type, and |88t and
N be r-models, andv and v states it and 1, respectively. Then the following
are equivalent.

(i) For all modal formulasp: 91, w IF ¢ iff NN, v I+ .
(i) There exists a bisimulatio : ue M, ,, < ueN, m,.
(iii) There exist countably saturated mod®is, w* and91*, v* and elementary
embeddingg : M < 9MM* andg : N < MN* such that
(@) f(w) =w*andg(v) = v*
(b) 9%, w* <= N*, v*.

What does the Detour Lemma say in words? Obviously(iii) is just our old
bisimulation-somewhere-else result (Theorem 2.62). Téyeriew part is the im-
plication (i) = (iii). This says that i), w andt, v are modally equivalent, then
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both can be extended — more accurately: elementarily egtérd to countably
saturated mode®n*, w* anddt*, v*. AsIN, w andN, v were modally equivalent,
SO aredt*, w* andd*, v*; it follows by Theorem 2.65 that the latter two models
are bisimilar. In short, this is a second ‘bisimilarity sominere else’ result, this
time the ‘somewhere else’ being ‘in some suitable ultrapbweotice that in or-
der to prove the Detour Lemma all we need to establish is treayenodel can be
elementarily embedded in a countably saturated model —e ther standard first-
order techniques for doing so, and we will introduce one égécond half of this
section.

With the help of the Detour Lemma, we can now precisely chiaree the
relation between first-order logic, modal logic, and bidations. To prove the
theorem we need to explicitly define a concept which we hakeadl invoked
informally on several occasions.

Definition 2.67 A first-order formulaa(x) in £L is invariant for bisimulationsf
for all models9t and91, and all statesv in 901, v in 91, and all bisimulationsZ
betweertt and1 such thatvZv, we havedl |= o(z)[w] iff N = a(z)[v]. A

Theorem 2.68 (Van Benthem Characterization Theorem)Let «(x) be a first-
order formula in£L. Thena(x) is invariant for bisimulations iff it is (equivalent
to) the standard translation of a modalformula.

Proof. The direction from right to left is a consequence of Theore?®2To prove
the direction from left to right, assume thatx) is invariant for bisimulations and
consider the set of modal consequences:of

MOC(«) = {ST(¢) | ¢ is a modal formula, and(z) = ST ,(¢)}.

Our first claim is that iMOC(«) = a(x), thena(x) is equivalent to the translation
of a modal formula. To see why this is so, assume M@alC(«) = a(x); then,
by the Compactness Theorem for first-order logic, for somiefisubsetX C
MOC(«) we haveX = a(x). So= A X — a(z). Trivially = a(z) - A X,
thusl= a(x) <+ A X. And as every3 € X is the translation of a modal formula,
sois/\ X. This proves our claim.

So it suffices to show th&tlOC(«a) = a(x). AssumeNt = MOC(«a)[w]; we
need to show thalt = a(x)[w]. Let

T(x) = {5Tx(¢) | M STo()[w]}-

We claim thatT'(z) U {«(z)} is consistent. Why? Assume, for the sake of con-
tradiction, thatZ'(xz) U {«(x)} is inconsistent. Then, by compactness, for some
finite subsetly(x) C T'(x) we have= a(x) — = A\ To(x). Hence- A\ Ty(x) €
MOC(«). But this impliest |= = A Ty (x)[w], which contradictsdy(x) C T'(x)
andiM = T'(z)[w].
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So, letN, v be such thadl = T'(z) U {a(x)}[v]. Observe thatv andv are
modally equivalentdt, w I+ ¢ implies ST ,(¢) € T'(x), which impliesit, v I+ ¢;
and likewise, if01, w I ¢ thend, w I+ ¢, andN, v IF —¢. If modal equivalence
implied bisimilarity we would be done, because th&hw and 91, v would be
bisimilar, and from this we would be able to deduce the ddsimanclusior™t, w |=
a(x)[w] by invariance under bisimulation. But, in general, modaliegjence does
not imply bisimilarity, so this is not a sound argument.

However, we can use the Detour Lemma and make a detour theodghnessy-
Milner class where modal equivalence and bisimilarity dowciole! More pre-
cisely, the Detour Lemma yields two countably saturatedetssdt™, w* = 91, w
andft*, v* = M, v such thatt*, w* < N*, v*:

M, w N, v

< <
M w* < N b,

This is where we really need the new characterization of inedaivalence in
terms of bisimulation-somewhere-else that Theorem 2.vdsgus. We need to
‘lift’ the first-order formulaa(z) from the mode®t, v to the modeft*, v*. By
definition, the truth of first-order formulas is preservedienelementary embed-
dings, so that this can indeed be done. However, first-oatenidlas need not be
preserved under ultrafilter extensions (see Exercise®,zhd for that reason we
cannot use the ultrafilter extensian1, =, instead of)t*, v*.

Returning to the main argumer} = «(x)[v] impliesN* = «o(x)[v*]. As
a(x) is invariant for bisimulations, we géit* = «(z)[w*]. By invariance under
elementary embeddings, we haWe = a(x)[w]. This proves the theorem.

Ultraproducts

The preceding discussion left us with an important techrgeeestion: how do
we get countably saturated models? Our next aim is to andwsegtiestion and
thereby prove the Detour Lemma.

The fundamental construction underlying our proof is thia&uo ultraproduct.
Here we briefly recall the basic ideas; further details majobed in Appendix A.

We first apply the construction to sets, and then to modelgp&sel # @, U is
an ultrafilter overl, and for each € I, W; is a non-empty set. Let' = [],., W;
be the Cartesian product of those sets. That'iss the set of all functiong” with
domain/ such that for each € I, f(i) € W;. For two functionsf, g € C we say
that f andg are U-equivalent(notationf ~ ¢) if {i € I | f(i) = g(i)} € U.
The result is thatv;; is an equivalence relation on the gét
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Definition 2.69 (Ultraproduct of Sets) Let f;; be the equivalence class pfnod-
ulo ~, thatis: fiy = {g € C | g ~v f}. Theultraproduct of W; moduloU is
the set of all equivalence classes-~af. it is denoted by [,, W;. So

[IoWi={fv|f€llict Wi}

In the case where all the sets are the same}iBay W for all i, the ultraproduct
is called theultrapower of W moduloU, and written][ [, W.

