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Completeness

This chapter is about the completeness — and incompleteragsormal modal
logics. As we saw in Section 1.6, normal modal logics areectibns of formulas
satisfying certain simple closure conditions. They canpexgied either syntac-
tically or semantically, and this gives rise to the questiovhich dominate the
chapter: Given a semantically specified logic, can we gigesigntactic characteri-
zation, and if so, how? And: Given a syntactically specifiagid, can we give it a
semantic characterization (and in particular, a charaeton in terms of frames),
and if so, how? To answer either type of question we need takraw to prove
(soundness and)ompletenestheorems, and the bulk of the chapter is devoted to
developing techniques for doing so.

The chapter has two major parts. The first, comprising thé fing sections,
is an introduction to basic completeness theory. It into@ducanonical models,
explains and applies the completeness-via-canonicitpfpgerhnique, discusses
the Sahlgvist Completeness Theorem, and proves two fundaimanitative re-
sults. The material introduced in these sections (whictatue@n the basic track) is
needed to follow the second part and the algebraic invegiigaof Chapter 5.

In the second part of the chapter we turn to the following tjoeswhat are we
to do when canonicity fails? (As will become clear, candgi€ailure is a fact of
life for temporal logic, propositional dynamic logic, anther applied modal lan-
guages.) This part of the chapter is technique orientedtridduces five important
ways of dealing with such difficulties.

Chapter guide

Section 4.1: Preliminaries (Basic track)This section introduces the fundamental
concepts: normal modal logics, soundness, and completenes

Section 4.2: Canonical Models (Basic track)Canonical models are introduced,
and the fundamental Canonical Model Theorem is proved.

Section 4.3: Applications (Basic track)This section discusses the key concept of
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canonicity, and uses completeness-via-canonicity argtsiie put canoni-
cal models to work. We prove completeness results for a nuofleodal
and temporal logics, and finish with a discussion of 8ahlqvist Com-
pleteness Theorem

Section 4.4: Limitative Results (Basic track)Ve prove two fundamental limita-
tive results: not all normal logics are canonical, and nbhatmal logics
are characterized by some class of frames. This sectiorunt@our in-
troduction to basic completeness theory.

Section 4.5: Transforming the Canonical Model (Basic trackOften we need to
build models with properties for which we lack a canonicahfala. What
are we to do in such cases? This section introduces one a@bproge
transformation methods to try and massage the ‘faulty’ nar@ model
into the required shape.

Section 4.6: Step-by-Step (Basic trackkometimes we can cope with canonicity
failure using the step-by-step method. This is a techniquebdilding
models with special properties inductively.

Section 4.7: Rules for the Undefinable (Basic trackppecial proof rules (that in
a certain sense manage to express undefinable propertiesdefsrand
frames) sometimes allow us to construct special canonicalets con-
taining submodels with undefinable properties.

Section 4.8: Finitary Methods | (Basic track) We discuss a method for proving
weak completeness results for non-compact lodficste canonical mod-
els. We use such models to prove the completeness of priopesity-
namic logic.

Section 4.9: Finitary Methods Il (Advanced track)This section further explores
finitary methods, this time the direct use of filtrations. Wastrate this
with an analysis of the normal logics extendi§g.3

4.1 Preliminaries

In this section we introduce some of the fundamental cosctt we will use
throughout the chapter. We begin by definimgdal logics— these could be de-
scribed as propositional logics in a modal language.

Throughout the chapter we assume we are working with a fixedtable lan-
guage of proposition letters.

Definition 4.1 (Modal Logics) A modal logicA is a set of modal formulas that
contains all propositional tautologies and is closed umdedus ponenghat is, if
¢ € Aandg — ¢ € Atheny € A) anduniform substitutior(that is, if ¢ belongs
to A then so do all of its substitution instances)¢l€ A we say that is atheorem
of A and writel-, ¢; if not, we writet/, ¢. If A; and A, are modal logics such
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thatA; C A, we say thatl; is anextensiorof A;. In what follows, we usually
drop the word ‘modal’ and talk simply of ‘logics’. H

Note that modal logics contain all substitution instancethe propositional tau-
tologies: for example{p v —<Op, belongs to every modal logic. Even though
such substitution instances may contain occurrence€saridd, we still call them
tautologies Clearly tautologies are valid in every class of models.

Example 4.2 (i) The collection of all formulas is a logic, theconsistent
logic.

(ii) If {A; |7 € I} isacollection of logics, thefi),; 4; is a logic.

(iii) Define As to be{¢ | & IF ¢, for all structuresS € S}, whereS is any
class of frames or any class of general framds.is a logic. IfS is the
singleton clas§&}, we usually call this logicls, rather thanlg;.

(iv) If M is a class of models, thety neednot be a logic. Consider a model
M in which p is true at all nodes butis not. Therp € Agy, butq & Agy.
But ¢ is obtainable fromp by uniform substitution. -

It follows from Examples 4.2(i) and 4.2(ii) that there is aahest logic containing
any set of formulag’; we call thisthe logic generated hy'. For example, the logic
generated by the empty set contains all the tautologies aifng else; we call it
PC and it is a subset of every logic. This generative perspedsiessentiallygyn-
tactic. However, as Example 4.2(iii) shows, there is a natseahantiqperspective
on logics: both frames and general frames give rise to logi@n obvious way.
Even the empty class of frames gives rise to a logic, namelynitonsistent logic.
Finally, Example 4.2(iv) shows that models may fail to givgerto logics. This
‘failure’ is actually the behavior we should expect: as wecdissed in Section 1.6,
genuine logics arise at the levelfohmes via the concept ofalidity.

Definition 4.3 Let ¢y, ..., ¥y, ¢ be modal formulas. We say thatis deducible
in propositional calculus from assumptions, ..., ¢, if (Y1 A+ Ady,) — ¢ is
a tautology. -

All logics are closed under deduction in propositional alls: if ¢ is deducible
in propositional calculus from assumptiotis, ..., ¥, thenk, ¥q, ..., k4 ¥y,
impliest4 ¢.

Definition 4.4 If I" U {¢} is a set of formulas thea is deducible int from I” (or:
¢ is A-deducible froml") if -4 ¢ or there are formulags,...,«, € I" such that

Fa (W1 A Aibp) = .
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If this is the case we writd” 4 ¢, if not, I" /4 ¢. A set of formulasl is A-
consistentf 1" t/, 1, andA-inconsistenbtherwise. A formulap is A-consistent if
{¢} is; otherwise it isA-inconsistent.

It is a simple exercise in propositional logic to check thaea of formulasl” is
A-inconsistent if and only if there is a formutasuch thatl” -4 ¢ A —¢ if and
only if for all formulas, I" 4 . Moreover, " is A-consistent if and only if
every finite subset of" is. (That is, our notion of deducibility has tltempact-
nessproperty.) From now on, when is clear from context or irrelevant, we drop
explicit references to it and talk simply of ‘theorems’, dileibility’, ‘consistency’
and ‘inconsistency’, and use the notatior, I" - ¢, and so on.

The preceding definitions merely generalize basic ideasogigsitional calculus
to modal languages. Now we come to a genuimalydalconcept:normal modal
logics These logics are the focus of this chapter’s investigatioWe initially
restrict our discussion to the basic modal language; thedé&dinition is given at
the end of the section. As we discussed in Section 1.6, thewiolg definition is
essentially an abstraction from Hilbert-style approadbesodal proof theory.

Definition 4.5 A modal logicA is normalif it contains the formulas:

(K) O(p — ¢q) = (Op — Og),
(Dual) <p < —O-p,

and is closed undegeneralization(that is, if-4 ¢ thent,4 O¢). -

Syntactic issues do not play a large role in this book; naetis, readers new to
modal logic should study the following lemma and attemptrEise 4.1.2.

Lemma 4.6 For any normal logicA, if -4 ¢ <> ¢ thenk, ¢ < O,

Proof. Supposé-4 ¢ «< ¥. Then,4 ¢ — ¢ and,4 ¢ — ¢. If we can show that
Fi o — Oy andk-,4 Oy — ¢, the desired result follows. Now, asy ¢ — ¢,
we have-,4 —) — —¢, hence by generalization, O(—¢ — —¢). By uniform
substitution into the K axiom we obtain, O(—¢ — —¢) — (O — O-9). It
follows by modus ponens thaty O-+) — O-¢. Thereforef- 4 -O-¢ — =0O-),
and two uses of Dual yield ;, ¢ — O, as desired. As ) — ¢, an analogous
argument shows that, &y — <©¢, and the result follows. -

Remark 4.7 The above definition of normal logics (with or without Duadend-
ing on the choice of primitive operators) is probably the typmgoular way of stip-
ulating what normal logics are. But it's not the only way. Elefor example, is
a simple diamond-based formulation of the concept, whidhlvei useful in our
later algebraic work: a logicl is normal if it contains the axiom& L < L and
C(pVg) « OpV Og, and is closed under the following ruley ¢ — ) implies
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Fi O¢ — <. This formulation is equivalent to Definition 4.5, as thedeais
asked to show in Exercise 4.1.2

Example 4.8 (i) Theinconsistent logic is a normal logic.
(i) PCis nota normal logic.
(iii)y If {A; | i € I} is a collection of normal logics, thef),; A; is a normal
logic.
(iv) If Fis any class of frames, thety is a normal logic.
(v) If Gis any class of general frames, thég is a normal logic. (The reader
is asked to prove this in Exercise 4.1.1.)

Examples 4.8(i) and 4.8(iii) guarantee that there is a ssiatiormal modal logic
containing any set of formulas. We call this the normal modal logigenerated

or axiomatizedby I". The normal modal logic generated by the empty set is called
K, and it is the smallest (or minimal) normal modal logic: folyanormal modal
logic A, K C A. If I' is a non-empty set of formulas we usually denote the
normal logic generated by’ by KI'. Moreover, we often make use of Hilbert
axiomatization terminology, referring 6 asaxiomsof this logic, and say that the
logic was generated using theles of proof modus ponens, uniform substitution,
and generalization. We justified this terminology in Sattlos, and also asked the
reader to prove that the logl€T" consists of precisely those formulas that can be
proved in a Hilbert-style derivation from the axiomslirusing the standard modal
proof rules (see Exercise 1.6.6).

Defining a logic by stating which formulas generate it (tltextending the
minimal normal logicK with certain axioms of interest) is the usual way of syn-
tactically specifying normal logics. Much of this chaptepkres such axiomatic
extensions. Here are some of the better known axioms, tegetith their tradi-
tional names:

4) OOp—=Cp

M p—=9<p

B) p—0OOp

(D) Op—Op

(3) OpACe—=>OPpAOYVO(pAGVO(gACp)
(LY o@Ep—p) —0Op

There is a convention for talking about the logics generégduch axioms: if
Aq,..., A, are axioms theiKA ... A, is the normal logic generated by A ..,
A,. But irregularities abound. Many historical names are firemtrenched, thus
modal logicians talk off, S4, B, andS5instead ofKT, KT4, KB andKT4B re-
spectively. Moreover, many axioms have multiple names.eixample, the axiom
we call L (for Lob) is also known as G (for Godel) and W (for if@unded); and
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K the class of all frames

K4 the class of transitive frames
T the class of reflexive frames

B the class of symmetric frames

KD the class of right-unbounded frames

S4 the class of reflexive, transitive frames

S5 the class of frames whose relation is an equivalence ralatio
K4.3 the class of transitive frames with no branching to the right

S4.3 the class of reflexive, transitive frames with no branchinthe right
KL the class of finite transitive treewéakcompleteness only)

Table 4.1. Some Soundness and Completeness Results

the axiom we call .3 has also been called H (for Hintikka). \Yler# a fairly relaxed
attitude towards naming logics, and use the familiar naraeswch as possible.

Now that we know what normal modal logics are, we are readgttoduce the
two fundamental concepts linking the syntactic and serog@ispectivessound-
nessandcompleteness

Definition 4.9 (Soundness) et S be a class of frames (or models, or general
frames). A normal modal logid is soundwith respect t& if A C As. (Equiva-
lently: A is soundwith respect td if for all formulas ¢, and all structure® < S,

Fi ¢ impliesS IF ¢.) If Ais sound with respect t6 we say thaf is a class of
frames(or models, or general framef®r A. -

Table 4.1 lists a number of well-known logics together wikksses of frames for
which they are sound. Recall thatight-unboundednesisame (W, R) is a frame
such thatvx3y Rxy. Also, a frame(W, R) satisfyingVaVyVz (Rxy A Rxz —
(Ryz Vy =2V Rzy)) is said to haveno branching to the right

The soundnesslaims made in Table 4.1 (with the exception of the last one,
which was shown in Example 3.9) are easily demonstrated! éases one shows
that the axioms are valid, and that the three rules of proafd{ms ponens, gen-
eralization, and uniform substitution) preserve validity the class of frames in
question. In fact, the proof rules preserve validityamyclass of frames or general
frames (see Exercise 4.1.1), so proving soundness boila timehecking the va-
lidity of the axioms. Soundness proofs are often routiné,\&hen this is the case
we rarely bother to explicitly state or prove them. But thaaept ofcompleteness
leads to the problems that will occupy us for the remainde¢hefchapter.

Definition 4.10 (Completeness)etS be a class of frames (or models, or general
frames). A logicA is strongly completevith respect tc if for any set of formulas
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I'u{¢}, if I'lFs ¢ thenI' -4 ¢. Thatis, ifI" semantically entail® on S (recall
Definition 1.35) theny is A-deducible from/".

Alogic A isweakly completevith respect tc if for any formulag, if S I ¢ then
Fa ¢. Ais strongly complete (weakly complete) with respect to glsirstructure
G if Ais strongly complete (weakly complete) with respec{®}. -

Note that weak completeness is the special case of strongletamess in whici

is empty, thus strong completeness with respect to some afasructures implies
weak completeness with respect to that same class. (Thersendoesot hold,
as we will later see.) Note that the definition of weak congless can be refor-
mulated to parallel the definition of soundnedsis weakly complete with respect
toSif Ag C A. Thus, if we prove that a syntactically specified logids both
sound and weakly complete with respect to some class oftgtassS, we have
established a perfect match between the syntactical andndiea perspectives:
A = As. Given a semantically specified logity (that is, the logic of some class
of structuresS of interest) we often want to find a simple collection of fotasi”
such thatds is the logic generated b¥; in such a case we sometimes say that
axiomatizes.

Example 4.11 With the exception oKL , all the logics mentioned in Table 4.1 are
strongly complete with respect to the corresponding ctasédrames. However
KL is only weakly complete with respect to the class of finiteitiive trees. As
we will learn in section 4.4KL is not strongly complete with respect to this class
of frames, or indeed with respect to any class of frames whkats. -

These completeness results are among the best known in togaaland we will
soon be able to prove them. Together with their soundnessteqarts (given in
Example 4.1), they constitute perspicuous semantic cterzations of important
logics. K4, for example, is not just the logic obtained by enrichkgvith some
particular axiom: it is precisely the set of formulas valid @l transitive frames.
There is always something arbitrary about syntactic ptesiens; it is pleasant
(and useful) to have these semantic characterizationsr alisposal.
We make heavy use, usually without explicit comment, of tiliing result.

Proposition 4.12 A logic A is strongly complete with respect to a class of struc-
tures S iff every A-consistent set of formulas is satisfiable on saghes S. A

is weakly complete with respect to a class of structiréf every A-consistent
formula is satisfiable on son® € S.

Proof. The result for weak completeness follows from the one fargircomplete-
ness, so we examine only the latter. To prove the right tdrigftication we argue
by contraposition. Supposé is not strongly complete with respect o Thus
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there is a set of formulas U {¢} such thatl" IFs ¢ butI” /4 ¢. ThenI' U {-¢}
is A-consistent, but not satisfiable on any structur8.iiThe left to right direction
is left to the reader.

To conclude this section, we extend the definition of normatlat logics to arbi-
trary similarity types.