Following the general definition of the ultraproduct of fisstler models (Defini-
tion A.17), we now define the ultraproduct of modal models.

Definition 2.70 (Ultraproduct of Models) Fix a modal similarity typer, and let
9M; (i € I) ber-models. Thaultraproduct] [,; 9t; of Mt; moduloU is the model
described as follows.

(i) The universdVy of [[,; 91; is the sef [, W;, whereW; is the universe of
Mm;.
(i) Let V; be the valuation of)t;. Then the valuatiorv;; of [ [, 90t; is defined
by
fuo e Vulp) ift {iel]f(i)eVilp)}el.

(iii) Let A be a modal operator in, andR,; its associated relation in the model
;. The relationR ¢ in [[,; 9 is given by

Ravfl . fptHiff {i € I| Raif*(3)... f"(i)} € U
In particular, for a diamond item (iii) boils down to
Roy fugy iff {i € I'| Roif(i)g(i)} € U.

To show that the above definition is consistent, we shouldlclieatV;, and Ry

depend only on the equivalence clasggs. . ., ;}“.

Proposition 2.71 Let][,; 9 be an ultrapower oft. Then, for all modal formulas
¢ we havelt, w I+ ¢iff [T, 9, (fu)u IF ¢, wheref,, is the constant function such
that f,,(i) = w, forall i € 1.

Proof. This is left as Exercise 2.6.1.

To build countably saturated models, we use ultraproduesedh on a special kind
of ultrafilters. An ultrafilter iscountably incompleté it is not closed under count-
able intersections (of course, it will be closed under fimtersections).
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Example 2.72 Consider the set of natural numbéisLet U be an ultrafilter over
N that does not contain any singletofs}. (The reader is asked to prove that such
ultrafilters exist in Exercise 2.5.4.) Then, forall(N\ {n}) € U. But

& = Muen N\ {n}) ¢ U.

SoU is countably incomplete. -

Lemma 2.73 Let £ be a countable first-order languagg,a countably incomplete
ultrafilter over a non-empty sdt, and 9t an £-model. The ultrapowef [, M is
countably saturated.

Proof. See Appendix A.

We are now ready to prove the Detour Lemma. In Theorem 2.62hawed that
‘bisimulation somewhere else’ can mean ‘in the ultrafilteeasion’. Now we will
show that it can also mean: ‘in a suitable ultrapower of thegimal models.’

Theorem 2.74 Let 7 be a modal similarity type, and 161t and 91 be 7-models,
andw andv states it and9t, respectively. Then the following are equivalent.

(i) For all modal formulasp: 9, w IF ¢ iff N, v Ik ¢.
(i) There exist ultrapower$],, Mt and [],, 9 and as well as a bisimulation

Z : HU mv (fw)U s HU mv (fv)U Imkmg (fw)U and (fv)U- Wherefw
(f») is the constant function mapping every indexit@).

Proof. It is easy to see that (ii) implies (i). By Proposition 2.0t w IF ¢ iff
[I 9%, (fw)u Ik ¢. By assumption this is equivalent {d,; 91, (f,)u IF ¢, and
the latter is equivalent tot, v IF ¢.

To prove the implication from (i) to (ii) we have to do some marork. Assume
that for all modal formulag we havedlt, w I+ ¢ iff 9N, v I ¢. We need to create
bisimilar ultrapowers ofJt and91.

Take the set of natural numbelksas our index set, and Iéf be a countably
incomplete ultrafilter oveN (cf. Example 2.72). By Lemma 2.73 the ultrapowers
[I; 9t and ], M are countably saturated. No,, ), and(f,)y are modally
equivalent: for all modal formulag, [, M, (fu)v Ik ¢ iff T[N, (fu)v IF .
This claim follows from the assumption that andv are modally equivalent to-
gether with Proposition 2.71. Next, apply Theorem 2.65( fagy and(f,)y are
modally equivalent andi[,, 9t and ][, 9 are countably saturated, there exists a
bisimulationZ : [, M, (fu)v € [[y N, (f»)v. This proves the theorem.H

We obtain the Detour Lemma as an immediate corollary of Témo2.74 and
Theorem 2.62.
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Definability

Our next aim is to answer the second of the two questions paisbe start of this
section: which properties of models are definable by meamsaafal formulas?
Like the Detour Lemma, the answer is a corollary of Theorerd 2We formulate
the result in terms opointed modelsGiven a modal similarity type, a pointed
model is a paifdt, w) whereMt is a7-model andw is a state ofJi. Although

the results below can also be given for models, the use otgmbimodels allows
for a smoother formulation, mainly because pointed modsflgat the local way
in which modal formulas are evaluated.

We need some further definitions. A class of pointed mo#els said to be
closed under bisimulationsg (91, w) in K and9t,w < 9N, v implies (N, v) in
K. K is closed under ultraproduct$ any ultraproduct] [, (91;, w;) of a family of
pointed modelg9t;, w;) in K belongs taK. If K is a class of pointed-models K
denotes the complement iéfwithin the class of all pointed-models. FinallyK is
definable by a set of modal formuléishere is a set of modal formulas such that
for any pointed mode{9t, w) we have(Mt, w) in K iff for all v € I', M, w I+ ~;
K is definable by a single modal formula iff it is definable by rgéeton set.

By Proposition 2.47 definable classes of pointed models ieisiosed under
bisimulations, and by Corollary A.20 they must be closedaundtraproducts as
well. Theorems 2.75 and 2.76 below show that these two aasamditions suffice
to completely describe the classes of pointed models tleadlefinable by means
of modal formulas.

Theorem 2.75 LetT be a modal similarity type, and a class of pointea-models.
Then the following are equivalent.

(i) Kis definable by a set of modal formulas.
(i) K is closed under bisimulations and ultraproducts, dds closed under
ultrapowers.

Proof. The implication from (i) to (ii) is easy. For the conversesameK andK
satisfy the stated closure conditions. Observe ihistclosed under bisimulations,
asK is. DefineT" as the set of modal formulas holdinghn

T ={¢ |forall (M, w)in K: M, w - ¢}.

We will show thatT" defines the clask. First of all, by definition every pointed
model (9, w) in K is a model satisfyin@” in the sense thabt, w I+ T'. Second,
assume thadt, w IF T'; to complete the proof of the theorem we show 9t w)
must be inK.

Define X' to be the modal theory aof; that is, X = {¢ | MM, w I+ ¢}. Itis
obvious that¥' is finitely satisfiable irK; for suppose that the sét,...,0,} C
Y is not satisfiable ifK. Then the formula-(o; A --- A o,,) would be true on all
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pointed models irK, so it would belong td’, yet be false i1, w. But then the
following claim shows that' is satisfiable in the ultraproduct of pointed models
in K.

Claim 1 Let X' be a set of modal formulas, ari€l a class of pointed models in
which X' is finitely satisfiable. Thel' is satisfiable in some ultraproduct of models
in K.

Proof of Claim.Define an index sef as the collection of all finite subsets &f.
I ={%, C Y| Xisfinite}.

By assumption, for each € I there is a pointed modé€bt;, v;) in K such that
MN;,v; I i. We now construct an ultrafiltey’ over I such that the ultraproduct
[1, 9N has a statgyr with ], 9, fo IF L.

For eacho € Y, let o be the set of ali € I such thato € i. Then the set
E = {7 | 0 € X'} has the finite intersection property because

{01,...,on} €1 N~ NTy,.

So, by Fact A.14F can be extended to an ultrafilteérover. This defineq [, 91;;
for the definition offi;, let W, denote the universe of the mod®g} and consider
the functionf € J],., W; such thatf (i) = v;.

It is left to prove that

[Ty 2, fu Ik 2. (2.2)

To prove (2.2), observe that fore ¢ we haves € i, and sdt;, v; IF . Therefore,
for eacho € ¥

{iel|M,vlFo} D0 ando € U.

It follows that{i € I | M;,v; |- o} € U, so by Theorem A.19 [, 2, fu IF o.
This proves (2.2). —

It follows from Claim 1 and the closure & under taking ultraproducts that is
satisfiable in some pointed modéh, v) in K. But, v I X implies thatv and
the statev from our original pointed modéebt, w) are modally equivalent. So by
Theorem 2.74 there exists an ultrafiltét such that

HU’ (mv U)? (fU)U < HU’ (m7 w)7 (fw)U-

By closure under ultraproducts, the pointed madg}, (0, v), (f,)v) belongs to

K. Hence by closure under bisimulation§] (91, w), (fw)v) isin K as well. By

closure ofK under ultrapowers it follows thgbt, w) is in K. This completes the
proof. -
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Theorem 2.76 LetT be a modal similarity type, and a class of pointea-models.
Then the following are equivalent.

() Kis definable by means of a single modal formula.
(i) BothK andK are closed under bisimulations and ultraproducts.

Proof. The direction from (i) to (ii) is easy. For the converse weuass thatK,

K satisfy the stated closure conditions. Then both are claseér ultraproducts,
hence by Theorem 2.75 there are sets of modal fornilijag’, defining K and
K, respectively. Obviously their union is inconsistent ie #ense that there is no
pointed model 91, w) such that(9,w) I+ 71 U T5. So then, by compactness,
there exisipy, ..., ¢, € Ty andi)y, ..., ¥, € Ty such that for all pointed models
(9, w)

Mwl- o A=Ay — 21 VooV athy,. (2.3)

To complete the proof we show thistis in fact defined by the conjunctiop; A
-+« N\ ¢p. By definition, for any(9t, w) in K we havedt,w IF ¢1 A -+ A ¢y.
Conversely, i, w IF ¢1 A -+ A ¢y, then, by (2.3)90T, w I =)y V -+ V =tby,.
Hence, M, w I Ty. Therefore,(9N, w) does not belong t&, whence (90T, w)
belongs taK. A

Theorems 2.75 and 2.76 correspond to analogous definata@fityts in first-order

logic: to get the analogous first-order results, simplyaeglclosure under bisim-
ulations in 2.75 and 2.76 by closure under isomorphismstteeslotes at the end
of the chapter for further details. This close connectioffirsi-order logic may

explain why the results of this section seem to generaliznjomodal logic that

has a standard translation into first-order logic. For eXamsdl of the results of

this section can also be obtained for basic temporal logic.

Exercises for Section 2.6

2.6.1 Prove Proposition 2.71: Ldi[;; M be an ultrapower o). Then, for all modal
formulasg we havedt,w I ¢ iff ], 9, (fu)v IF ¢, wheref,, is the constant function
such thatf,, (i) = w, forall i € I.

2.6.2 Give simple proofs of Theorem 2.75 and Theorem 2.76 usin@tfaogous proof
for first-order logic (see Theorem A.23).

2.6.3 Let I be an index set, and I1€0t; };c; and{MN; },cr be two collections of models
suchthatforeache I, 9, & MN,;. Show that for any ultrafiltel’ overI, the ultraproducts
of the two collections are bisimilaf:],, 9t; < [],, M.

2.6.4 (a) Show that the ultraproduct of point-generated mode&dneot be point-
generated.
(b) How is this for transitive models?
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2.7 Simulation and Safety

Theorem 2.68 provided a result characterizing the modaihient of first-order
logic as the class of formulas invariant for bisimulatiolrsthis section we present
two further results in the same spirit; we focus on thesdt®rot just because they
are interesting and typical of current work in modal modebtty, but also because
they provide instructive examples of how to apply the toold proof strategies we
have discussed. We first look at a notion of simulation that ieen introduced
in various settings, and characterize the modal formulaesguved by simulations.
We then examine a question that arises in the setting of digrlagic and process
algebra: which operations on models preserve bisimulatidhat is, if we have
the back-and-forth clauses holding #&r and we apply an operatian to R which
returns a new relatio®(R), then when do we also have the back-and-forth-clauses
for O(R)?

Simulations

A simulation is simply a bisimulation from which half of théoanic clause and the
back clause have been omitted.

Definition 2.77 (Simulations) Let 7 be a modal similarity type. Lebt = (W,
R, V)aerandd' = (W', R, V'), beT-models. A non-empty binary relation
7 C W x W'is called ar-simulationfrom 9t to 91’ if the following conditions
are satisfied.