Definition 4.13 Assume we are working with a modal language of similarityetyp
7. A modal logicin this language is (as before) a set of formulas containlhg a
tautologies that is closed under modus ponens and unifobstigution. A modal
logic A is normalif for every operatorv it contains: the axiond’;, (for all i such
thatl < i < p(V)); the axiom Dua}; and is closed under the generalization rules
described below.

The required axioms are obvious polyadic analogs of theeedfl and Dual
axioms:

(KZV) V(T17“‘7p_>Q7“‘7rp(v)) -
— (V(Tl,...,p,...,rp(v)) — V(rl,...,q,...,rp(v))).
(Dualy) A(Tl,...,Tp(v)) S —|V(—|T1,...,—|Tp(v)).

(Herep, q,r1,...,1,v) are distinct propositional variables, and the occurrences
K% of p and ¢ occur in thei-th argument place of’.) Finally, for a polyadic
operatorv, generalization takes the following form:

Fqoimplies 4 V(L,...,0,...,1).

That is, ann-place operatof’ is associated with. generalization rules, one for
each of itsn argument positions.

Note that these axioms and rules don't applyntdlary modalities. Nullary
modalities are rather like propositional variables and —faagas the minimal logic
is concerned — they don't give rise to any axioms or rules.

Definition 4.14 Let 7 be a modal similarity type. Given a set offormulasi’,
we defineK ;. I", the normal modal logiexiomatizedor generatedoy I, to be the
smallest normal modat-logic containing all formulas inf”. Formulas inl" are
calledaxiomsof this logic, andl” may be called amaxiomatizationof K, I". The
normal modal logic generated by the empty set is denotdd by -

Exercises for Section 4.1

4.1.1 Show that ifG is any class of general frames, thég is a normal logic. (To prove
this, you will have to show that the modal proof rules preseralidity on any general
frame.)
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4.1.2 First, show that the diamond-based definition of normal rmacs given in Re-
mark 4.7 is equivalent to the box-based definition. Then|dnguages of arbitrary simi-
larity type, formulate ax-based definition of normal modal logics, and prove it edeia
to thev-based one given in Definition 4.13.

4.1.3 Show that the set of all normal modal logics (in some fixed lege) ordered by set
theoretic inclusion forms a complete lattice. That is, grthat every family{A; | i € I}
of logics has both an infimum and a supremum. (An infimum is &ldguch thatl C A;
forall ¢ € I, and for any other logicl’ that has this propertyl C A’; the concept of a
supremum is defined analogously, with’ replacing ‘C’.)

4.1.4 Show that the normal logic generated®yp A Op — ¢) V O(¢g A Og — p) is sound
with respect to the class &4.3 frames (see Table 4.1). Further, show that the normal
modal logic generated by(Op — ¢) V O(dg — p) is notsound with respect to this class
of frames, but that it is sound with respect to the clasS4Bframes.

4.2 Canonical Models

Completeness theorems are essentially model existermeethe — that is the con-
tent of Proposition 4.12. Given a normal logi¢cwe prove its strong completeness
with respect to some class of structures by showing thayevaronsistent set of
formulas can be satisfied in some suitable model. Thus thgafuental question
we need to address isow do we build (suitable) satisfying modzls

This section introduces the single most important answeitd Imodels out of
maximal consistent sets of formulasd in particular, buil&canonical models|t
is difficult to overstress the importance of this idea. In doen or another it
underlies almost every modal completeness result the réalilesly to encounter.
Moreover, as we will learn in Chapter 5, the idea has sulistaigebraic content.

Definition 4.15 (A-mcss) A set of formulas!” is maximalA-consistenif " is A-
consistent, and any set of formulas properly contairing A-inconsistent. 1" is
a maximalA-consistent set of formulas then we say it id-a1cs. -

Why usemcss in completeness proofs? To see this, first note that evant po
w in every modebt for a logic A is associated with a set of formulas, namely
{¢ | Mw I ¢}. Itis easy to check (and the reader should do so) that this
set of formulas is actually a-mcs. That is: if ¢ is true in some model for,
then ¢ belongs to aA-mcs. Second, ifw is related tow’ in some modebn,
then it is clear that the information embodied in thess associated withy and
w'’ is ‘coherently related’. Thus our second observation is:dei® give rise to
collections of coherently relatedcss.

The idea behind the canonical model construction is to tdytam these obser-
vations around: that is, to work backwards from collectiohgoherently related
Mcss to the desired model. The goal is to prove a Truth Lemma wikithus that
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‘¢ belongs to armcs'’ is actually equivalentto ‘¢ is true in some model’. How
will we do this? By building a special model — tloanonical model— whose
points are alimcss of the logic of interest. We will pin down what it means for
the information inMcss to be ‘coherently related’, and use this notion to define
the required accessibility relations. Crucially, we wiét Bble to prove an Exis-
tence Lemma which states that there are enough coherelalgd®css to ensure
the success of the construction, and this will enable usdwepthe desired Truth
Lemma.

To carry out this plan, we need to learn a little more abeass.

Proposition 4.16 (Properties of MCSs)If A is a logic and!” is a A-mcCs then:

(i) I'is closed under modus ponenspif¢p — ¢ € I', theny € I,
(i) ACT;
(iii) for all formulas¢: ¢ € I'or —¢ € I
(iv) for all formulas¢, v: ¢ Vi € I'iff p € I'ory € I

Proof. Exercise 4.2.1. -

As Mcss are to be our building blocks, it is vital that we have enoafithem. In
fact, any consistent set of formulas can be extended to amadxionsistent one.

Lemma 4.17 (Lindenbaum’s Lemma) If X' is a /A-consistent set of formulas then
there is and-mcs ¥+ such thaty C ¥,

Proof. Let ¢y, ¢1, ¢2, ... be an enumeration of the formulas of our language. We
define the seE* as the union of a chain of-consistent sets as follows:

Yo = X

5 Y, U{o,}, Iifthisis A-consistent
el Y, U{=¢,}, otherwise
5t = Unso Zn-

The proof of the following properties of'* is left as Exercise 4.2.2: (i¥,, is
A-consistent, for alh; (i) exactly one of¢ and—¢ is in X, for every formulag;
(i) if X 4 ¢, theng € ¥T; and finally (iv) ¥+ is aA-mcs.

We are now ready to build models out micss, and in particular, to build the
very special models known as canonical models. With the tielpese structures
we will be able to prove the Canonical Model Theorem, a usakecompleteness
result for normal logics. We first define canonical models prave this result for
the basic modal language; at the end of the section we ga®eoair discussion to
languages of arbitrary similarity type.
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Definition 4.18 The canonical modébt” for a normal modal logict (in the basic
language) is the tripléiv 4, R, V1) where:

(i) W4 isthe set of all1-mcss;
(i) R/ is the binary relation ofiv4 defined byR%wu if for all formulas v,
¥ € wimplies<&y € w. R4 is called thecanonical relation
(i) V*is the valuation defined by (p) = {w € W/ | p € w}. VA is called
the canonical(or natural) valuation

The pairg! = (W4, R4) is called thecanonical framéor A.

All three clauses deserve comment. First, the canonicahtiah equates the truth
of a propositional symbol ab with its membership inv. Our ultimate goal is to
prove a Truth Lemma which will lift this ‘truth = membershigguation to arbitrary
formulas.

Second, note that the statesdif' consist ofall A-consistenicss. The signif-
icance of this is that, by Lindenbaum’s Lemnaeny A-consistent set of formulas
is a subset of some point Bt — hence, by the Truth Lemma proved below,
any A-consistent set of formulas is true at some point in this rholaeshort, the
single structuré@ is a ‘universal model’ for the logiel, which is why it’s called
‘canonical’.

Finally, consider the canonical relation: a statés related to a state precisely
when for each formula in u, w contains the informatior>. Intuitively, this
captures what we mean hycss being ‘coherently related’. The reader should
compare the present discussion with the account of uleafittensions in Chap-
ter 2 — in Chapter 5 we’ll discuss a unifying framework. In timeantime, the
following lemma shows that we're getting things right:

Lemma 4.19 For any normal logicA, R4 ww iff for all formulas ¢, Oy € w
impliesy € v.

Proof. For the left to right direction, suppos®’wv. Further suppose ¢ v. Aswv

is anmcs, by Proposition 4.16w) € v. As R wv, O € w. Asw is consistent,
-0 ¢ w. Thatis,0¢ ¢ w and we have established the contrapositive. We
leave the right to left direction to the readerd

In fact, the definition ofR* is exactly what we require; all that remains to be
checked is that enough ‘coherently relatestss exist for our purposes.

Lemma 4.20 (Existence Lemma)For any normal modal logict and any state
w € WA, if O¢ € w then there is a state € W such thatRwv and¢ € v.

Proof. SupposeC¢ € w. We will construct a state such thatR4wv and¢ € v.
Letv™ be{¢} U{¢ | O¢v € w}. Thenv™ is consistent. For suppose not. Then
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there areyn, ..., 1, such that-, (¢ A--- Aty,) — —¢, and it follows by an
easy argument that, O(yy A--- A1y,) — O-¢. As the reader should check, the
formula (Oyy A --- A Otby,) — O(Yy A --- A 1y,) is a theorem of every normal
modal logic, hence by propositional calcultts, (O A- - -AOY,) — O-¢. Now,
Ouy A --- A0y, € w (for Oy, ...,0¢, € w, andw is anmcs) thus it follows
thatOd-¢ € w. Using Dual, it follows that->¢ € w. But this is impossiblew is
anMcs containing®¢. We conclude that — is consistent after all.

Letv be anymcs extendingy™; such extensions exist by Lindenbaum’s Lemma.
By constructiong € v. Furthermore, for all formulag, Oy € w impliesy € v.
Hence by Lemma 4.1R wv.

With this established, the rest is easy. First we lift thathir= membership’ equa-
tion to arbitrary formulas:

Lemma 4.21 (Truth Lemma) For any normal modal logicl and any formulap,
M w Ik ¢iff ¢ € w.

Proof. By induction on the degree @f. The base case follows from the definition
of V4. The boolean cases follow from Proposition 4.16. It rem#irgeal with the
modalities. The left to right direction is more or less imriadel from the definition
of RA:
M4 wli- <o iff Fo(RY%Wv A MA 0 Ik ¢)
iff Jv (RYwv A ¢ €0) (Induction Hypothesis)
onlyif <¢¢pecw (Definition R4)

For the right to left direction, suppose¢ € w. By the equivalences above, it
suffices to find amcs v such thatR4wv and¢ € v — and this is precisely what
the Existence Lemma guarantees

Theorem 4.22 (Canonical Model Theorem)Any normal modal logic is strongly
complete with respect to its canonical model.

Proof. SupposeY’ is a consistent set of the normal modal logic By Linden-
baum’s Lemma there is d-mcs ¥ extending¥. By the previous lemma,
mA Tt IF Y. A

At first glance, the Canonical Model Theorem may seem rathstract. It is a
completeness result with respect to a classotlels not frames, and a rather ab-
stract class at that. (Th#i4 is complete with respect to the class of transitive
frames is interesting; that it is complete with respect todimgleton class contain-
ing only its canonical model seems rather dull.) But appezea are misleading:
canonical models are by far the most important tool used enptiesent chapter.
For a start, the Canonical Model Theorem immediately yidiésollowing result:
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Theorem 4.23 Kis strongly complete with respect to the class of all frames.

Proof. By Proposition 4.12, to prove this result it suffices to findr &iny K-
consistent set of formulas, a model9t (based on any frame whatsoever) and a
statew in Mt such thab)t, w I- I". This is easy: simply chooggt to be(g¥, VK),

the canonical model fdf, and letl"* be anyK -mcs extendingl”. By the previous
lemma,(F¥, VK), rti-r. A

More importantly, it is often easy to get useful informatiamout the structure of
canonical frames. For example, as we will learn in the nestice, the canonical
frame forK4 is transitive — and this immediately yields the (more instirey)
result thatk4 is complete with respect to the class of transitive framegnEvhen
a canonical model is not as cleanly structured as we woud likstill embod-
ies a vast amount of information about its associated lamie of the important
themes pursued later in the chapter is how to make use ofrtffosmation in-
directly. Furthermore, canonical models are mathemdicedtural. As we will
learn in Chapter 5, from an algebraic perspective canonicalels are not abstract
oddities: indeed, they are precisely the structures oreais o by considering the
ideas underlying the Stone Representation Theorem.

To conclude this section we sketch the generalizationsnedjto extend the results
obtained so far to languages of arbitrary similarity types.

Definition 4.24 Let 7 be a modal similarity type, and a normal modal logic in
the language over. The canonical modedn”! = (W4, R4 VA1), e, for A has
W4 andV4 as defined in Definition 4.18, while for anary operatora € 7 the
relation R4 C (W) +1is defined byR4wuy . .. u, if for all formulas ¢y € uy,
ooy Uy € up We havea (Y, ..., 10p) € w.

There is an analog of Lemma 4.19.

Lemma 4.25 For any normal modal logici, ngul ... uy, iff for all formulas
Uiy sy, V(U1,...,0,) € w implies that for some such thatl < ¢ < n,

i € u;.

Proof. See Exercise 4.2.3.

Now for the crucial lemma — we must show that enough cohereatatedmcss
exist. This requires a more delicate approach than was ddedeemma 4.20.
Lemma 4.26 (Existence Lemma)Supposen (i1, ...,1,) € w. Then there are
Ui, ..., u, SUChthat), € uy, ..., 1, € u, and R wu; ... u,.

Proof. The proof of Lemma 4.20 establishes the result for any unpeyaiors in
the language, so it only remains to prove the (trickier) dasenodalities of higher
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arity. To keep matters simple, assume thas binary; this illustrates the key new
idea needed.

S0, suppose (v1,19) € w. Let gy, ¢1, ... enumerate all formulas. We con-
struct two sequences of sets of formulas

{1} =IHyCII; C--- and{Yp} =Xy C X, C---

such that allZI; and ¥; are finite and consistent/; is either II; U {¢;} or
I1;U{—¢;}, and similarly for¥; . ;. Moreover, puttingr; := A I1; ando; := A\ X,
we will have thata (7, 0;) € w.

The key step in the inductive construction is

A(Tri,ai) cw = A(Tri/\(gbi\/—'géi)pi/\(ngiv—'ngi)) cw
= A((mAdi) V(T A=), (00 A i) V (03 A dy)) € w
= one of the formulag\ (m; A [5]¢s, i A [2]¢;) IS inw.

If, for example,A(m; A @i, 04 A —=¢;) € w, we takell; 1 := II; U {¢;}, X1 :=
Y U {—=¢;}. Under this definition, alllZ; and X; have the required properties.
Finally, letu; = (J, II; anduy = |J; X;. Itis easy to see that;, u, are A-MCSs
and R4wuy us, as required.

With this lemma established, the real work has been done. Trn Lemma
and the Canonical Model Theorem for general modal languagesow obvious
analogs of Lemma 4.21 and Theorem 4.22. The reader is asletat¢oand prove
them in Exercise 4.2.4.

Exercises for Section 4.2

4.2.1 Show that alMcss have the properties stated in Proposition 4.16. In addisibow
thatif ¥ andI” are distinctmcss, then there is at least one formdlauch thay € X and
~p el

4.2.2 Lindenbaum’s Lemma is not fully proved in the text. Give piof the four claims
made at the end of our proof sketch.

4.2.3 Prove Lemma 4.25. (This is a good way of getting to grips whih definition of
normality for modal languages of arbitrary similarity type

4.2.4 State and prove the Truth Lemma and the Canonical Model Enefor languages
of arbitrary similarity type. Make sure you understand thecal case for nullary modali-
ties (recall that we have no special axioms or rules of prooftiese).

4.3 Applications

In this section we put canonical models to work. First we shmw to prove
the frame completeness results noted in Example 4.11 usitgme and uniform
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method of argument. This leads us to isolate one of most itapbconcepts of
modal completeness theorganonicity We then switch to the basic temporal
language and use similar arguments to prove two importamideal completeness
results. We conclude with a statement of Bahlqvist Completeness Theorem
which we will prove in Chapter 5.