(i) If wZw" andw € V(p), thenw' € V'(p).
(i) If wZw" and Rywwvy ... v, then there aref, ..., v, (in W’) such that
Rl w'v} ... v}, andforalli (1 <i < n)v;Zv..

Thus, simulations only require that atomic information isgerved and that the
forth condition holds.

If Z is a simulation fromw in M to w' in M’, we write Z : M, w = M, w';
if there is a simulationZ such thatZ : M, w = MM, w’, we sometimes write
M, w =M, w'.

A modal formulag is preserved undesimulations if for all model$)t and"t’,
and all statesy andw’ in 9t and9t', respectivelydt, w I+ ¢ implies’, v’ I+ ¢,
whenever it is the case tha, w = 9, w'. -

In various forms and under various names simulations hame tensidered in the-
oretical computer science. In the study of refinemenhtis interpreted as follows:

if M, w =M, w’ then (the system modeled B}, w' refines or implements (the
system modeled byi, w. And in the database world one looks at simulations the
other way around: if01, w = 9V, w', then9', v’ constrainghe structure o), w
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by only allowing those relational patterns that are presett’, «’ itself. Note that
if M, w = M, w' thenM', w' cannot enforce the presence of patterns. (See the
Notes for references.) The following question naturalliges: which formulas
are preserved when passing froi, w to M, w’ along a simulation? Or, dually,
which constraints ofJt, w can be expressed by requiring that w = 9, w'?

Clearly simulations do not preserve the truth of all modatifolas. In particular,
let Mt be a one-point model with domainv} and empty relation; then, there is a
simulation from9t, w to any state with the same valuation, no matter which model
it lives in. Using this observation itis easy to show thatensal modal formulas of
the formO(---) or V(- - -) are not preserved under simulations. On the other hand,
by clause (ii) of Definition 2.77 existential modal formulaisthe form< (- --) or
A(---) are preserved under simulations. This leads to the comgettat a modal
formula is preserved under simulations if, and only if, iecuivalent to a formula
that has been built from proposition letters, using oty and existential modal
operators, that is, diamonds or triangles. Below we wiliprthis conjecture; our
proof follows the proof of Theorem 2.68 to a large extent betr¢ is an important
difference. Since we are workingithin a modal language, and not in first-order
logic, we can make do with a detour via (m-saturated) ulteafiéxtensions rather
than the (countably saturated) ultrapowers needed in tef pf Theorem 2.68.

Call a modal formulaositive existentiaif it has been built up from proposition
letters, using only\, vV and existential modal operatofsand A.

Theorem 2.78 LetT be a modal similarity type, and letbe ar-formula. Thenp
is preserved under simulations iff it is equivalent to a pesiexistential formula.

Proof. The easy inductive proof that positive existential fornsutae preserved
under simulations is left to the reader. For the conversjras that is preserved
under simulations, and consider the set of positive existetonsequences of.

PEC(¢) = {¢ | v is positive existential and |= ¢'}.

We will show thatPEC(¢) [= ¢; then, by compactness,is equivalent to a positive
existential modal formula. Assume that, w I PEC(¢); we need to show that
M, w I ¢. LetI" = {— | ¢ is positive existential an®t, w I ¢ }.

Our first claim is that the sdtp} U I is consistent. For, suppose otherwise. Then
there are formulasy, ...,—, € I" such tha |= ¢ V - - - V 9,,. By definition
each formula); is a positive existential formula, hence, sa/isV --- V v,,. But
then9t, w IF 1 V - -+ V 2, by assumption; from this it follows thamt, w I+ v
for somei (1 < i < n). This contradicts-; € I

As a corollary we find a modélt and a state of 9t such thatt, v IF ¢ A AT
Clearly, for every positive existential formula, if 91, v I+ ), then9t, w Ik .

It follows from Proposition 2.59 that for the ultrafilter exisionsue 9t andue N
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we have the same relation: for every positive existentightda ¢, if ue 1, 7, I+
¥, thenue 9, 7, Ik ¢. By exploiting the fact that ultrafilter extensions are m-
saturated (Proposition 2.61), it can be shown that thisioglas in fact a simulation
from ue N, m, to ue M, m,; See Exercise 2.7.1.

In a diagram we have now the following situation.

N, v M, w

s s
uedt, m, = ueIM, my,.

We can carryy around the diagram fromit, v to 9, w as follows. 9, v - ¢
impliesue N, 7, |- ¢ by Proposition 2.59. Sincg is preserved under simulations,
we getue MM, 7, |- ¢. By Proposition 2.59 again we conclut®, w I+ ¢.

Using Theorem 2.78 we can also answer the second of the twsiigue raised
above. Call a constraint expressibldéf wheneverdt, w satisfiesp and91t,v =
M, w, thenN, v also satisfiesp. By Theorem 2.78 the expressible constraints
(in first-order logic) are precisely the ones that are (emjent to) the standard
translations of negative universal modal formulas, thatrenslations of modal
formulas built up from negated proposition letters usintyon, A and universal
modal operatorsl andv.

Safety

Recall from Exercise 2.2.6 that bisimulations preservettiign of formulas from
propositional dynamic logic. This result hinges on the thett bisimulations not
only preserve the relation, corresponding to atomic programs, but also relations
that are definable from these usipgL’s relational repertoire, ; and*. Put differ-
ently, if the back-and-forth conditions in the definitionabisimulation hold for
the relationsk,,,, ..., R,,, . .., then they also hold for any relation that is definable
from these using, ; and*; these operations are ‘safe’ for bisimulation.

In this part of the section we work with modal similarity typleaving diamonds
only.

Definition 2.79 Let 7 be a modal similarity type, and lefz, y) denote anC!(®)-
formula with at most two free variables. Thefiz, y) is calledsafe for bisimula-
tionsif the following holds.

If Z:9m < 9 is a bisimulation withwZw' and for some state of 9t we
havedt = a(zx, y)[wv],
thenthere is a state’ of M’ such thatl’ = o(z, y)[w'v'] andvZv’.
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In words, a(z, y) is safe if the back-and-forth clauses hold farz, y) whenever
they hold for the atomic relations. H

Example 2.80 (i) All pDL program constructors,(J, and*) are safe for bisimu-
lations. For instance, assume thatw’, whereZ is a bisimulation, andw, v) €
(R; S) in 9. Then, there exista with Rwu and Suv in 91; hence by the back-
and-forth conditions fo? and S, we find«' with «Z«" and R'w'v’ in 9, and a
statev’ with vZv" and S’u’v" in M. Thend' is the required R ; S)-successor of
w’ in M.

(if) Atomic tests(P)?, defined by P)? := {(x,y) | * = y A Py}, are safe. For,
assume thab Zw', whereZ is a bisimulation, andw, v) € (P)?. Thenw = v and
M = Pxlw]. By the atomic clause in the definition of bisimulation, thigplies
M’ = Px[w']. Hence,(w',w') € (P)?, as required.

(iii) Dynamic negatiorn~(R), defined by~(R) = {(x,y) | * = y A =3z Rxz},
is safe. For, assume thatZw’, whereZ is a bisimulation, andw, v) € ~(R) in
oM. Then,w = v andw has noR-successors iMl. Now, suppose that’ did have
an R’-successor iMt’; then, by the back-and-forth conditions, would have to
have anRk-successor ift — a contradiction.

(iv) Intersection of relations is not safe; see Exercise22.7

Which operations are safe for bisimulations? Below, we gieemplete answer for
the restricted case where we consider first-order defingdgeations and languages
with diamonds only. We need some preparations before wercae his result.

First, we define a modal formula to be completely additive in a proposition
letter p if it satisfies the following.

For every family of non-empty setSX;};c; such thatV(p) = (J, X; we
have (W, Ry,...,V),w IF ¢ iff, for somei, (W, Ry,...,V;),w IF p, where
Vi(p) = X; andVi(q) =V (q) for ¢ # p.

Completely additive formulas can be characterized syttt To this end, we
need the following technical lemma. Letbe a fixed proposition letter. We write
<~ to denote the existence of a bisimulation for the modal lagguwithout the
proposition letterp (exactly which proposition letter is meant will be clear et
applications of the lemma).

Lemma 2.81 Assume thaZ : M, wy <~ N, vy, WhereMt and D1 are intransi-
tive tree-like transition systems withy R - - - Rw,, (in M), voR - - - Rvy, (in N) and
w;Zv; (1 < i < n). Then there are extensiof*, wy) of (M, wy) and (N*, vy)

of (9, vg) (i.e., the universe dit is a subset of the universe Ht*, and likewise
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for 91 and1*) such that
(maw()) Z e (m,’l)())

<« «

(M*wy) Z':2— (9, vp),

whereZ’ is such that for any (1 < 7 < n) we have thaty; andv; are only related
to each other.

Proof. See Exercise 2.7.3.-

Lemma 2.82 A modal formula is completely additive jiniff it is equivalent to a
disjunction of path formulas, that is, formulas of the form

Yo A{ar) (Y1 A Alan)(¥n Ap)---), (2.4)

wherep occurs in none of the formulas;.

Proof. We only prove the hard direction. Assume tiyas completely additive in
p. Define

COC() := \/{' | v is of the form (2.4) and’ [= ¢},

that is, COC(¢) is an infinite disjunction of modal formulas. We will show tha
¢ = COC(9¢); then, by compactness; is equivalent to a finite disjunction of
formulas of the form specified in (2.4), and this proves tmerte.

So, assume thait, wy IF ¢; we need to showlt, wy IF COC(¢). It suffices to
find a formulay of the form specified in (2.4) such thg®, wy I+ ¢ andy = ¢.
By Lemma 2.15 we may assume that is an intransitive, tree-like model with
rootwy. As ¢ is completely additive ip, we may also assume thEtp) is just a
singletonw,,; see Figure 2.8. Consider the following description of theve path
leading up tow,,:

U(xg,...,xn) = {ST4 W) | ¢ € tp™(w;) andd <i < n}
U{Rjx;ixit1 |0<i<n-—1}U{Px,},

where we usep (w;) to denote the set of free modal formulas satisfied hy;.
The remainder of the proof is devoted to showing that, ..., z,) | ST, (¢),
and this will do to prove the lemma. For¥f(xzo,...,x,) = ST4,(¢), then, for
some finite subsety(xo,...,x,) C ¥(xg,...,z,) We have¥y(xg,...,z,) E
ST, (¢), by compactness. Sineg is theonlyfree variable inST ', (¢), this gives
Ay ... an W2, ..., xn) | ST4,(6). Itis easy to see that the latter formula is
(the standard translation of) a path formulaHence, we have found our formula
satisfying?t, wo I ¢ andy) = ¢.
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Wn,

Wo

Fig. 2.8. True at only one state.

To show thatV(xo, ..., x,) = ST4,(¢) we proceed as follows. Take a model
N with N = ¥ (xp, ..., x,)[v0v1 . .. vy]; we need to show thak = ST, (¢)[vo].

It follows from the definition of¥ that eachw; andv; agree on alp free modal
formulas.

We may assume that is an intransitive tree with roat. Take countably satu-
rated elementary extensiof8’, wy andM’, vy of M, wy andMN, vy, respectively.
SinceMm’ and Nt are elementary extensions Mt and 9, respectively, we may
assume a number of things ab@dit!, wg) and (9, vy) — things that can be ex-
pressed by first-order means, and hence are preserved w@assémgfrom a model
to any of its elementary extensions. First, we may assumeadthandv, have no
incoming R-transitions, for anyR, since this can be expressed by means of the
collection of all formulas of the forty —Ryzx, whereR is a binary relation sym-
bol in our language. Second, we may assume that statesegiffesomw, andwvg
have at most one incoming-transition, for anyR, since this can be expressed by
the set of formulas of the forvzyz (Ryx A Rzx — y = z). Summarizing, then,
Mt wy andNt, vy are very much like intransitive trees with roats andvy — but
possibly not quite: we have no guarantee that all nodé®irand9tt are actually
accessible fromwy andwy, respectively, in finitely many steps.