Suppose we suspect that a normal modal logis strongly complete with re-
spect to a class of framé&s how should we go about proving it? Actually, there is
no infallible strategy. (Indeed, as we will learn in the élling section, many nor-
mal modal logics are not complete with respect to any clagsofes whatsoever.)
Nonetheless, a very simple technique works in a large nuoildateresting cases:
simply show that the canonical frame fdr belongs toF. We call such proofs
completeness-via-canoniciyguments, for reasons which will soon become clear.
Let’'s consider some examples.

Theorem 4.27 The logicK4 is strongly complete with respect to the class of tran-
sitive frames.

Proof. Given aK4-consistent set of formulas, it suffices to find a modelg, V')
and a statev in this model such that (1)§, V), w I- I', and (2)§ is transitive.
Let (WK4 RK4 17K4) pe the canonical model fdf4 and letI"" be anyK4-
McCs extendingl”. By Lemma 4.21(W K4 RK4 vK4) m+ |- " so step (1) is
established. It remains to show that ¥4, RK4) is transitive. So suppose, v
andu are points in this frame such th&#4wv and R¥4vu. We wish to show that
R¥%u. Suppose € u. As RX4vu, ¢ € v, so asRK4wv, O0¢ € w. Butw is
aK4-mcs, hence it contain® ¢ — <¢, thus by modus ponens it contaifs.
ThusR¥4wu. A

In spite of its simplicity, the preceding result is well wonteflecting on. Two
important observations should be made.

First, the proof actually establishes something more gerban the theorem
claims: namely, that the canonical frameanfynormal logic/A containing><op —
Opis transitive. The proof works becauseraltss in the canonical frame contain
the 4 axiom; it follows that the canonical frame of any exien®f K4 is transitive,
for all such extensions contain the 4 axiom.

Second, the result suggests that there may be a connectivadvethe structure
of canonical frames and the frame correspondences stud{@adapter 3. We know
from our previous work tha®&p — <p definedransitivity — and now we know
that it imposes this property on canonical frames as well.

Theorem 4.28 T, KB andKD are strongly complete with respect to the classes of
reflexive frames, of symmetric frames, and of right-unbedrfcames, respectively.
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Proof. For the first claim, it suffices to show that the canonical nhdde T is
reflexive. Letw be a point in this model, and supposec w. As w is aT-MCS,
¢ — O € w, thus by modus ponen$;¢ € w. ThusRTww.

For the second claim, it suffices to show that the canonicalehfor KB is
symmetric. Letw andwv be points in this model such th&¥Bwuv, and suppose
thaty € w. AswisaKB-McCS, ¢ — OC¢ € w, thus by modus ponensé ¢ € w.
Hence by Lemma 4.19;¢ € v. But this means thaR¥Buvw, as required.

For the third claim, it suffices to show that the canonical siddr KD is right-
unbounded. (This is slightly less obvious than the previdasns since it requires
an existence proof.) Let be any point in the canonical model f&iD. We
must show that there existsvan this model such thaR¥Pwwv. As w is aKD-
MCS it containsOp — <p, thus by closure under uniform substitution it contains
OT — <T. Moreover, asl” belongs to all normal modal logics, by generalization
OT does too; sadT belongs toKD, hence by modus ponersT € w. Hence,
by the Existence Lemma; has anR¥P successor. -

Once again, these result hint at a link between definability #he structure of
canonical frames: after all, T defines reflexivity, B defingsisietry, and D right
unboundedness. And yet again, the proofs actually edtasbisnething more gen-
eral than the theorem states: the canonical framengfnormal logic containing
T is reflexive, the canonical frame ahynormal logic containing B is symmetric,
and the canonical frame ahynormal logic containing D is right unbounded. This
allows us to ‘add together’ our results. Here are two example

Theorem 4.29 S4s strongly complete with respect to the class of reflexias-t
sitive frames.S5is strongly complete with respect to the class of frames whos
relation is an equivalence relation.

Proof. The proof of Theorem 4.27 shows that the canonical framenginormal
logic containing the 4 axiom is transitive, while the prodftbe first clause of
Theorem 4.28 shows that the canonical framamf normal logic containing the

T axiom is reflexive. AsS4 contains both axioms, its canonical frame has both
properties, thus the completeness resultSéfollows.

As S5 contains both the 4 and the T axioms, it also has a reflexigesitive
canonical frame. As it also contains the B axiom (which byptaof of the second
clause of Theorem 4.28 means that its canonical frame is ggrio)) its canonical
relation is an equivalence relation. The desired compéstemnesult follows. -

As these examples suggest, canonical models are an imptot@rfor proving
frame completeness results. Moreover, their utility entjehinges on some sort
of connection between the properties of canonical frameisthe frame corre-
spondences studied earlier. Let us introduce some teragypdo describe this
important phenomenon.
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Definition 4.30 (Canonicity) A formula ¢ is canonicalif, for any normal logic
A, ¢ € Aimplies thaty is valid on the canonical frame fof. A normal logicA is
canonicalif its canonical frame is a frame fot. (That is, A is canonical if for all
¢ such that-4 ¢, ¢ is valid on the canonical frame fot.) -

Clearly 4, T, B and D axioms are all canonical formulas. Faregle, any normal
logic A containing the 4 axiom has a transitive canonical frame thed axiom is
valid on transitive frames. Similarly, any modal logic caining the B axiom has
a symmetric canonical frame, and the B axiom is valid on sytrimgames.
MoreoverK4, T, KB, KD, S4 and S5 are all canonical logics. Our previous
work has established that all the axioms involved are valithe relevant canonical
frames. But (see Exercise 4.1.1) modus ponens, uniforntiguizs, and general-
ization preserve frame validity. It follows thaveryformula in each of these logics
is valid on that logic’s canonical frame. In general, to shbat KA, ... A, isa
canonical logic it suffices to show thdt,, ..., A, are canonical formulas.

Definition 4.31 (Canonicity for a Property) Let ¢ be a formula, and be a prop-
erty. If the canonical frame for any normal logiccontaining¢ has propertyP,
ando is valid on any class of frames with propem; then¢ is canonical forP.
For example, we say that the 4 axiom is canonical for travitgitibecause the pres-
ence of 4 forces canonical frames to be transitive, and 4lid va all transitive
frames. -

Let us sum up the discussion so far. Many important frame ¢etemess results
can be proved straightforwardly using canonical modelse Kéy idea in such
proofs is to show that the relevant canonical frame has thained properties.

Such proofs boil down to the following task: showing that #xéoms of the logic

are canonical for the properties we want (which is why wettain completeness-
via-canonicity arguments).

Now for some rather different application of completen@gsseanonicity argu-
ments. The theorems just proved wegatacticallydriven: we began with syn-
tactically specified logics (for exampk4 andT) and showed that they could be
semantically characterized as the logics of certain fralasses. Canonical models
are clearly useful for such proofs — but how do they fare whevipg semanti-
cally driven results? That is, suppoBés a class of frames we find interesting, and
we have isolated a set of axioms which we hope genergte€an completeness-
via-canonicity arguments help establish their adequacy?

As such semantically driven questions are typical of teraldogic, let us switch
to the basic temporal language. Recall from Example 1.1#tlislanguage has
two diamonds,F' and P, whose respective duals aféand H. The F' operator
looks forward along the flow of time, anfd looks backwards. Furthermore, recall
from Example 1.25 that we are only interested in the framesghis language in
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which the relations corresponding fo and P are mutually converse. That is, a
bidirectional frame is a tripléW, { Rp, Rr}) such that

Rp ={(y,=) | (x,y) € Rr}.

Recall that by convention we present bidirectional framesuaimodal frames
(T, R); in such presentations we understand that = R andRp = R. The
class of all bidirectional frames is denoted By and a bidirectional model is a
model whose underlying frame belongsio

So, what is a temporal logic? As a first step towards answehisgve define:

Definition 4.32 Theminimal temporal logicAg, is{¢ | F; IF ¢}. -

That is, the minimal temporal logic contains precisely therfulas valid on all
bidirectional frames. This is a semantic definition, andegiour interest in frames,
a sensible one. But can we axiomatitg ? That is, can we givelg, a simplesyn-
tactic characterization? First, note thdg, is notidentical to the minimal normal
logic in the basic temporal language. As we noted in Exam®8(%), for any
frame§ = (W, {Rr, Rp}) we have that

FIF(q— HFq) A (g — GPq) iff §€F,.

The two conjuncts define the ‘mutually converse’ propertjoged by R, and
Rp. Clearly, both conjuncts belong tés,. Equally clearly, they daot belong
to the minimal normal logic in the basic temporal languag@é®tbeless, although
Ag, is stronger, it is not much stronger: the only axioms we neeatit are these
converse-defining conjuncts.

Definition 4.33 A normal temporal logici is a normal modal logic (in the basic
temporal language) that contains— G Pp andp — H F'p (theconverse axion)s
The smallest normal temporal logic is call€d. We usually call normal temporal
logicstense logics

Note that in the basic temporal language the K axioms&ye— ¢) — (Gp —
Gq)andH (p — p) — (Hp — Hp), and the Dual axioms ar€p < —G-p and
Pp < —H-p. Closure under generalization means that if ¢ then, G¢ and
FaHo. A

We want to show thaK; generates exactly the formulas ify,. Soundness is
immediate: clearl)<; C Af,. We show completeness using a canonicity argument.
So, what are canonical models for tense logics? Nothing seaply the following
instance of Definition 4.24:

Definition 4.34 The canonical model for a tense logid is the structurei”! =
(T, {R$, RE}, V4) where:
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(i) T is the set of alll-mMcCss;
(i) R} isthe binary relation o defined byR:¢s if for all formulas ¢, ¢ € s
implies P¢ € t.
(i) R4 isthe binary relation off ! defined byR+.ts if for all formulasé, ¢ € s
implies F'¢ € t.
(iv) V4 is the valuation defined by 4 (p) = {t € T4 |p € t}. A

We immediately inherit a number of results from the previsastion, such as an
Existence Lemma, a Truth Lemma, and a Canonical Model Theteking us that
each tense logic is complete with respect to its canonicalaind his is very useful
— but it is not quite enough. We want to show tf&f generates all theemporal
validities. None of the results just mentioned allow us taatode this, and for a
very obvious reason: we don'’t yet know whether canonicahé&s for tense logics
are bidirectional frames! In fact they are, and this is wheeeconverse axioms
come into play. As the next lemma shows, these axioms arentaipthey force
R$ and R¢ to be mutually converse.

Lemma 4.35 For any tense logicl, if Rits then R4 st, and if Rits then R st.

Proof. Rather like the proof that B is canonical for symmetry (seedrem 4.28
item (ii)). We leave it to the reader as Exercise 4.3.2.

Thus canonical frames of tense logics are bidirectionah&s, so from now on we
present them as pai(g'4, R). Moreover, we now have the desired result:

Corollary 4.36 K, is strongly complete with respect to the class of all bidirec
tional frames, anK; = Ag,.

Proof. K; is strongly complete with respect to its canonical model w&3/e just
seen, this model is based orbirectional frame, so the strong frame complete-
ness result follows. Strong completeness implies weak tetemess, sdg, C K;.
The inclusionK; C Af, has already been noted

With this basic result established, we are ready to startreasgcally driven ex-
ploration of tense logic. That is, we can now attempt to aaptioe logics of ‘time-
like' classes of frames as axiomatic extension&af Here we limit ourselves to
the following question: how can the temporal logicdeinse unbounded weak total
ordersbe axiomatized? From the point of view of tense logic, th&rnsnteresting
problem: dense frames and totally ordered frames both piagnportant role in
modeling temporal phenomena. Moreover, as we will seegtlsean instructive
problem that must be overcome if we build totally ordered el®dThis will give
us a gentle initiation to the fundamental difficulty faced $gmantically driven
completeness results, a difficulty which we will explore iona detail later in the
chapter.



4.3 Applications 209

Definition 4.37 A bidirectional frame(T’, R) is denseif there is a point between
any two related pointsveey (Rzy — 3z (Rxz A Rzy))). Itis right-unboundedf
every point has a successtaft-unboundedf every point has a predecessor, and
unboundedf it is both right and left unbounded. It igichotomousif any two
points are equal or are related one way or the ottiey (Rxy V x = y V Ryx)),
and aweak total order(or weakly lineaj if it is both transitive and trichotomous.
We call a frame with all these propertie®awTo-frame. -

Note that weakly linear frames are allowed to contain bofilexae and irreflexive
points. Indeed, they are allowed to contain non-empty galsssuch that for all
s,s' € S, Rss'. Thus they do not fully model the idea of linearity. Linegris
better captured by the classsifict total orders, which are transitive, trichotomous
and irreflexive Building strictly totally ordered models is harder thanlding
weakly totally ordered models; we examine the problem imititter in the chap-
ter.

Our first task is to select suitable axioms. Three of the @®are fairly obvious.

(4 FFp— Fp
(D) Gp— Fp
(D)) Hp— Pp

Note thatF'F)p — F'p is simply the 4 axiom in tense logical notation. We know
(by the proof of Theorem 4.27) that it is canonical for tréimiy, hence choosing
it as an axiom ensures the transitive canonical frame we.wdext, D. (a tense
logical analog of the D axiom) is (by the proof of the thirdioleof Theorem 4.28)
canonical for right-unboundedness. Similarly, its badidsaoking companion
Hp — Ppis canonical foteft-unboundedness, so we obtain an unbounded canon-
ical frame without difficulty.

What about density? Here we are in luck. The following foranigl canonical
for density:

(Den) Fp— FFp

This is worth a lemma, since the proof is not trivial. (Notattldensity is a
universal-existential property, rather than a universapprty like transitivity or
reflexivity. This means that proving canonicity requiregabBshing theexistence
of certainmcss.)

Lemma 4.38 F)p — FFpis canonical for density.

Proof. Let A be any tense logic containirfgp — FFp, let (T4, R*) be its canon-
ical frame, and let andt' be points in this frame such th@"t¢'. We have to
show that there is a-mcs s such thatR“ts and R4st’. If we could show that



210 4 Completeness

{¢| Gp € t} U{Fy | ¥ € t'} was consistent we would have the desired result
(for by Lemma 4.35, anmics extending this set would be a suitable choicedpr

So suppose for the sake of contradiction that this set isotistent. Then, for
some finite set of formulagy, ..., ¢, Y1, ..., ¥, from this set,

AN Ap ANFp1 A -~ ANFipy) =L .

Defineg to begi A+ A dm andy to bey A--- A . Note thaty et.

Now, -4 sz - le/\ /\szn, hence- 4 gb/\Fl/J —_1, hencé-4 ng — ﬂF1/;
and hence- 4 G¢ — Gﬁsz Because&z¢y, ...,Gom € ¢, We have thanﬁ et
too, henceGﬁsz € t, and henceﬂGﬁsz gz t. Thatis, FF¢ ¢ t. But this
means thale ¢ t, as (by unlform substitution in Deri)“zb — Fsz € t. But
now we have a contradiction: ase " and RAtt’, sz must be int. We conclude
that{¢p | G¢ € t} U{Fv¢ | ¢ € t'} is consistent after all. (Note that this proof
makes no use of the converse axioms, thus we have also ptoaedt — COp
is canonical for density.) —

Soit only remains to ensure trichotomy — but here we encaoamténstructive dif-
ficulty. Because modal (and temporal) validity is presemreder the formation of
disjoint unions (see Proposition 3.14) no formula of telggd defines trichotomy.
Moreover, a little experimentation will convince the reatigat canonical frames
may have disjoint point generated subframes; such cardinizaes are clearly
not trichotomous. In short, to prove the desired completemesult we need to
build a model with a property for which no modal formula is carcal. This is
the problem we encounter time and time again when provingaagoally driven
results.

In the present case, a little lateral thinking leads to atsmiu First, let us get rid
of a possible preconception. Until now, we have always usecdehtire canonical
model — but we do not need to do this. A point generated subhsoffeces. More
precisely, if94, w I+ I, then as modal satisfaction is preserved in generated
submodels (see Proposition 26)w I+ I', whereS is the submodel oft/
generated byw.