Now, from the fact thatv; andv; agree on all modal formulas and Theorem 2.65,
we obtain a bisimulatioZt such thatzt : 9t w; & — NF, v;. Next, we want to
apply Lemma 2.81, but to be able to do so, our models need todted, intran-
sitive trees. We can guarantee this by taking submaigis and9t® of 9t and
Mt that are generated hy, and v, respectively. Clearly, for som#&, we have
7 omte &~ afe,

By Lemma 2.81 we can move to bisimilar extensiong* and9tt* of Mt and
mie, respectively, and find a special bisimulatighlinking w; andv; only to each
other (forl < i < n), asindicated in Figure 2.9.

We will amend the mode®tt* and’* as follows. We shrink the interpretation
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-

Fig. 2.9. Linkingw; only tov; (1 < < n).

of the proposition lettep so that it only holds atv,, andv,,. This allows us to
extendZ’ to a full directed simulatioriZ” for the whole language:

(M, we) < Mwy) ZT:e— ML) = (M)
o o
(M wy)  Z:e&~ (M, )
" o (2.5)

(WT*,U}O) 7' e ((ﬁT*,UQ)

Shrink V (p) Expand V(p)
(931“*, wo) Z” & (‘ﬁT**, ’Uo).
We can chase around the diagram displayed in (2.5), fré, wy to 91, vy; see

Exercise 2.7.4. This proves the lemmad

Lemma 2.83 For any programa and any formulag> and, the following identi-
ties hold in any model:

(i) (=0)? =~(9)7
(i) (env)?=(¢)7; ()7
(i) ((@)9)? = ~~(a;(9)?).

The proof of this lemma is left as Exercise 2.7.5.

Theorem 2.84 Let be a modal similarity type containing only diamonds, and let
a(x,y) be a first-order formula inCl(®). Thena(x,y) is safe for bisimulations
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iff it can be defined from atomic formuldg, =y and atomic test$/)? using only
;;Uand~.

Proof. To see that the constructions mentioned are indeed safsultdexam-
ple 2.80. Now, to prove the converse, détr, y) be a safe first-order operation, and
choose aewproposition lettep. Our first observation is thaty («(z,y) A Py) is
preserved under bisimulations. So by Theorem 2.68, theutarBy («(z, y) A Py)
is equivalent to a modal formula

Next we exploit special properties ofto arrive at our conclusion. First, because
of its special form,3y (a(x,y) A Py) is completely additive in”, and hence,
¢ is completely additive irp. Therefore, by Lemma 2.82 it is (equivalent to) a
disjunction of the form specified in (2.4). Them(xz,y) must be definable using
the corresponding union of relatiofi®y)? ; a1 ; (¢¥1)? ;- -5 an 5 (¥y)?. Finally, by
using Lemma 2.83 all complex tests can be pushed insidewatjet a formula of
the required form, involving only, U, ~ and?. -

Exercises for Section 2.7

2.7.1 Assume thaf)t and9t’ are m-saturated models and suppose that for every positive
existential formulap it holds thatt, w IF ¢ only if 9", w’" IF ¢ for somew andw’. Prove
thatOt, w = I, w'.

2.7.2 Prove that intersection of relations is not an operatiothithaafe for bisimulations
(see Example 2.80).

2.7.3 The aim of this exercise is to prove Lemma 2.81: assumethant, wy < — 9, vg,
wheret and9t are intransitive tree-like transition systems withR2; - - - Rywy, (in 91),
UoRj - Rpvy, (|n (ﬁ) andwini (]. <1< TL)

(&) Explain why we may assume that all bisimulation linkshiient and9t) occur
between states at the same height in the tree.

(b) Next, work your way up along the branel R; - - - R, w,, and remove any double
bisimulation links involving thav;. from thew;. More precisely, and starting at
height 1, assume that; Zv; andw; Zv. Add a copy of the submodel generated
by w; to 91, connectw, to the copyw] of wy by R;, and ‘divert’ the bisimulation
link wy Zv to w] Zv. Show that the resulting mod#’ is bisimilar (in the sense of
<) to M and tha' is bisimilar to (in the sense of> 7).

(c) Similar to the previous item, but now working up the btangR; - - - Rjv, in N
to eliminate any double bisimulation links ending in onelwd ;s (1 < i < n).

(d) By putting together the previous items conclude thatelaee extension®n*, wq)
of (M, we) and (9T*, vg) of (91, vp) (i.€., the universe ot is a subset of the uni-
verse oft*, and likewise fot and9t*) such that

(M, wo) Z:2- (M)
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whereZ' is such that for any (1 < ¢ < n) we have thatv; andv; are only related
to each other.

2.7.4 Explain why we can chasgaround the diagram displayed in (2.5) to inff@fruvg IF ¢
from 9, wo IF ¢.

2.7.5 Prove Lemma 2.83.

2.8 Summary of Chapter 2

» New Models from Old Onedaking disjoint unions, generated submodels, and
bounded morphic images are three important ways of buildevgmodels from
old that leave the truth values of modal formulas invariant.

» Bisimulations Bisimulations offer a unifying perspective on model ingace,
and each of the constructions just mentioned is a kind offrhikition. Bisimi-
larity implies modal equivalence, but the converse doesalat in general. On
image-finite models, however, bisimilarity and modal egléwnce coincide.

» Using Bisimulations Bisimulations can be used to establish non-definability
results (for example, to show that the global modality isdeftnable in the ba-
sic modal language), or to create models satisfying speslational properties
(for example, to show that every satisfiable formula is 8abte in a tree-like
model).

» Finite Model Property Modal languages have the finite model property (f.m.p.).
One technique for establishing the f.m.p. is by a selectibstates argument
involving finite approximations to bisimulations. Anoth#re filtration method,
works by collapsing as many states as possible.

» Standard TranslationThe standard translation maps modal languages into clas-
sical languages (such as the language of first-order logia)way that reflects
the satisfaction definition. Every modal formula is equavilto a first-order
formula in one free variable; if the similarity type is finitgnitely many vari-
ables suffice to translate all modal formulas. Propositidgaamic logic has to
be mapped into a richer classical logic capable of exprgdsamsitive closure.