The observation is trivial, but its consequences are not.reByricting our at-
tention to point-generated submodels, we increase thesrahgroperties we can
impose. In particular, weanimpose trichotomy on point-generated submodels.
We met the relevant axioms when working with the basic moalagliage. From
our discussion 084.3andK4.3 (in particular, Exercise 4.3.3) we know that

(3:) (FpAFq)—= F(pANFq)VF(pNg)VF(gNFp)
is canonical for no-branching-to-the-right. Analogously

(3) (PpAPq)— P(pANPq)VP({pAq)V P(gAPp).
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is canonical for no-branching-to-the-left. Call a framehanio branching to the left
or right anon-branchingframe.

Proposition 4.39 Any trichotomous framéI', R) is non-branching. Furthermore,
if R is transitive and non-branching ande T, then the subframe df", R) gen-
erated byt is trichotomous.

Proof. Trivial — though the reader should recall that when formiegerated sub-
frames for the basic temporal language, we generate on bethetation corre-
sponding toF' and that corresponding tB8. That is, we generate both forwards
and backwards along. -

In short, although no formula is canonical for trichotomiyere is a good ‘ap-
proximation’ to it (namely, the non-branching propertyj ehich we do have a
canonical formula (namely, the conjunction.8fand.3,). With this observed, the
desired result is within reach.

Definition 4.40 LetK,Q be the smallest tense logic containing 4, D,, Den,.3;
and.3,. -

Theorem 4.41 KQ is strongly complete with respect to the classbafwTto-
frames.

Proof. If I"is K;Q-consistent set of formulas, extend it t&KaQ-mcs I'T. Let 9

be the canonical model fét,Q, and letS be the submodel abt generated by ™.

As we just notedS, I't |- I'. Moreover, the frame underlying is abuwTo-
frame as required. First, & Q contains axioms that are canonical for transitivity,
unboundedness, and density, has these properties; it is then not difficult to show
thatS has them too. Moreover, as the conjunction®fand.3, is canonical for
non-branchingt is non-branching an@ trichotomous. -

To conclude, two important remarks. First, the need to buitutlels possessing
properties for which no formula is canonical is the fundatakdifficulty facing
semantically driven results. In the present case, a sirdple énabled us to bypass
the problem — but we won't always be so lucky and in the seccend @f the
chapter we develop more sophisticated techniques foritackie issue.

Second, the relationships between completeness, catyamel correspondence
are absolutely fundamental to the study of normal modakkgirhese relation-
ships are further discussed in the following section, amalcerd algebraically in
Chapter 5, but let's immediately mention one of the mostatégositive results
in the area: thesahlqvist Completeness Theoredm Chapter 3 we proved the
Sahlqvist Correspondence Theorem: every Sahlqvist farchefinesa first-order
class of frames. Here’s its completeness theoretic twirichvive will prove in
Chapter 5:
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Theorem 4.42 Every Sahlqvist formula is canonical for the first-order jpeoty
it defines. Hence, given a set of Sahlqvist axiothghe logicK X is strongly
complete with respect to the class of franfigs (that is, the first-order class of
frames defined by).

This is an extremely useful result. Most commonly encowteaxioms in the
basic modal language are Sahlqvist (the Lob and McKinsaylditas are the ob-
vious exceptions) thus it provides an immediate answer tosadf completeness
problems. Moreover, like the Sahlqvist Correspondenceoiidm, the Sahlqvist
Completeness Theorem applies to modal languageshotrary similarity type.
Finally, the Theorem generalizes to a number of extendecairogics, most no-
tably D-logic (which we introduce in Chapter 7). Note that Kracfttseeorem (see
Chapter 2) can be viewed as a providing a sort of ‘convers&atolqvist’s result,
for it gives us a way of computing formulas that are canorfimatertain first-order
classes of frames.

Exercises for Section 4.3

4.3.1 Let 1.1 be the axiomOp — Op. Show thatK1.1 is sound and strongly complete
with respect to the class of all fram@d’, R) such thatR is a partial function.

4.3.2 Let A be a normal temporal logic containing the axioms> GPp andp — H F'p.
Show that ifRts then R4 st, and if RZts then R4 st.

4.3.3 Use canonical models to show th&4.3 is strongly complete with respect to the
class of frames that are transitive and have no branchingeaight, and thag4.3is
strongly complete with respect to the class of frames thatefiexive, transitive and have
no branching to the right.

Then, by proving suitable completeness results (and malsa@f the soundness results
proved in Exercise 4.1.4), show that the normal logic axitwed byC(p A Op — ¢q) V
O(q A Og — p) is K4.3. Further, show that the normal modal logic axiomatized by
O(Op — ¢)vO(dg — p) is S4.3 Try proving the equivalence of these logics syntactically

4.3.4 Prove directly that>Op — O<p is canonical for the Church-Rosser property.

4.3.5 Let W5 be the formula>Op — (p — Op), and letS4W5 be the smallest normal
logic extendingS4that contains W5. Find a simple class of frames that chaiiaegethis
logic.

4.3.6 Show thatS5is complete with respect to the the classgtdbally related frames
that is, those frame@dV, R) such that/w Rww.

4.3.7 Consider a similarity type with one binary operatos. For each of the following
Sahlqvist formulas, first compute the (global) first-ordemrespondent. Then, givedirect
proof that the modal formula is canonical for the correspogéirst-order property.

(@) pAq — qAp,
(b) (pag)ar — pa(qar),
(©) ((ga—(parg)) Ap) — L.
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4.4 Limitative Results

Although completeness-via-canonicity is a powerful mdihio is not infallible.
For a start, not every normal modal logic is canonical. Meegonot every normal
logic is the logic of some class of frames. In this section weve both claims and
discuss their impact on modal completeness theory.

We first demonstrate the existence of non-canonical logigs.will show that
KL, the normal modal logic generated by the Lob axiortidp — p) — Op,
is not canonical. We prove this by showing thét is not sound and strongly
complete with respect to any class of frames. Now, eganponicallogic is sound
and strongly complete with respect to some class of franfest upposet is a
canonical logic and” is aA-consistent set of formulas. By the Truth Lemnhais
satisfiable or§*; asA is canonicalg* is a frame forA.) Hence ifKL is not sound
and strongly complete with respect to any class of framesgnnot be canonical
either.

Theorem 4.43 KL is not sound and strongly complete with respect to any class o
frames, and hence it is not canonical.

Proof. Let I"be{< ¢} U{O(¢; — ¢giv1) | 1 < i € w}. We will show thatl” is
KL -consistent, and that no model based dflLaframe can satisfy all formulas in
I" at a single point. The theorem follows immediately.

To show thatl” is consistent, it suffices to show that every finite suldset I" is
consistent. Given any suah, for some natural number there is a finite seb of
the form{< ¢ } U {0O(¢; — <¢¢i+1) | 1 <i < n}suchthaw C ¢ C I'. We show
that®, and hencé, is consistent.

Let & be the conjunction of all the formulas . To show that® is KL -
consistent, it suffices to show that it can be satisfied in aatloaised on a frame for
KL, for this shows that® is notvalid on all frames foiL , and hence igotone
of its theorems. Le§ be the frame consisting €D, . .., n} in their usual order; as
this is a transitive, converse well-founded frame, by Exiend® it is a frame for
KL . Let 9t be any model based ghsuch that for alll < i < n, V(¢;) = {i}.
Thendt, 0 I+ ® and® is KL consistent.

Next, suppose for the sake of a contradiction latis sound and strongly com-
plete with respect to some class of franfregote that a&L is not the inconsistent
logic, F must be non-empty. Thus ai{L -consistent set of formulas can be satis-
fied at some point in a model based on a framE.iin particular, there is a model
M based on a frame iR and a pointw in 9t such thatht, w I+ I'. But this is
impossible: becaus®t, w I+ ', we can inductively define an infinite path through
M starting atw; however adn is based on a frame fdL it cannot contain such
infinite paths. Henc&L is not sound and strongly complete with respect to any
class of frames, and so cannot be canonical.
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Remark 4.44 A normal logic A is said to becompactwhen any./-consistent set

X can be satisfied in a frame fdrat a single point. So the above proof shows that
KL is not compact. Note that a non-compact logic cannot be ¢ealpand cannot
be sound and strongly complete with respect to any clasaofds. We will see a
similar compactness failure when we examima. in Section 4.8.

What are we to make of this result? The reader shaolgump to the conclusion
that it is impossible to characterizd. as the logic of some class of frames. Al-
though nostrongframe completeness result is possible, as we noted in Table 4
there is a elegaweakframe completeness result ft. , namely:

Theorem 4.45 KL is weakly complete with respect to the class of all finitegran
tive trees.

Proof. The proof uses the finitary methods studied later in the enapte reader
is asked to prove it in Exercises 4.8.7 and 4.8.8.

ThusKL is the logic of all finite transitive trees — and there exishfuanonical
but (weakly) complete normal logics. We conclude that, pdwehough it is, the
completeness-via-canonicity method cannot handle &iasting frame complete-
ness results.

Let us turn to the second conjecture: are all normal logicskiyecomplete with
respect to some class of frames? Nwompletenormal logics exist.

Definition 4.46 Let A be a normal modal logicd is (frame) completé there is a
class of frame$ such thatl = Ag, and framée incompleteotherwise. -

We now demonstrate the existence of incomplete logics ib#s&c temporal lan-
guage. The demonstration has three main steps. First, veglite a tense logic
called K;Tho and show that it is consistent. Second, we show that no frame
for K;Tho can validate the McKinsey axiom (which in tense logical tiotais
GF¢ — FGo). Itis tempting to conclude tha; ThoM, the smallest tense logic
containing bothK;Tho and the McKinsey axiom, is the inconsistent logic. Sur-
prisingly, this isnot the caseK;ThoM is consistent — and hence is not the tense
logic of any class of frames at all. We prove this in the thilepswith the help of
general frames.

K:Tho is the tense logic generated by the following axioms:

(3) FpANq—>FpANFqVF@pAqVFQpAFq)
(Dy) Gp—Fp
(L) H(Hp—p) — Hp

As we have already seen, the first two axioms are canonicairigle first-order
conditions (no branching to the right, and right-unboumskss, respectively). The
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third axiom is simply the Lob axiom written in terms of theckaard looking
operatorH; it is valid on precisely those frames that are transitivé eontain no
infinite descending paths. (Note that such frames canndéicoreflexive points.)
LetK;Tho be the tense logic generated by these three axioms. Asedl #xioms
are valid on the natural number,;Tho is consistent. If(T, R) is a frame for
K;Tho andt € T, then{u € T' | Rtu} is a right-unbounded strict total order.
Now for the second step. L&, ThoM be the smallest tense logic containing
K;Tho and the McKinsey axionGFp — FGp. What are the frames for this
enriched logic? The answer is: none at all, or, to put it agiothkay, K; ThoM
defines the empty class of frames. To see this we need theptarfafinality.

Definition 4.47 Let (U, <) be a strict total order anfl C U. S is cofinal inU if
for everyu € U there is ars € S such thatt < s.

For example, both the even numbers and the odd numbers amnaldnfihe natural
numbers. Indeed, they are precisely the kind of cofinal 4ahse will use in the
work that follows: mutually complementary cofinal subsets.

Lemma 4.48 LetT be any frame foK,Tho. ThenX I GFp — FGp.

Proof. Lett be any point i, letU = {u € T | Rtu}, and let< be the restriction
of RtoU. As ¥, validates all thé& ; Tho axioms, (U, <) is a right-unbounded strict
total order. Suppose we could show that there is a non-emppep subset' of

U such that boths andU\ S are cofinal inU’. Then the lemma would be proved,
for we would merely need to define a valuatignon ¥ such thatV’(p) = S, and
(T, V), t I} GFp — FGp.

Such subsets§ of U exist by (3.18) in Chapter 3. For a more direct proof, take
an ordinalx that is larger than the size 6f. By ordinal induction, we will define
a sequence of pairs of sdtR,,. S, )a<x such thatR, N S, = @ and bothR, and
S, are cofinal. We can easily prove the lemma from this by taléing S,. The
definition is as follows:

(i) Fora = 0, take some points, andsq in U such thaty < sg and define
Ry = {7’0} andsS, = {80}.
(i) If «is asuccessor ordinal + 1, then distinguish two cases:
(a) if Rg or Sz is cofinal, then defind&k, = Rg andS, = S3,
(b) if neither R nor S is cofinal, then take some upper boungdof
Sp (thatis,rs > s for all s € Sp), take some s bigger than-s and
defineR, = Rz U {rg} andS, = Sg U {sg}
(iii) If aisalimit ordinal, then definé&?, = (J;_, Rs andS, = Uz, Sp-

It is easy to prove thak, N S, = @ for every ordinale < &, so it remains to be
shown that bottR,, andS,; are cofinal. The key to this proof is the observation that
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if R, andS, were not cofinal, then the (implicitly defined) partial mapx — U
would be total and injective (further proof details are tefthe reader). This would
contradict the assumption thatexceeds the size af. -

We are ready for the final step. A5 ThoM defines the empty class of frames, it is
tempting to conclude that it is also complete with respethi® class; that is, that
K;ThoM is the inconsistent logic. However, this is not the case.

Theorem 4.49 K ThoM is consistent and incomplete.

Proof. Let (N, <) be the natural numbers in their usual order. Uebe the col-
lection of finite and cofinite subsets df we leave it to the reader to show that
A is closed under boolean combinations and modal projectibngs (N, <, A) is

a general frame; we claim that it validates all heThoM axioms. Now, it cer-
tainly validates all th&, Tho axioms, for these are already valid on the underlying
frame. But what about M? As we noted in Example 134;p — F'Gp cannot be
falsified under assignments mappintp either a finite or a co-finite set. Hence all
the axioms are valid and; ThoM must be consistent.

Now, by Lemma 4.48K;ThoM is not the logic of any non-empty class of
frames. But a¥K;ThoM is consistent, it’s not the logic of the empty class of
frames either. In short, it's not the logic of any class ofifess whatsoever, and is
incomplete. -

Frame incompleteness results are not some easily fixed dynofsanormal logics
are sets of formulas closed under three rules of proof, tgeremay be tempted to
think that these rules are simply too weak. Perhaps thergedtt®-be-discovered
rules which would strengthen our deductive apparatus serifly to overcome in-
completeness? (Indeed, later in the chapter we introduealditional proof rule,
and it will turn out to be very useful.)

Nonetheless, no such strengthening of our deductive afpisacan eliminate
frame incompleteness. Why is this? Ultimately it boils dotensomething we
learned in Chapter 3: frame consequence is an essentiaiyoad-order relation.
Moreover, as we discussed in the Notes to Chapter 3, it isyastevng relation
indeed: strong enough to simulate the standard second-oomsequence rela-
tion. Frame incompleteness results reflect the fact thadr(frames) modal logic
is second order logic in disguise.

There are many incomplete logics. Indeed, if anything, mmplete logics are
the norm. An analogy may be helpful. When differential chlsus first encoun-
tered, most students have rather naive ideas about fusdiat continuity; poly-
nomials, and other simple functions familiar from basic giby, are taken to be
typical of all real-valued functions. The awakening cométhwhe study of anal-
ysis. Here the student encounters such specimens as ewsgratntinuous but
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nowhere-differentiable functions — and comes to see thafamiliar functions
are actually abnormally well-behaved. The situation is Imtiee same in modal
logic. The logics of interest to philosophers — logics susiTaS4 and S5 —
were the first to be semantically characterized using frartiés tempting to be-
lieve that such logics are typical, but they are actuallyiyfaiocile creatures; the
lattice of normal logics contains far wilder inhabitants.

The significance of the incompleteness results depends @8 goals. Logi-
cians interested in applications are likely to focus onaierintended classes of
models, and completeness results for these classes. Beyoviding a salutary
warning about the folly of jumping to hasty generalizationsompleteness results
are usually of little direct significance here. On the othemdh for those whose pri-
mary interest is syntactically driven completeness resthie results could hardly
be more significant: they unambiguously show the inadegoBitgme-based clas-
sifications. Unsurprisingly, this has had considerablesichpn the study of modal
logic. For a start, it lead to a rebirth of interest in alté¢ivertools — and in partic-
ular, to the renaissance afgebraic semantigavhich we will study in Chapter 5.
Moreover, it has lead modal logicians to study new types astjans. Let us
consider some of the research themes that have emerged.