» Ultrafilter Extensions Ultrafilter extensions are built by using the ultrafilters
over a given model as the states of a new model, and definingmoiate re-
lation between them. This leads to the first bisimilarityagwvhere-else result:
two states in two models are modally equivalent if and ontlgéfr (counterparts
in) the ultrafilter extensions of the two models are bisimila

» Van Benthem Characterization Theorenine Detour Lemma — a bisimilarity-
somewhere-else result in terms of ultrapowers — can be wsprobve the Van
Benthem Characterization Theorem: the modal fragment stfdirder logic is
the set of formulas in one free variable that are invarianbfsimulations.
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» Definability. The Detour Lemma also leads to the following result: the afigd
definable classes of (pointed) models are those that aredclasder bisimula-
tions and ultraproducts, while their complements are clas®ler ultrapowers.

» Simulation The modal formulas preserved under simulations are piycibe
positive existential ones.

» Safety An operation on relations is safe for bisimulations if waeer the back-
and-forth conditions hold for the base relations, they &islul for the result
of applying the operation to the relations. The first-ordperations safe for
bisimulations are the ones that can be defined from atoms @mmilicatests,
using only composition, union, and dynamic negation.

Notes

Kanger, Kripke, Hintikka, and others introduced models tmdal logic in the late
1950s and early 1960s, and relational semantics (or Kripkeastics as it was
usually called) swiftly became the standard way of thinkaigput modal logic.
In spite of this, much of the material discussed in this clagates not from the
1960s, or even the 1970s, but from the late 1980s and 1990g? \Bhcause re-
lational semantics was not initially regarded as of indeleen interest, rather it
was thought of as a tool that lead to interesting modal corapéss theory and
decidability results. Only in the early 1970s (with the digery of the frame in-
completeness results) did modal expressivity become avedopic of research
— and even then, such investigations were initially confiteedxpressivity at the
level of frames rather than at the level of models. Thus thetfumdamental level
of modal semantics was actually the last to be explored madtieally.

Generated submodels and bounded morphisms arose as tootarigulating
the canonical models used in modal completeness theory isges$ canonical
models in Chapter 4)Pointgenerated submodels, however, were already men-
tioned, under the name of connected model structures, pk&ri291]. Bounded
morphisms go back to at least Segerberg [396], where theyadlexl pseudo epi-
morphismsthis soon got shortened down pemorphism which remains the most
widely used terminology. A very similar, earlier, notionimsde Jongh and Troel-
stra [103]. The namé&ounded morphismstems from Goldblatt [192]. Disjoint
unions and ultrafilter extensions seem to have first beeatebiwhen modal lo-
gicians started investigating modal expressivity ovemfa in the 1970s (along
with generated submodels and bounded morphisms they afeutheonstructions
needed in the Goldblatt-Thomason theorem, which we distusise following
chapter). Neither construction is as useful as generatechadels and bounded
morphisms when it comes to proving completeness resultshvigiprobably why
they weren't noted earlier. However, both arise naturailyhie context of modal
duality theory, cf. Goldblatt [190, 191]. Ultrafilter ext®ions independently came
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about in the model-theoretic analysis of modal logic, se® Fil40]; the name
seems to be due to van Benthem. The unraveling construdtiam i§, unwind-
ing arbitrary models into trees; see Proposition 2.15) igfbkin many situations.
Surprisingly, it was first used as early as in 1959, by DumianadtLemmon [125],
but the method only seems to have become widely known becd sahlqvist’s
heavy use of it in his classic 1975 paper [388].

Vardi [434] has stressed the importance of ttee model propertyf modal
logic: the property that a formula is satisfiable iff it isiséiible at the root of a
tree-like model. The tree model property paves the way feruse of automata-
theoretic tools and tableaux-based proof methods. Moredves essential for
explaining the so-called robust decidability of modal g the phenomenon
that the basic modal logic is decidable itself, and of reabbnlow complexity,
and that these features are preserved when the basic mgaaid@xtended by a
variety of additional constructions, including countitigynsitive closure, and least
fixed points.

We discussed two ways of building finite models: the selecticethod and
filtration. However, the use of finitalgebraspredates the use of finite models:
they were first used in 1941 by McKinsey [328]; Lemmon [30diand extended
this method in 1966. The use of model-theoretic filtratioreddack to Lemmon
and Scott’s long unpublished monograpttensional Logic[303] (which began
circulating in the mid 1960s); it was further developed ig&berg’'sAn Essay in
Classical Modal Logi¢396], which also seems to have given the method its name
(see also Segerberg [394]). We introduced the selectiohadetia the notion of
finitely approximating a bisimulation, an idea which seembave first appeared
in 1985 in Hennessy and Milner [225].

The standard translation, in various forms, can be founkdemtork of a number
of writers on modal and tense logic in the 1960s — but its irtgp@re only became
fully apparent when the first frame incompleteness resuéisevproved. Thoma-
son [426], the paper in which frame incompleteness resuis fiwst established,
uses the standard translation — and shows why the move te&amd validities
requires asecondorder perspective (something we will discuss in the follayv
chapter). Thus the need became clear for a thorough inaéistigof the relation
between modal and classical logic, and correspondenceyties born. But al-
though other authors (notably Sahlqgvist [388]) helped p@&rcorrespondence the-
ory, it was the work of Van Benthem [35] which made clear thpantance of sys-
tematic use of the standard translation to access resdteahniques from classi-
cal modal theory. The observation that at most two variadesieeded to translate
basic modal formulas into first-order logic is due to GabbBEy8]. The earliest
systematic study of finite variable fragments seems to betat#enkin [223] in
the setting of algebraic logic, and Immerman and Kozen [24&dy the link with
complexity and database theory. Consult Otto [355] for nardinite variable
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logics. Keisler [272] is still a valuable reference for inffamy logic. A variety of
other translations from modal to classical logic have bdedisd, and for a wide
variety of purposes. For example, simply standardly tegtimg} modal logics into
first-order logic and then feeding the result to a theorenveirg not an efficient
way of automating modal theorem proving. But the idea of muatiing modal rea-
soning via translation is interesting, and a variety of$tations more suitable for
this purpose have been devised; see Ohllgdeth. [351] for a survey.