One response has been to look for general syntactic camtstan axioms which
guarantee canonicity. The most elegant such result is thig8st Completeness
Theorem, which we have already discussed. A second reshasd®en to investi-
gate the interplay between completeness, canonicity, amdspondence. Typical
of the questions that can be posed is the followiligd,, ..., A,, are axioms that
define an elementary class of framesks\; ... A,, frame complete?(In fact,
the answer here isB0o — as the reader is asked to show in Exercise 4.4.3.) The
most significant positive result that has emerged from ihis bf enquiry is the
following:

Theorem 4.50 If F is a first-order definable class of frames, thépis canonical.

Again, we prove this in Chapter 5 using algebraic tools (desofem 5.56). Tanta-
lizingly, at the time of writing the status of the converseswaknown: If a normal
modal logicA is canonical, then there is a first-order definable classaohésF
such thatd = Ag. This conjecture seems plausible, but neither proof noncou
terexample has been found.

A third response has been to examine particular classesrofahanodal log-
ics more closely. The entire lattice may have undesirabipgaties — but many
sub-regions are far better behaved. We will examine a péatiy well-behaved
sub-region (namely, the normal logics extend®.3 in the final section of this
chapter.

This concludes our survey of basic completeness theoryn&kefour sections
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(all of which are on the basic track) explore the followingus: how are we to
prove completeness results when we need to build a modehaisaa property for
which no formula is canonical? Some readers may prefer fothis for now and

go straight on to the following chapter. This discusses detapess, canonicity
and correspondence from atgebraicperspective.

Exercises for Section 4.4

4.4.1 Recall that any normal modal logic that has the finite modepprty also has the
finite frame property. What are the consequences of thisMfoomplete normal modal
logics?

4.4.2 The logicKvB consists of all formulas valid on the general frapperhe domain/
of JisNU {w,w + 1} (the set of natural numbers together with two further pjrasd 2
is defined byRxy iff  # w+ 1andy < z orz = w + 1 andy = w. (The frame(J, R)
is shown in Figure 6.2 in Chapter 64, the collection of subsets of admissible inJ,
consists of allX C J such that eitheX is finite andw ¢ X, or X is co-finite andv € X.

(@) Show thatdo(T) — O(O(dp — p) — p) is valid ongJ.

(b) Show that on anframeon which the previous formula is validi>(T) — O(L)
is valid too.

(c) Show thatd<(T) — O(L) is notvalid ong.

(d) Conclude thaKvB is incomplete.

4.4.3 Consider the formulas () — <p, (M) OCp — <&Op, (E) O(OpAQg) — O(OpV
Op) and (Q)(Cp A O(p — Op) — p. Let A denote the normal modal logic axiomatized
by these formulas.

(a) Prove thatZ corresponds to the following first-order formulezy; yo ((Rxy: A
Rxys) — (V2 (Ry1z2 — Rys2z) V Vz (Ry22 — Ry12))).

(b) Prove that within the class of frames validating both @ & Q defines the frames
satisfying the conditiol®” C R* (that is, if Rst then there is finite path back from
t to s).

(c) Prove that the conjunction of the four axioms defines thescof frames with a
trivial accessibility relation — that is' A M A E A Q corresponds t¥zy (Rxy <>
x = y). (Hint: consider the effect of the McKinsey formula on tharfres satisfying
the condition?” C R*.)

(d) Consider the so-calleckiled recession fram@, R, A), whereN is the set of natu-
ral numbersRmn holds iff m < n+1 andA is the collection of finite and co-finite
subsets oN. Show that all four axioms are valid on this general frame that the
formulap — Op can be refuted.

(e) Conclude thatl is incomplete, although it defines an elementary class oidésa

(f) Does this contradict Theorem 4.50?

4.4.4 Given a clasK of frames, let9(K) = Ak denote the sefip | § I ¢ forall Fin K }
and given a logicl, let Fr(A) denote the class of frames on whidhs valid.

() Show that the operation® andFr form a so-calledGalois connection That is,
prove that for all classes and logicsA:

A C O(K) iff K C Fr(A).
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(b) What does it mean for a logit if A = ©(Fr(A))? (Give an example of a logic for
which it doesnothold.)

(c) What does it mean for a frame classf K = Fr(©(K))? (Give an example of a
frame class for which it doasothold.)

4.5 Transforming the Canonical Model

What is the modal logic of partial orders? And what is the ¢elugjic of strict
total orders? Such questions bring us face to face with thdaonental problem
confronting semantically driven completeness resultstida@rders areantisym-
metric and strict total orders argeflexive No modal formula defines either prop-
erty, and (as the reader probably suspects) no formula @ngzad for them either.
Thus, to answer either question, we need to build a model foclwwe lack a
canonical formula — and hence we will need to expand our tejperof model
building techniques. This is the main goal of the preseni@eand the three that
follow.

In this section we explore a particularly natural strateggnsforming the canon-
ical model. Although a canonical model may lack some degiregerties, it does
get a lot of things right. Perhaps it is possible to reshapgahsforming it into
a model with all the desired properties? We have done thie aiready, though
in a very simple way: in the completeness proof KgiQ (see Theorem 4.41 and
surrounding discussion) we formed a point-generated sdbimaf the canonical
model to ensure trichotomy. Here we will study two more septated transfor-
mations —unraveling and bulldozing— and use them to answer the questions
with which this section began.

It seems plausible th&4is the modal logic of partial orders: Theorem 4.29 tells
us thatS4is complete with respect to the class of reflexive transifigenes (that
is, preorderg and there don’t seem to be any modal formulas we could a&#to
to reflect antisymmetry. Furthermore, it seems reasonabl®pe that we could
prove this using some sort of model transformation: as eSdrgonsistent set of
formulas can be satisfied on a preorder, and as we know thatliamdjuages are
blind to antisymmetry (at least as far as frame definabisitygdncerned) maybe we
can find a way of transforming any satisfying preorder int@#igl order without
affecting satisfiability? (It's worth stressing that thigarmal line of argument is
nota proof; it's intended solely to motivate the work that fols)

A transformation calledinravelingwill enable us do this. Indeed, unraveling
will let us prove the stronger result th&éis complete with respect to the class of
reflexive and transitive treeqThis will be useful in Chapter 6 when we discuss
decidability). We briefly discussed unraveling in Chaptemwhere we used it to
show that modal logic has the tree property (see Proposkithh). Informally,
given any model, unraveling builds a new model, whose panmgpathsof the
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Fig. 4.1. A model and its unraveling

original model. That is, transition sequences in the odgmodel are explicitly
represented as states in the unraveled model. More prgcisel

Definition 4.51 (Unraveling)Let (W, R) be a frame generated by some pain&
W. Theunravelingof (W, R) aroundw is the frame(WW, R) where:

(i) W is the set of all finite sequencés, w ... , w,) such thatuy, . .., w, €
W andRwwy, ..., Rw,_iwy,, and

(i) If ,5, € W, thenR3, 3, if there is some» € W such that; + (v) = 5,
where + denotes sequence concatenation.

If M = (W, R, V) is a model and W, R) is the unraveling of W, R) arounduw,
then we define the valuatidn on (W, R) as follows:

—

Vip) = {(w,wr,...,wn) €W |w, € V(p)}
The modebt = (W, R, V) is called the unraveling &bt aroundw.

A simple example is given in Figure 4.1. As this example sstgéand as the
reader should check) unraveling any frame around a gengrptiintw yields an
irreflexive intransitive andasymmetridrame. Indeed, note that unraveled frames
aretrees the root node is the sequenge), and the relatior? is just the familiar
(immediate) successor (or daughter-of) relation on trees.

Lemma 4.52 Let 9t = (W, R, V) be the unraveling oft = (W, R, V) around
w. Then(W, R) is a bounded morphic image ¢o¥/, R), and 9t is a bounded
morphic image ofJi.

Proof. Let f : W — W be defined byf (w, w1, ..., wy,) = w,. Itis easy to see
that f is surjective, has the back and forth property, and thatrigrsac 1, s and
f(3) satisfy the same propositional variablesd

A simple corollary is thaanysatisfiable set of formulas is satisfiable on a (irreflex-
ive, intransitive, and asymmetric) tree: for if a set of falas is satisfiable, it is
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satisfiable on a point-generated model (take the submodelrged by the satis-
fying point), hence by unraveling we have the result. ltdaié thatk is (strongly)
complete with respect to this class of models.

But our real interest iS4 How do we use unraveling to make tpartially or-
deredmodels we require for the completeness result? In the mosbud way
possible: we simply take the reflexive transitive closurésimaveled models.
More precisely, suppose we unrad# around some generating poimtto obtain
(W.R,V). Now consider the modélt* = (W, R*, V) whereR* is the reflexive
transitive closure of?. Trivially, t* is anS4 model. Moreover, asiV’, &) is a
tree, (W, R*) is anantisymmetricframe. Indeed, it is aeflexive and transitive
tree for R* is simply the familiar dominates (or ancestor-of) relat@mntrees. So
only one question remains: 9 a bounded morphic image @ft*? In generalno.
But if the modet we started with was itself reflexive and transitives

Lemma4.53 Let9 = (W, R,V) be a reflexive transitive model generated by
somew € W, and let(W, R, V) be the unraveling ot aroundw. Let R* be the
reflexive transitive closure of, and definedt* to be (W, R*, V). Then9 is a
bounded morphic image oft*.

Proof. It is easy to see that the functiofdefined in Lemma 4.52 remains the
required bounded morphism; as far as surjectivity, the Imgogerty, and the dis-
tribution of proposition letters are concerned, nothing tlaanged. We only have
to check that taking the reflexive transitive closurefbtioes not harm the forth
property. But, agi is itself reflexive and transitive, the forth property sups. -

Theorem 4.54 Sdis strongly complete with respect to the class of partialty o
dered reflexive and transitive trees.

Proof. If X is anS4-consistent set of formulas, arid™ is anS4-mMcs extending
¥, then9S4, F | ¥. Moreover, as thé&4 axioms are canonical)tS* is a
reflexive transitive model. We now transform this model itite required partial
order in two steps.

Step 1 Let M° be the submodel oMtS4 generated by~ +. Clearly this is a
reflexive, transitive, point-generated model such fhat, ¥+ I X,

Step 2 Let9n* = (W, R*, 17') be the reflexive transitive closure of the unraveling
of 9, around .

By Lemma 4.539t° is a bounded morphic image aft* under f, hence for all
sequences € f![¥], we haved)t*, 3 I X, and by the surjectivity of there is at
least one suck. Hence we have satisfied on a reflexive and transitive tree.H

The previous proof could be summed up as follows: we foundyatwase the in-
formation in a canonical modeidirectly. The canonical model fd4did not have



222 4 Completeness

the structure we wanted — nonetheless, we successfulledappo the informa-
tion it contained via a short sequence of bisimulatidit (had9t® as a bounded
morphic image, an@t® was a generated submodela4).

Unraveling is an intrinsicallyglobal transformation that can change a model’'s
geometry drastically. Thisis in sharp contrast to the fiamnsation we will now ex-
amine —bulldozing— which works locally, and (in spite of its name) rather more
gently. We will use bulldozing to answer the second of thestjoas posed above.
Recall that astrict total order 6T0) is a relation that is transitive, trichotomous
andirreflexive The class of strict total orders contains such importaotgires as
(N, <), (Z,<),(Q, <), and(R, <) (the natural numbers, the integers, the rationals
and the reals in their usual order) and is widely used to medebus temporal
phenomena. What is its tense logic?

Once again, it is not hard to find a plausible candid#te4.3, the tense logic
generated by 4, ;&and .3, seems the only reasonable candidate. For a &tg4t3
is strongly complete with respect to the classaefaktotal orders. (To see this,
observe that the axioms are canonical for transitivity aod-branching. Hence
any point generated submod®t® of the canonical model is transitive and tri-
chotomous, and the completeness result is immediate.) dergthere simply are
no other plausible axioms — in particular, irreflexivity istrdefinable. Has this
(somewhat dangerous) line of reasoning led to the right aridwet us see.

If we could find a way of transforming weakly linear modelsoistrictly linear
models we would have the desired completeness result. Nattemraveling won't
help — it would turn the weak total order into a tree, thus sshg trichotomy.

If only we could find a method which replaced the undesiralletspof the model
with some suitablesTo, and left the good parts untouched: then trichotomy would
not be affected, and we would have assembled the requiietitstal order. Bull-
dozing is a way of doing this. The first step is to pin down wihat ‘undesirable’
parts of weak total orders are. The obvious response isxreflgoints’ — but
while this isn’'t exactly wrong, it misses the crucial insigiihe entities we really
need to think about amgusters introduced in Chapter 2. We repeat the definition:

Definition 4.55 Let (7, R) be a transitive frame. A&lusteron (T, R) is a subset
C of T that is a maximal equivalence relation under That is, the restriction of
R to C'is an equivalence relation, and thisnist the case for any other subsbt
of T" such that”' C D. A cluster issimpleif it consists of a single reflexive point,
andproper if it contains more than one point. When we say that a modefacas
clusters, we mean that its underlying frame does.

The point is this: we should not think in terms of removindased reflexive points;
rather, we should remove entire clusters at one strokeuifjirely, the information
in a cluster is information that ‘belongs together’.) Anwrsitive trichotomous
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frame can be thought of as a strictly totally ordered caltecof clusters (cf. Exer-
cise 1.1.1). If we could remove each cluster as a single ¢hamdkreplace it with
something equivalent, we would have performed a local mwdetformation.

So the key question is: what should we replace clusters W@tearly some sort
of sTo— but how can we do this in a truth preserving way? Note thatciunster
C', even a simple one, introduces an infinity of informatiorureence in both the
forward and backward directions: we can follow paths withinrmoving forwards
and backwards, for as long as we please. Thus, when we reptdasterC' with a
STO, we must ensure that treero duplicates all the information i@' infinitely of-
ten, in both directions. Bulldozing does precisely this straightforward way. We
simply impose a strict total order on the cluster (that is pro& some path through
the cluster that visits each point once and only once) and ke out infinitely
many copies of this path in both the forward and backwardcdoe. We then re-
place the cluster by the infinite repetition of the choser p&te have squashed
the clusters down into infinitely longTos — hence the name ‘bulldozing’.

Theorem 4.56 K4.3is strongly complete with respect to the class of strictltota
orders.

Proof. Let ¥ be aK;4.3-consistent set of formulas; expand it toka4.3-MCs
Y+, LetdM = (T, R,V) be the canonical model fdf;4.3. By the canonicity
of the axioms Mt is transitive and non-branching. L#t° = (S, R*, V) be the
submodel o0t generated byot; M is a transitive and trichotomous model such
thatdn®, ¥+ |- X. But9t® may contain clusters, which we will bulldoze away.

Step 1 Index the clusters if0t° by some suitable sét
Step 2 Define an arbitrary strict total order’ on each cluste;.
Step 3 DefineC” to beC; x Z. (Z is the set of integers.)
Step 4 Define B, the set underlying the bulldozed model, to$e U |J,, C?,
whereS™ is the set(S \ |J;; C;) of pointsnotbelonging to any cluster.
Step 5 Define a mapping : B — S by: 5(b) = b, if b € S7; and3(b) = s, if
b=(s,2).
Step 6 Define an ordering<? on B by b < 0/ iff
either (b € S~ ord’ € S7)andB(b)R°B(V);
or b=(s,z)andd = (s, z') and
either s ands’ belong to distinct clusters ang{b) R°3(');
or s ands’ belong to the same cluster andy, 2’ (where<y is
the usual ordering on the integers);
or s ands’ belong to the same clustél andz = 2’ and s <’ s'.
Step 7 Define a valuatio? on (B, <%) by b € V(p) iff 3(b) € V5(p).
Step 8 Defined?, the bulldozed modeto be(B, <, V?).



224 4 Completeness

We now make the following claims:

Claim 1. The mapping3 is a surjective bounded morphism frof, <®) to
(S, R®), and the modeMt® is a bounded morphic image R” under.

Claim 2. (B, <®) is a strict total order.

Proving these claims is a matter of checking the definitioves;leave this to the
reader as Exercise 4.5.5. With this done, the theorem is diatee By Claim 1,
for anyb € 3~1(X*) we havem?,b I ¥, and sinces is surjective, there is at
least one such. Thus®B is a model of¥’, and by Claim 2 it has the structure we
want. -

Although it works more locally, like unraveling, bulldozjns a way of using the
information in canonical modelsdirectly. Indeed, like unraveling, it accesses
the information in the relevant canonical model via a seqaesf bisimulations:
the final modebn? had9t® as a bounded morphic image, @ in turn was a
generated submodel aft.

Bulldozing is a flexible method. For example, we're not far¢e defineC? to
be C; x Z; any unboundedTo would do. Moreover, if we used @flexivetotal
order (for exampléZ, <)) instead, we could prove analogous completeness results
for reflexive total orders; for example, the reader is askeshbw in Exercise 4.5.6
that S;4.3 is the logic of this class of frames. Moreover, for modal laages,
we only need to ensure infinite information repetition in tbevard direction, so
structures such gV, <) and(N, <) suffice.

But there are more interesting variations. For exampléeatsof simply order-
ing the points in the cluster, one cambedhe cluster in some suitable total order,
and work with its embedded image instead. By embedding tstesls in adense
set, it is possible to build dense totally order ordered rt®odénd by combining
such ideas with other transformations (notably filtratjaine method can be used
to prove many classic completeness results of modal and tegis.

Model manipulation methods, and completeness proofs rgakse of them,
abound. Further examples are mentioned in the Notes, muhdtiremotely possi-
ble to be encyclopedic: such methods trade on specific itssigto the geometry
of relational structures, and this gives rise to a wide wardé variants and com-
binations. The reader should certainly be familiar withrsoeethods — they are
often simple to adapt to specific problems — but it is just gsartant to appreci-
ate the general point that has emerged from our discussi@m iéthe canonical
model is not quite what we need, it can still be extremely wiseThe following
section further explores this theme.

Exercises for Section 4.5
4.5.1 Kis complete with respect to the class of irreflexive framestaveling shows this,
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but there is a much simpler transformation proof. (Hint:egina modet, tinker with the
disjoint union oft with itself.)

4.5.2 Formulate the unraveling method for modal languages coingitwo diamonds.
Then formulate the method in such a way that bidirectioreais unravel into bidirec-
tional frames.

4.5.3 Consider a similarity type with one binary operatat. Call ar-frameg = (W, T)
acyclicif the binary relationk? = {(s,t) € W? | T'stu or T'sut for someu € W} is
acyclic (that is to sayR™ is irreflexive). Prove that the basic modal lod{c. is strongly
sound and complete with respect to the class of acyclic fsame

4.5.4 Show that the canonical model f&; Q contains proper clusters.
4.5.5 Prove Claimd and2 of Theorem 4.56.

4.5.6 LetK;QT be the smallest normal temporal logic containing 6tk andp — Fp.
Show, using a light bulldozing argument, thatQT is strongly complete with respect to
the class of all dense unbounded reflexive total orders.

4.6 Step-by-step
Three main ideas underly the step-by-step method:

() Don’t consider the entire canonical model to be the kayredient of a
completeness proof. Rather, thinksalections ofvicss from the canonical
modelas the basic building blocks.

(i) The standard way of proving completeness is by consitiga model for
a consistent set of formulas. Take the term ‘constructirgyliterally as
possible: break it down into a sequence of steps.

(ii) Putting the first two observations together, think betconstruction of a
model as the stepwise selection of the neededs. More precisely, think
of the model construction process as approaching a limiavsgquence
of ever better approximations, using local configuratiohthe canonical
model to make improvements at each step of the construction.

The method gives us enormous control over the models we, lauildl even at this
stage it’s easy to see why. First, we do not have to worry abopleasant features
of the canonical model (such as clusters) since we only wathk 8elections of
the information that canonical structures contain. Furtitee, as we select our
information one step at a time, we obtain an iron grip on whnatseup in the
model.

To illustrate the method’s potential, we use it to prove tihat logic K;Q de-
fined in Definition 4.40 is strongly complete with respect{€@ <). In what fol-
lows, consistency mead§; Q-consistency, anht® (= (7, R, V) is this logic’s
canonical model. Furthermore we fix a maximal consistenfsedhe goal of our
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proof is to construct a modél = (7', <, V') for X' such tha{7’, <) is an ordering
which is isomorphic tqQ, <). At each step of the construction we will be dealing
with an approximation ofJt consisting of a strictly ordered finite set of points (that
will ultimately end up) in7" and for each of these, the set of all formulas that we
want to be the point’s modal type (that is, the set of formtlalgling at the point).

Definition 4.57 A networkis a triple NV = (N, R, v) such thatR is a binary re-
lation on the setV, andv is a labeling function mapping each point i to a
maximal consistent set. -

We are not interested in networks that are blatantly faidtg@proximations of our
desired model. For example, we waRtto be a strict total ordering. Moreover,
whenever a formula is in the label set of a point, thenF'¢» should be inv/(t) for
anyt with Rts. Such requirements lead to the following definition.

Definition 4.58 A network V' = (NN, <, v) is coherentf it satisfies:

(C1) < is a strict total ordering,
(C2) v(s)R°v(t) forall s,t € N such thats < ¢.

A network forY is a network such tha¥t' is the label set of some nodeA

C1 and C2 are the minimal requirements for a network to beutiseiis; note that
both requirements amniversal (C2 is equivalent to the requirement that ik ¢
thenF'¢ € v(s) forall ¢ € v(t) andP¢ € v(t) forall ¢ € v(s).) Butif a network
is to really resemble a model, it must also satisfy certistentialrequirements.

Definition 4.59 A network N = (N, <, v) is saturatedif it satisfies:

(S1) Ris unbounded to the left and to the right,

(S2) Risdense,

(S3) N is modally saturated. That is, we demand that (B)if € v(s) for some
s € N, then there is some € N such thatRst andvy € v(t), and (P) if
Py € v(s) for somes € N, then there is some € N such thatRts and
v € v(t).

A network isperfectif it is both coherent and saturated-

We want networks to give rise to models. Let's now check thathave imposed
sufficiently many criteria on networks to achieve this.

Definition 4.60 Let V' = (NN, R,v) be a network. The framg, = (N, R) the
underlying frameof N. Theinduced valuationVs on § is defined byV(p) =
{s € N|pewv(s)}. The structuréiy = (Fnr, V) is theinduced model -
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The following lemma shows that our definition of perfectisrthe right one.

Lemma 4.61 (Truth Lemma)Let\ be a countably infinite perfect network. Then
for all formulas, and all nodess in IV,

In,slEyiff ¢ € v(s).
Moreover,§ s is isomorphic to the ordering of the rational numbers.

Proof. The first part of the proof is by induction on the degree/oil he base case
is clear from the definition of the induced valuation, andsteps for the booleans
are straightforward. As for the modal operators, the catwref A/ drives the left
to right implication through, and saturation takes carehefdther direction.

Finally, the underlying frame of a perfect network must beeass, unbounded,
strict total ordering. Hence, if it is countably infinite, ntust be isomorphic to
(Q, <) by Cantor's Theorem. (Readers unfamiliar with this theosdruld try
to prove this classic result from first principles. The stnddproof builds up the
isomorphism using a step-by-step argument

It follows from Lemma 4.61 that we have reduced the task ofifigé model for
ourmcs X to the quest for a countable, perfect network YarAnd now we arrive

at the heart of the step-by-step method: the crucial idehaseaach witness to
the imperfection of a coherent network can be removed, @eata time. Such
witnesses will be calledefects There are three kinds of defect: each corresponds
to a violation of a saturation condition.

Definition 4.62 Let V' = (NN, R, v) be a network. An S1-defect ¢f consists of
anodes € N that has no successor, or no predecessor; an S2-defectiis(a, pa
of nodes for which there is no intermediate point. An S3-defensists of (F) a
nodes and a formulaF'y) € v(s) for which there is na in NV such thatRst and
Y € v(t), or (P) a nodes and a formulaPy € v(s) for which there is na in N
such thatRts andy € v(t). -

Now we need to say more what it to repair a defect. To make teisige, we need
the notion of one networ&xtendinganother.

Definition 4.63 Let Ny and A, be two networks. We say that; extendsV if
Sn, is a subframe ofx, andy, agrees with; on ;. -

The key lemma of this (or for that matter, any) step-by-stegopstates that any
defect of a finite coherent network can be repaired. Moreigegc

Lemma 4.64 (Repair Lemma) For any defect of a finite, coherent netwakk
there is a finite, coherent” > A/ lacking this defect.
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Proof. Let V' = (NN, <,v) be a finite, coherent network and assume tkiahas
some defect. We prove the Lemma by showing that all threestgpdefect can be
removed.

S1-defects.
These are left as an exercise to the reader.

S2-defects.

Assume that there are nodeandt in IV for which there is no intermediate point.
How should we repair this defect? The basic idea is simplst tlorow in a
new point between andt, and find an appropriate label for it. This can be done
easily, since it follows by coherence 4f thatv(s)Rv(t), and by canonicity of
the density axiom that there is somees I" such thatv(s) R“I"R°v(t). Hence,

take somenewnodeu (new in the sense that¢ N) and defineV’ = (N', <’ /)

by

N' = NU{u},
< i= <U{(mu) o <spU{(u,x) |t <o,
Vo= v U{(u, )}

It is clear that\V’ is a network that does not suffer from the old defect. But/is
coherent? Condition C1 is almost immediate by the definittanwe concentrate
on C2. Letr andy be two arbitrary nodes iV’ such that: <’ y; we have to check
thatv(x)Rv(y). Now, as<’ is irreflexive,x andy are distinct. Moreover, there
can only be a problem if one of the nodes is the new poejrassume thay = u
(the other case is similar). If = s then we have/(y) R°/'(u) by our assumption
on I, so suppose that # s. By definition of <’ and the fact that there are no old
nodes betweer andt, this means thag < s, so by the coherency of” we have
thatv(y) R°v(s). Hence, it follows by the transitivity aRk¢ thaty(y)RI"; but then

it is immediate by the definition of that/(y) RV’ (u).

S3-defects.

We only treat the P-defects; the case for F-defects folloyvsylmmetry. Assume
that there is a nodein N and a formulaPv in v(s) for which there is n@ in N
such that < s andy € v(t).

Again, the basic strategy is simple: we insert a new psinhto the network
(befores!) and choose an adequate label for it; this has to be a maxiomsistent
set containing) and preceding/(s) in the preorderR‘. But whereshoulds’ be
inserted? If we are not careful we will destroy the coherewfcy. The following
maneuver (which takes advantage of the fact fhatis afinite STO) overcomes
the difficulty.

Let m be the unique point itV such that (1Ym, Pv) is an S3-defect i/, and
(2) for all w < m, (w, Py) is not a defect. Such am must exist (it is eithes
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itself, or one of the finitely many points precediggand, as we will see, we can
repair(m, P1) without problems by simply inserting the new paihtmmediately
beforem. Repairing this minimal defect automatically repairs tleéedt(s, Pv).

Choose some new poigt (that is,s’ ¢ S) and let? be anmcs containingy
such that’ R°v(m); such a¥ exists by the Existence Lemma for normal logics.
DefineN' = (N', <’, ') as follows.

N' = NuU{s'}
<= <U{(x, ) e <mPU{(s,2) |m <}
Vo= fU{(sL )}

Observe thafy~ is a strict total order, and that”’ doesnot contain the defect
(s, Pv). Itonly remains to ensure thAf’ satisfies the second coherency condition.

Consider two nodes,y € N’ such thatr <’ y. Again, the only cases worth
checking are when eitheror y is the new point’. If we haver = s’ we are in a
similar situation as in the case of S2-defects, so we do nottgaletails here.

Hence, assume thgt = s’. By constructionv(s’) = ¥R (m), and by the
coherency of\, v(x)Rv(m). But R® is the canonical relation foK;Q — a
relation with no branching to the left — hence eitheR‘v(x), ¥ = v(x) or
v(x)R“W. We claim that the first two options are impossible. Fog B¢ (z) then
v € ¥ would imply thatP+ € v(x) and this contradicts the minimality af; and
if ¥ = v(x), theny € v(x) would mean thats, Pv’) was not a defect in the first
place! We conclude that(u) R“¥, which establishes coherence-

With both the Truth Lemma for Induced Models and the Repaimire at our
disposal, we can prove the desired strong completeneds Eise idea is straight-
forward. We start with a singleton network and extend it diggstep to larger
(but finite) networks by repeated use of the Repair Lemma. M&the required
perfect network by taking the union of our sequence of ndtaor

Theorem 4.65 K;Q is strongly complete with respect (Q, <).

Proof. Choose some s&t = {s; | i € w} (we will use its elements to build the
required frame) and enumerate the set of potential defdasis, the union of the
setsS, S x S andS x {F, P} x Form). Given a consistent set of formulas,
expand it to ammcs Y. Let Ny be the network{s}, @, (s¢, Xp)). Trivially, Ap

is a finite, coherent network fat.

Letn > 0 and supposgV,, is a finite, coherent network. Lé? be the defect of
N, that is minimal in our enumeration. Suchlaexists, since any finite network
must at least have S1- and S2-defects. Fafm ; by repairing the defecD as
described in the proof of the Repair Lemma. Observe ihatill not be a defect
of any network extending/, .
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Let NV = (N, <,v) be given by

N=|JNw <=J<n andv =] v

ncw ncw ncw

It is easy to see th& is a strict total order. Moreover, as we chose the points in
N from a countably infinite set\ is countable.

It should be intuitively clear thal/ is perfect, but the actual proof has to take
care of a subtlety. Suppose thitis not perfect; letD be the minimal (according
to our enumeration) defect ¢, sayD = D;. By our construction, there must
be an approximatioV; of N of which D is also a defect. Note thd®? neednot
be the minimal defect ofV; — this is the subtlety. Fortunately, there can be at
mostk defects that are more urgent, Bowill be repaired before stage+ i of the
construction.

Finally, by the perfection of\/ it follows from Lemma 4.61 that the induced
modelJ, satisfiesY atsg.

The step-by-step method is one of the most versatile todtseatnodal logician’s

disposal: a wide variety of results in modal and tense logiehbeen using this
method, it is the tool of choice for many stronger modal systesuch as Arrow
Logic and Since-Until logic, and we will make use of stepdigp arguments when
we discuss rules for the undefinable in the following sectidie urge the reader to
experiment with it. A good starting point is Exercise 4.6.1.

Exercises for Section 4.6

4.6.1 Consider a modal language with three diamofids ¢» and<3. Give a complete
axiomatization for the class of fram@s= (W, Ry, R», R3) satisfyingR; = Ry N R».

4.6.2 Consider, for a modal language with two diamorglgsand <4, the normal modal
logic (S5)2 axiomatized byS5 axioms for both diamonds, and the commutativity axiom
OpO1p » O1<Ogp. Prove that this logic is complete for the class of squarmés A
square frame for this language is of the fom= (W, Ry, R1) where for some sdt’ we
have

W o= U
Rist iff Sizti.

Hint: take as approximations networks of the fofi, ») wherev is a labeling mapping
pairsover N to maximal consistent sets.

4.6.3 Consider a similarity type with one binary operatos, as in arrow logic. Call a
r-frame = (W, T') arelativized squaréf W is some collection of pairs over a base set
U, andT C W3 satisfiesI'stu iff sy = to, t1 = ug ands; = u;.

(a) Prove that the basic modal lodic, is strongly sound and complete with respect to
the class of relativized squares.