Under the name of p-relations, bisimulations were intredusy Johan van Ben-
them in the course of his work on correspondence theory. Eeyences here are
Van Benthem’s 1976 PhD thesis [35]; his 1983 book based othtsss [35]; and
[42], his 1984 survey article on correspondence theory.ekping with the spirit
of the times, most of Van Benthem’s early work on correspandetheory dealt
with frame definability (in fact he devotes only 6 of the 227%esa in his book
to expressivity over models). Nonetheless, much of thipterahas its roots in
this early work, for in his thesis Van Benthem introduced ¢bacept of a bisim-
ulation (he used the nanerelation in [35, 41], and the nameigzag relationin
[42]) and proved the Characterization Theorem. His origpraof differs from
the one given in the text: instead of appealing to saturatedefs, he employs an
elementary chains argument. Explicitly isolating the Dietioemma (which brings
out the importance of ultrapowers) opens the way to Theo2is and 2.76 on
definability and makes explicit the interesting analogié Wirst-order model the-
ory discussed below. On the other hand, the original proonfase concrete. Both
are worth knowing. The first published proof using saturatextlels seems to be
due to Rodenburg [382], who used it to characterize thedidér fragment corre-
sponding to intuitionistic logic.

The back-and-forth clauses of a bisimulation can be addptadalyze the ex-
pressivity of a wide range of extended modal logics (suchase studied in Chap-
ter 7), and such analyses are now commonplace. Bisimulbsad characteriza-
tions have been given for the modal mu-calculus by Janin aaldkiéwicz [249],
for temporal logics with since and until by Kurtonina and Dgk& [295], for
subboolean fragments of knowledge representation lamguby Kurtonina and
De Rijke [296], and for CTE by Moller and Rabinovich [339]. Related model-
theoretic characterizations can be found in Immerman armeK@246] (for finite
variable logics) and Toman and Niwinski [430] (for temgdaogaery languages).
Rosen [384] presents a version of the Characterization rehedhat also works
for the case of finite models; the proof given in the text bsedéawn in the finite
case as it relies on compactness and saturated models.

But bisimulations did not just arise in modal logic — they w@éndependently
invented in computer science as an equivalence relatiorrasegs graphs. Park
[358] seems to have been the first author to have used bigiongan this way.
The classic paper on the subject is Hennessy and Milner [#&5key reference for
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the Hennessy-Milner Theorem. The reader should be warmedever, that just as
the notion of bisimulation can be adapted to cover many rdiffemodal systems,
the notion of bisimulation can be adapted to cover many rdiffeconcepts of pro-

cess — in fact, a survey of bisimulation in process algebtheérearly 1990s lists

over 155 variants of the notion [179]! Our definitions do natlade bisimulations

between a model and itselto-bisimulationf the quotient of a model with re-
spect to its largest auto-bisimulation can be regarded amianal representation

of this model. The standard method for computing the largegi-bisimulation is

the so-called Paige-Tarjan algorithm; see the contribstio Ponse, de Rijke and
Venema [364] for relevant pointers and surveys.

More recently, bisimulations have become fundamental inird tirea, non-well
founded set theory. In such theories, the axiom of foundasalropped, and sets
are allowed to be members of themselves. Sets are thougbtgrbphs, and two
sets are considered identical if and only if they are bisimil' he classic source for
this approach is Aczel [2], who explicitly draws on ideasnfrprocess theory. A
recent text on the subject is Barwise and Moss [26], who li@drtwork with the
modal tradition. For recent work on modal logic and non-vi@linded set theory,
see Baltag [19].

The name ‘m-saturation’ stems from Visser [443], but theamois older: its first
occurrence in the literature seems to be in Fine [140] (utidemame ‘modally
saturategl). The concept of a Hennessy-Milner class is from Goldda85] and
Hollenberg [239]. Theorem 2.62, that equivalence of modelslies bisimilar-
ity between their ultrafilter extensions, is due to [239]. aBf and Keisler [89,
Chapters 4 and 6] is the classic reference for the ultragtodonstruction; their
Chapters 2 and 5 also contain valuable material on saturatettls. Doets and
Van Benthem [120] give an intuitive explanation of the yin@duct construction.

The results proved in this chapter are often analogs of atdnesults in first-
order model theory, with bisimulations replacing partsmorphisms. The Keis-
ler-Shelah Theorem (see Chang and Keisler [89, Theorerh3)Istates that two
models are elementarily equivalent iff they have isomarpliirapowers; a weak-
ened form, due to Doets and Van Benthem [120], replaces tspiic’ with ‘par-
tially isomorphic’. Theorem 2.74, which is due to De Rijké®@], is a modal ana-
log of this weakened characterization theorem. Proposii81 is similar to char-
acterizations of logical equivalence for first-order lodite to Ehrenfeucht [127]
and Fraissé [149]; in fact, bisimulations can be regaedeitie modal cousins of the
model theoretic Ehrenfeucht-Fraissé games. We willnetiu the theme of analo-
gies between first-order and modal model theory in Secti6rwhen we prove a
Lindstrom theorem for modal logic. See De Rijke [109] anar8t[418] for further
work on modal model theory; De Rijke and Sturm [113] providebgl counter-
parts for the local definability results presented in Sec?®. One can also charac-
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terize modal definability of model classes using ‘modalistural operations only,
i.e., bisimulations, disjoint unions and ultrafilter exdems, cf. Venema [437].

Sources for the use of simulations in refinement are Heneiegal. [227] and
He Jifeng [252], and for their use in a database setting,udbBaneman et al. [74];
see De Rijke [106] for Theorem 2.78. The Safety Theorem 2s8due to Van
Benthem [47]. The text follows the original proof fairly slely; an alternative
proof has been given by Hollenberg [238], who also proveggsizations.

One final remark. Given the importancefofite model theory, the reader may
be surprised to find so little in this chapter on the topic. Bt don’t neglect
finite model theory in this book: virtually all the resultsoped in Chapter 6 re-
volve around finite models and the way they are structurecat $aid, the topic
of finite modal model theory has received less attention fremalal logicians than
it deserves. In spite of Rosen’s [384] proof of the Van Bentleharacterization
theorem for finite models, and in spite of work on modal 0-1ddalpern and
Kapron [211], Goranko and Kapron [197], and Graeteal. [206, 205]), finite
modal model theory is clearly an area where interestingtouesabound.