(b) Try to axiomatize the logic of the class of fram@g, R) in which W is as above,
butT satisfiesI'stu iff so = t1, tg = v andug = s.
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4.7 Rules for the Undefinable

In the previous two sections we proved semantically drivem@eteness results
by using standard canonical models indirectly. The presedtion takes a rather
different approach: we enrich the deductive system withezigp proof rule, and
consider a special (not necessarily generated) submottet canonical model for
this new logic. The submodel that we study contains onlyigpdistinguishing(or
witnessing Mmcss. The completeness proof shows that this new canonical Imode
has all the good properties of the original, and that, in t@afdi it is already in
the right shape. We will make use of ideas introduced in oscudision of the
step-by-step method in the previous section (in particti@ concept of a defect).

The running example in this section will (again) be the tdoge& of dense un-
bounded strict total orderings. Recall that the difficultiem working with this
logic is that there is no axiom ensuring the irreflexivity bétcanonical frame —
we have all the other required properties: point generatbdnsdels of the can-
didate logicK;Q are transitive, trichotomous, dense, and unbounded. Now, i
previous sections we achieved irreflexivity indirectlyther we bulldozed away
clusters, or we used the canonical model KoyQ to induce a model on a care-
fully constructed irreflexive frame. In this section we wglbnstruct a canonical
frame that is transitive, non-branching, demsel irreflexiveright from the start.
Indeed, if we work with a countably infinite language, eveojnp generated sub-
frame of this canonical model will be countable, and hengeQantor's Theorem)
isomorphic to(Q, <).

The starting point of the enterprise is that irreflexivitghaugh not definable in
basic modal languagesanbe characterized in an alternative sense:

If a temporal formulay is satisfiable on an irreflexive frame, then for any
proposition lettep not occurring iny, the conjunctio(—=Pp Ap A =Fp) A
is also satisfiable on that frame.

For,if §,V, s Ik 4, thenF, V', s Ik (=Pp Ap A =Fp) A+, whereV" is just like V
except that it assigns the singletfs} to p. The condition thap does not occur in
1 is crucial here: it ensures that changing the set assignedides not affect the
satisfaction ofy.

Now, by taking the contrapositive of the above statementusreit into a proof
rule:

(IRR) if - (=Pp Ap A =Fp) — ¢ thent- ¢, providedp does not occur im.

We have just seen that this rule is sound on the class of kieflédrames. More-
over, note that on the class of strict total orders the foantulP¢ A ¢ A —F¢) is
true at some stateiff s is theonly state where) holds (we need trichotomy and
transitivity to guarantee this). That is, the formal&$ A ¢ A ~F¢ acts as a sort of
‘name’ for the satisfying point. Call this formulaame(¢). Bearing these remarks
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in mind, let us now see how adding this rule is of any help invprg the desired
completeness result.

Definition 4.66 The logicK;Q™ is obtained by adding t&;Q the irreflexivity
rule IRR. In what follows, consistency meaik&; Q "-consistencyt- ¢ means that
¢ is provable inK;Q™, and so on. The canonical model f&; Q" is denoted by
9Mm¢, the canonical relation biz¢. -

The remainder of this section is devoted to proving compkse of the proof sys-
temK; Q™ with respect tqQ, <). Of course theesultis not surprising: we have
already seen that plain olH,Q is strongly complete with respect t@), <). It
is themethodthat is important: rules such &8R give us a way of forming more
cleanly structured canonical models.

Our goal is to construct an irreflexive version of the canainicodel forK; Q.
The basic idea is to work only with specialtnessingvcss:

Definition 4.67 A maximal consistent model is called witnessing if it contaa
formula of the formname(¢). -

Why are these witnessingcss so interesting? Well, suppose that we are dealing
with a collectioni¥” of withessing maximal consistent sets. This collectioruoes

a model in the obvious way: the relation is just the canoracakssibility relation
restricted tolV and likewise for the valuation. Now suppose that we can peove
Truth Lemma for this model; that is, suppose we can show thath'and mem-
bership coincide’ for formulas andcss. It is then immediate that the underlying
relation of the model is irreflexivename(¢p) € I'implies¢ € I"'andF¢ & I'.

This is all very well, but it is obvious that we cannot justdw away non-
witnessingmcss from the canonical model without paying a price. How can we
be sure that we did not throw away too mangss? An examination of the stan-
dard canonical completeness proof reveals that there arespats where claims
are made concerning the existence of cenaiss.

(i) There is the Existence Lemma, which is needed to prov@thtn Lemma.
In our case, whenever the formulap is an element of one of our witness-
ing Mcss (I, say) then there must bewnatnessingA such thatl"R“A and
¢ € A. Butif Ais witnessing, then there is somewith name(d) € A;
it follows from the definition of the canonical accessilyilitelation that
F(¢ AN name(d)) € I'. This shows that it will not do to just take the
witnessingmcss: the Existence Lemma requires stronger saturation condi-
tions onmcss, namely that whenevdr¢ € I, then there is somé such
that F'(¢ A name(9)) € I too.

(i) If there are axioms in the logic that are canonical foms&oproperty with
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existential import, how can we make sure that the trimmedrdearsion

of the canonical model still validates these propertiesaniples are the
formulas&Op — OOp, or, in the present case, the density axiom. The
point is that from the density of the standard canonical &ame may not
infer that its subframe formed by witnessingcss is dense as well: why
should there be witnessingvcs between two witnessingcss?

These two kinds of problems will be taken care of in two défgrways. We first
deal with the Existence Lemma. To start with, let us see hds @evcss give
rise to models — the alternative versions of the canonicadehthat we already
mentioned.

Definition 4.68 Let W be a set of maximal consistent sets of formulas. Define
M| to be the submodel of the canonical model inducediibythat is, 91|y =

(W, R, V) where R is the relationR¢ restricted tolW, andV is the canonical
relation restricted té1. -

Obviously, we are only interested in such models for whichcase prove a Truth
Lemma. The following definition gives a sufficient conditifor that.

Definition 4.69 A setW of maximal consistent sets is calldthmond saturated

it satisfies the requirement that for eathe W and each formuld'y) € X' there

is a setr € W such that¥ R°¥ andy € ¥, and the analogous condition holds for
past formulas. -

Lemma 4.70 (Truth Lemma) LetW be a diamond saturated set of maximal con-
sistent sets of formulas. Then for ahye W and any formulap:

M w,IFoiff o € T
Proof. Straightforward by a induction op.

Our goal is now to prove the existence of diamond saturathelotions of witness-
ing MCsSs.

Proposition 4.71 Let ¢ be some consistent formula. Then there is a countable,
diamond saturated collectioi” of witnessingmcss such that € = for some
ZeWw.

Proof. The basic idea of the proof is to defiieé step-by-step, in a sort of parallel
Lindenbaum construction on graphs. During the constraoctie are dealing with
finite approximations ofV. At each stage, one of the shortcomings of the current
approximation is taken care of; this can be done in such a atthe limit of the
construction has no shortcomings at all. A finite approxiaredf W will consist
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of a finite graph together with a labeling which assigns adis#t of formulas to
each node of the graph. We associate a formula with each s¢ tligite labeled
graphs, and require that this corresponding formula beistems$ for each of the
approximations. The first graph has no edges, and just oné gioivhich the label

set is the singletok¢}. The construction is such that the graph is growing in two
senses: edges may be added to the graph, and formulas magidzbtadhe label
sets. (Some readers may find it helpful to think of this pre@sa rather abstract
tableau construction.) All this is done to ensure that inliimit we are dealing
with a (possibly infinite) labeled graph meeting the requieats that (1) the label
set of each point is BICS, (2) each label set contains a witness and (3) if a formula
of the form F'¢ (P¢) belongs to the label set of some node, then there is an edge
connecting this node to another one containing its label set. Finally}V is
defined as the range of this infinite labeling function — nbt the label function
will not be required to be injective.

Now for the technical details. Approximations B will be callednetworks a
network is a quadrupld/ = (N, E, d, A) such that V, E) is a finite, undirected,
connected and acyclic grapfijs a direction function mapping each edget) of
the graph to eitheR? or its converseR ; and A is a label function mapping each
node of NV to a finite set of formulas.

As in our earlier example of a step-by-step constructionfisgewant to formu-
late coherence conditions on networks and define the notiarefect of network
with respect to its ideally’. We start with a formulation of the coherence of a
network. Since we are working in the basic temporal sintjatype — that is,
we have diamonds both for looking alo#gyand alongkR — there is an obvious
way of describing the network, from each of its nodes. Met= (N, E, d, A) be
some network, and let andt be two adjacent nodes gf. We use the following
notational conventions:

| F ifd(s,t) =R,
(st) = { P ifdts) =R

and letE(s) denote the set of nodes adjacenttd-inally, we let)(s) denote the
conjunction/ A(s). Define

AN, s) = /\(3)/\/\veE(s)<3U>9(N7U73)7
0N ts) = AE) A Ngspen(s) (EIIWN, v, 1).

In words, A(N, s) starts with a local descriptioR(s) of s and then proceeds to its
neighbors. For each neighbor A(N, s) writes a future operator (s,v) = R
(and a past operator if(s,v) = R’) and then starts to describe the network after
by callingf. (N, v, s) first gives a local descriptiol(v) of v, and then recursively
proceeds to the neighborsof— except fors. The omission o§, together with the
finiteness and acyclicity of the graph, ensures that we enlitina finite formula.
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The following claim shows that it does not really matter fraunich perspective
we describeV.

Lemma 4.72 For any network\" and any two nodes, ¢ in A/, A(N, s) is consis-
tent iff A(N, ¢) is consistent.

Proof. By the connectedness 4f it is sufficient to prove the Lemma for adjacent
s andt; the general case can be proved by a simple induction on tigghlef the
path connecting the two nodes.

So suppose that and ¢ are adjacent; without loss of generality assume that
d(s,t) = R. Since\ is fixed it will not lead to confusion if we abbreviat&( N, x)
by A(z) andf(N, x, y) by 6(x,y). Then by definition A(s) is given by

Als) = M)A\ (su)f(u,s)
u€E(s)
= Ms)AFO(ts)n N\ (su)f(u,s)
t#ueE(s)
= FO(t,s) \NO(s,t).

Likewise, we can show that
A(t) = 0(t,s) N PO(s,t).

But it is a general property of any logic extendiKg that for any two formulas
aandg, Fa A 8 is consistent iffe A P is consistent. From this, the Lemma is
immediate. -

The upshot of Lemma 4.72 is a good definition of the cohereheenetwork: we
will call a network A/ coherentif A(N, s) is consistent for each of (equivalently:
some of) its nodes. However, being finite, our networks will never be perfect.
What kinds of defects can they have?

A defectof a network is either (D1) a paifs, ¢) such that neithey nor —¢
belongs tal(s); (D2) a pair(s, F'¢) such thatF'¢ € A(s) while there is no witness
for this (in the sense that € A(¢) for some node with Est andd(s,t) = R); (D3)

a similar pair(s, P¢); or (D4) a nodes without a name; that isyame(¢) € A(s)
for no formulag.

We will show that each kind of defect of a network can be regghifFor this we
need some terminology. A networX’ extendsa network\/, if N C N’, while
E=FENN x N,d=d|yandA(s) C A'(s) for each node of \V.

Lemma 4.73 For any defect of a finite, coherent netwokk there is a finite, co-
herent\/' > A/ lacking this defect.
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Proof. Let N = (N, E, d, A) be a coherent network and assume tkiahas some
defect. We will prove the Lemma by showing how to remove thious types of
defect.

D1-defects.

Assume that there is a nodeand a formulap such that neithey nor —¢ belongs
to A. Since the formulaA(\, s) is consistent, it follows that eithef (N, s) A ¢
or A(N, s) A =¢ is consistent; lett¢ denote the formula such that(\, s) A £¢
is consistent. Now defin&” by N' := N, E' := E, d' := d, while A’ is given by
A'(t) = A(t) for t # s and

A(s) :== A(s) U{xo}.
Clearly, N is a finite network lacking the defect, ¢). It is also obvious that

A(N, s) is the formulaA(N, s) A £, SOA(N, s) is consistent, and henca/’
is coherent.

D2-defects.

Assume that there is a nodeand a formulap such thatF'¢ € A(s) while there is
no witness for this. Take mewnodet (that is,t does not belong tdV) and define
N as follows.

N’ = NU{t}v
E' = FEU{(st)},
d, = dU{((Svt)vR)}v

A" = AU{(u, {o})}-

It is obvious that\’ extends\ and that the defect has been repaired. Finally,
it is clear by the definitions that\(N”,s) = A(N, s): the only information that
the new node adds to the description is a conjungtand by assumption this was
already a member ol(s), and thus a conjunct of(s). Hence, the coherence of
N'is an immediate consequence of the cohereng¥€ .of

D3-defects.
Repaired analogously to D2-defects.

D4-defects.

These are repaired in the same way as D1-defects, usingahthéa if AN, s)

is consistent, then there is a propositional varigbthat does not occur in any of
the label sets. And here — at last — we useItke-rule to show that the formula
A(N, s) A name(p) is consistent.

Finally, we return to the proof of Proposition 4.71. Assuratt is a consistent
formula.

By a standard step-by-step construction we can define a iseg(&’;);cn of
networks such that
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(i) Ny is aone-node network with label sgt},
(i) N; extends\; whenever < j,
(iii) For every defect of any network/; there is a networR/; with j > i lacking
this defect.

Let NV be the set J;c;; IVi; and fors € N, defineA(s) = (J;cn Ai(s). We claim
that for everys € N, A(s) is a witnessingucs. We first show that for all formulas
¢, either¢ or —¢ belongs taA(s). Leti € N be such that is already in existence
in \V;; if neither ¢ nor —¢ belongs ta/, (s), this constitutes a defect df;. Hence,
by the construction there is sornjie> i such that eithep or —¢ belongs tod;(s).
But then the same formula belongs Ads). In the same manner we can prove
that every setl(s) contains a name. Now assume thiat) is not consistent; then
there are formulasy, ..., ¢, in A(s) such thaip; A --- A ¢, is inconsistent. By
construction, there must betac N such that eack; belongs already tol(s).
But this contradicts the consistency 4\, s) and hence, the coherency.bf,.

Finally, definell as the range ofl. The preceding paragraphs show tHatis
a collection of witnessingicss. By our definition of\, it follows that¢ belongs
to somemcsin W.

Now let F'¢ be some formula id” € W. By definition, there is somee N such
thatI" = A(s), and thus, somé € N such thatF'¢ € A;(s). By our construction
there is somg > i and some € N; such thatt);st and¢ € A;(t). It follows that
¢ € A(t), soitremains to prove that(s) R°A(t). In order to reach a contradiction,
suppose otherwise. Then there is a formula A(t) such thatF'y) ¢ A(s). Since
A(s) is amcs, this implies that-F'y) € A(s). Now letk € N be large enough
thaty € Ag(t) and—Fv¢ € Ai(s). From this it is immediate that\(\y, s) is
inconsistent; this contradicts the coherency\@f This proves thatV is diamond
saturated.

But then we have prove th&t” meets all requirements phrased in the Proposi-
tion. -

This shows that we have more or less solved the first problerweroed with work-
ing in a trimmed down version of the canonical model. we hastaldished that
every consistent formula can be satisfied in ainreflexive canonical-like model.
Let’s now think about the second kind of problem. Concretebw can we prove
that we have not destroyed the nice properties of the caaloitame by moving
to a subframe? In particular, how can we ascertinsity? We will see that here
we will make good use of the special naming property of thenfdasname(¢),
namely that they can be used as identifiers1ofs.

Lemma4.74 Let W be a diamond saturated collection of witnessing maximal
consistent sets of formulas, and tetdenote the relatiorR¢ restricted tol¥’. Then
the frame(W, <) is a non-branching, unbounded, dense, strict ordering.



238 4 Completeness

Proof. Let W and < be as in the statement of the lemma. Cleafly, <) is a
subframe of the canonical frame; hence, it inherits ewsyersalproperty of¥,
such as transitivity or non-branching. Irreflexivity folls from the fact thal ' R“I"
for no witnessingl". This shows thak is a non-branching, strict ordering f .

Unboundedness is not a universal condition, but neveghdt#lows rather eas-
ily: simply use the fact that the formuldsT™ and PT are theorems of the logic
and hence, belong to every maximal consistent set. Unbolmeds then follows
by the diamond saturation oF .

The case of density is more difficult, and here’s where namesgyanuinely
useful. Assume that” and A are twomcss such thatl” < A. We have to find a
Mcs @ in IV that lies betweerd” and A. Letd be the formula such thatame (6) €
A. It follows from I < A that F'name(d) € I', so using the density axiom, we
find thatF' F'name(d) € I'. From this we may infer the existence oflas © € W
with I" < © and Fname(§) € O.

Butis® < A? Note that since: is non-branching to the right, we already know
that® < Aor® = Aor A < ©. Butit clearly cannot be the case titat= A,
sinceF'6 € © and—F¢§ € A. Neither is it possible that\ < ©, for suppose
otherwise. It would follows fromF'é € © that FF'§ € A, so by the transitivity
axiom, F'§ € A; but this would contradict the fact thatF'o € A.

We now have all the ingredients for the main theorem of thisice:

Theorem 4.75 K; Q™ is complete with respect (@), <).

Proof. Given any consistent formulg construct a countable, diamond saturated
setW of witnessingmcss for &, as in the proof of Proposition 4.71. By the Truth
Lemma 4.70¢ is satisfiable at somgcs = in the modeli|y induced byW;
and by Lemma 4.74, this model is based on a non-branchingyumaed, dense,
strict ordering. But then the subframe generated=bis based on a countable,
dense, unbounded, strict total order and hence, isomotphtwe ordering of the
rationals. -

How widely applicable are these ideas? Roughly speakimgsithiation is as fol-
lows. The basic idea is widely applicable; various rulestfa undefinable have
been employed in many different modal languages, and foyrddierent classes
of models (we’ll see further examples in Chapter 7). Moreotiee use of such
rules can be fruitfully combined with other techniques,afdy the step-by-step
method (this combination sometimes succeeds when all &ilsg. fRules for the
undefinable are fast becoming a standard item in the modiaidng’ toolkit.
Nonetheless the method has its limitations, at least in ihéskof modal lan-

guages we have been considering so far. These limitatianseartered on the
problem of working with submodels of the original canonicaddel.



4.7 Rules for the Undefinable 239

As we saw, the first problem — retaining sufficiently mamyss for proving the
Truth Lemma — has a fairly satisfactory solution. Two rensagke in order here.

() The method only works well when we are working in tenseidogn the
proof of the ‘multiple Lindenbaum Lemma’, we crucially needoperators
for looking in bothdirections in order to show that it does not matter from
which perspective we describe a graph. If we have no accedse iofor-
mation of nodes lying ‘behind’, we are forced to add a coulytaidfinite
family of more and more complex rules, instead of one single irrivftgx
rule.

But there are no problems in generalizing the proof of Lemn7d 4o
similarity types with more than one tense diamond and/aatéde polyadic
operators. For example, in Exercise 4.7.3 is asked to usendteod to
prove completeness for the language bt with converse programs.

(i) Observe that we only provedieakcompleteness foK;Q*. This is be-
cause our proof of Lemma 4.71 only works with finite networks.the
presence of names, however, it is possible to prove a stramgsion of
Lemma 4.71; the basic idea is that whemas I' contains a name, other
MCss may have complete access to the information’ ithrough the finite
‘channel’ of I"'s name. For details we refer to Exercise 4.7.2.

There is a second problem which seems to be more serious.h\ghoperties of
the canonical frame can we guarantee to hold on a trimmed d@nsion? In
general, very little. Obviously, universal properties loé tanonical model hold in
each of its submodels, and first-order properties that astdndard translation of
closed modal formulas (such ¥s3y Rxy) are valid in each subframe for which a
Truth Lemma holds, but that is about it.

It is at this point where the names come in very handy. In faairder to prove
the inheritance of universal-existential properties lilansity, the names seem to
be really indispensablelf, on the other hand, we have names at our disposal,
we can prove completeness results for a wide range of loglosighly speaking,
in case the logic is a tense logic, we can show that every Sighltprmula is
‘distinguishing-canonical’. The crucial observationhatthe witnessing submodel
of the canonical model is@amedmodel.

Definition 4.76 Let 7 be some modal similarity type. A-model 91 is called
namedf for every states in 91 there is a formula such thats is the only point in
M satisfyingp.

Theorem 4.77 LetT be some modal similarity type, and suppose #iat (5, V')
is a namedr-model. Then for every very simple Sahlqvist formula

M I- o iff F IF o. 4.1)
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If, in addition, 9t is a versatile model for, then (4.1) holds for every Sahlqvist
formula.

Proof. Let 99t be a named model. It was the aim of Exercise 1.4.7 to let thaerea
show that the collection

A :={V(¢) | ¢ aformula}

is closed under the boolean and modal operations. Hencstrtieureg = (3§, A)

is a general frame. SincéBt is named,A contains all singletons. The result then
follows from Theorem 5.90 in Chapter 5 — for the second parthef Theorem
Exercise 5.6.1 is needed as welld

The use of rules for the undefinable really comes into its awsome of the ex-
tended modal languages studied for Chapter 7. Two main patlesbeen explored,
and we will discuss both. In the first, tigference operatois added to an ortho-
dox modal language. It is then easy to state a rule for thefunade (even if the
underlying modal language does not contain converse apsjand (by extending
the remarks just made) to prove a D-Sahlgvist theorem. Irséoend approach,
atomic formulas callechominalsand operators calledatisfaction operatorgre
added to an orthodox modal language. These additions makaightforward to
define simple rules for the undefinable (even if the undeglyimodal language does
not contain converse operators) and to prove a general epemglss result without
making use of step-by-step arguments.

Exercises for Section 4.7

4.7.1 We are working in the basic modal similarity type. First,ygthat a frame is intran-
sitive (Vzyz (Rzy A Ryz — —Rxz)) iff we can falsify the formuladp — &<Op at every
state of the frame.

Second, |leKB' be the logicK, extended with the symmetry axigm— O<$p and the
rule

(ITR) if - (Op A OO-p) — ¢ thenk ¢, providedp does not occur i,

Show thatKB' is sound and complete with respect to the class of symmettiensitive
frames.

4.7.2 Assume that we are working with the logi€; Q. Show that for each consistent
setX there is a diamond saturated semafss W such thaty C = for someZ € .

(Hint: use a construction analogous to the one employeciptbof of Proposition 4.71.
Add an infinite set ohewvariables to the language and first prove that {name(p)} is
consistent for any new variabpe A network is now allowed to have one special node with
aninfinite label set, which should contaii U {name(p)}. A description of a network is
now an infinite set of formulas.)

4.7.3 Assume that we extend the language ot with areverseprogram constructor:
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e if mis a programthensois!.

The intended accessibility relation of ! is the converse relation a@t,.. Let PDL,, be
the axiom system afDL (see Section 4.8), modulo the following changes:

() Add the converse axiom schemas~ [7](7~!)p andp — [r~1](r)p,
(i) Replace the Segerberg induction axiom with the follogvinfinitary rule:
(w—x) If ¢ — [n"]|¢ foralln € w, thenk ¢ — [7*]w.

Prove that this logic is sound and complete with respectéstandard models.

4.8 Finitary Methods |

In this section we introduce finite canonical models. We wsé snodels to prove
weak completeness results for non-compact logics. We @xaume of the best
known examples — propositional dynamic logic — in detail. igl@recisely, we
will axiomatize the validities regular (test free) progasial dynamic logic. Re-
call from Chapter 1 that this has a set of diamofdsindexed by a collection of
programsiI. IT consists of a collection of basic programs, and the progigens
erated from them using the constructars;,, and«. A frame for this language is a
transition systen§ = (W, R;).c1, but we are only interested negular frames
that is, frames such that for all programsr; ands:

R7l'1 Umre — R7T1 U R7r2
Rryrs = RryiRny
R« = (Ry)".

We say that a formula is apPDL-validity (written I ¢) if it is valid on all regular
frames.
The collection ofPDL-validities is not compact: consider the set

2= {{a")p, ~p, ~{a)p, ~(a){a)p, ~(a)(a){a)p, .. .}.

Any finite subset ofY is satisfiable on a regular frame at a single point, but
itself is not. This compactness failure indicates thatrangcompleteness result
will be out of reach (recall Remark 4.44) so our goal (as with) should be to
prove a weak completeness result. It is is not too hard to agmweith a candidate
axiomatization. For a start, the first two regularity coiwtlis given above can be
axiomatized by Sahlqvist axioms. The last condition is ndiffcult, but even
here we have something plausible: recall that in Example & saw that this last
condition isdefinedby the formula set

A={(pN["](p = [x]p)) = ["Ip,(7")p < (p V (x)(x*)p) | = € IT}.

This suggests the following axiomatization.



242 4 Completeness

Definition 4.78 A logic A in the language of propositional dynamic logic is@-
mal propositional dynamic logid it contains every instance of the following ax-
iom schemas:

() [7](p — q) = ([x]p — [7]q)
(i) (m)p < =[x]-p
(i) (m1;m2)p < (m1)(m2)p
(iv) (m Uma)p <> (m)p V (m2)p
(V) “)p < (pVA(m)(T)p)
Vi) [m*](p — [7lp) — (p — [7"]p)

and is closed under modus ponens, generalizationg impliest+, [r]¢, for all
programsr) and uniform substitution. We call the smallest normal psifional
dynamic logicPDL. In this section, ¢ means that) is a theorem ofPDL,
consistency meariBDL-consistency, and so on.

{
{
{
(m

As we've already remarked, axioms (iii) and (iv) are (comjions of) Sahlqvist
axioms; they are canonical for the first two regularity ctiods, respectively. Fur-
ther, observe that Axiom (v) is a Sahlqvist formula as welisicanonical for the
conditionR,~ = Id U R; R.~. Thus we've isolated the difficult part: axiom (vi),
which we will call theinductionaxiom for obvious reasons, is the formula we need
to think about if we are to understand how to cope with the naiy failure. It is
probably a good idea for the reader to attempt Exercise fighiaway.

Proving the soundness &fDL is straightforward (though the reader should
(re-)check that the induction axiom really is valid on atjuéar frames). We will
prove completeness with the helpfafite canonical models. Our work falls into
two parts. First we develop the needed background matdimatary versions of
Mcss, Lindenbaum’s Lemma, canonical models, and so on. Faiihis, we
turn to the completeness proof proper.

Recall that a set of formulaS' is closed under subformulas if for all € X, if
1 is a subformula ob theny € X,

Definition 4.79 (Fischer-Ladner Closure)Let X be a set of formulas. Thek is
Fischer-Ladner closed it is closed under subformulas and satisfies the following
additional constraints:

(i) If (mi;me)p € X then(m)(m)p € X
(i) If <7’l’1 U 7'l'2>¢ e X then<7'('1>gb V <7T2>§Z5 eX
(i) If (7*)¢ € X then(r)(7*)¢p € X.

If ¥ is any set of formulas then FIY) (the Fischer Ladner closuref X) is the
smallest set of formulas containing that is Fischer Ladner closed.
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Given a formulap, we define~¢ as the following formula:

~p = { Y if ¢ is of the form—1),

—¢ otherwise

A set of formulasX is closed under single negatioifs~¢ belongs taX whenever
peX.

We define-FL(Y'), theclosure of ¥, as the smallest set containiagwhich is
Fischer Ladner closed and closed under single negatiotis.

It is convenient to talk as if¢ really is the negation of, and we often do so in
what follows. The motivation of closing a set undgngle negations is simply to
have a ‘connective’ that is just as good as negation, whiepieg the set finite.
(If we naively closed under ordinary negation, then any smild/have an infinite
closure.)

It is crucial to note that it is finite, then so is its closure. Some reflection on
the closure conditions will convince the reader that thisdeed the case, but it is
not entirely trivial to give a precise proof. We leave thtiéi combinatorial puzzle
to the reader as Exercise 4.8.2.

We are now ready to define the generalization of the notionroh&imal con-
sistent set that we will use in this section.

Definition 4.80 (Atoms) Let X' be a set of formulas. A set of formulasis an
atomover ¥ if it is a maximal consistent subset ofL(Y). Thatis,A is an atom
over ¥ if A C —FL(X), A is consistent, and i ¢ B C —FL(X) thenB is
inconsistent.At(Y') is the set of all atoms oveY. -

Lemma 4.81 Let X' be any set of formulas, andl any element ofit(Y'). Then:

(i) Forall ¢ € =FL(X): exactly one ofy and~¢ is in A.
(i) Forall p Vi e =FL(X): oV p € Aiff p € Aorey € A.
(i) Forall (my;ma)¢ € =FL(X): (my;ma)p € Aiff (m1)(ma)p € A.
(iv) Forall <’/T1U7T2>¢ € ﬁFL(E)Z <’/T1U7T2>¢ c Aiff <7T1>¢ € Aor <’/T2>¢ € A.
(v) Forall (7*)¢ € =FL(X): (n*)¢ € Aiff p € Aor (m)(n*)¢p € A.

Proof. With the possible exception of the last item, obviousd

Atoms are a straightforward generalizationmafss. Note, for example, that if we
chooseY' to be the set of all formulas, thet¥(Y) is just the set of alMcss. More
generally, the following holds:

Lemma 4.82 Let M be the set of allicss, andY’ any set of formulas. Then

AHY) = {I'N=FL(Y) | " € M.
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Proof. Exercise 4.8.3. -

Unsurprisingly, an analog of Lindenbaum’s Lemma holds:

Lemma4.831f ¢ € —=FL(X) and ¢ is consistent, then there is ath € At(Y)
such thatp € A.

Proof. If X is infinite, the result is exactly Lindenbaum’s Lemma, saieturn to
the more interesting finite case. There are two ways to ptage\We could simply
apply Lindenbaum’s Lemma: asis consistent, there is ancs I” that contains.
Thus, by the previous lemm&, N —=FL(X) is an atom containing.

But this is heavy handed: let’s look for a finitary proof iree Note that the
information in an atomA can be represAented by theAsingIe formy)@eA o. We
will write such conjunctions of atoms a& ObviouslyA ¢ A.

Using this notation, we construct the desired atom as falo&numerate the
elements of-FL(Y) asoy,...,0n. Let A; be{o;}. Suppose that,, has been
defined, where: < m. We have that

A, & (A Aopi) V (A A ~opia),

as this is a propositional tautology, thus eittgr U {oy,+1} or A, U {~op41}is
consistent. Letd,,; be the consistent extension, and febe A,,,. ThenA is an
atom containings.

Note the technique: we forced a finite sequence of choiceseegioc and ~o.
Actually, we did much the same thing in the proof of Lemma 41h& Existence
Lemma for modal languages of arbitrary similarity type, arell soon have other
occasions to use the idea.

Now that we have Lemma 4.83, it is time to define finite candmiuadels:

Definition 4.84 (Canonical Model overY) Let X be a finite set of formulas.
The canonical model over is the triple (At(X), {S> e, V™) where for all

propositional variableg, V¥ (p) = {A € At(Y) | p € A}, and for all atoms
A, B € At(XY) and all programsr,

ASZBif A A (7)B is consistent

V¥ is called thecanonical valuationand theS,, are called theanonical relations
We generally drop theJ superscripts. -

Although we have defined it purely finitarily, the canonicabdel overY' is ac-

tually something very familiar: a filtration. Which filtratn? Exercise 4.8.4 asks
the reader to find out. Further, note that although some o&ltieee discussion is
specific to propositional dynamic logic (for example, the oéthe Fischer Ladner
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closure) the basic ideas are applicable to any modal lamguad:xercise 4.8.7 we
ask the reader to apply such techniques to the IKgic

But of course, the big question is: does this finite canomuadielwork? Given
a consistent formula, we need to satisfy in a regular model. This gives two
natural requirements on the canonical model: first, we neg@idve some kind of
Truth Lemma, and second, we want the model to be regular. dbe gews is that
we can easily prove a Truth Lemma,; the bad news is that we aeleimo show
regularity. This means that we cannot use the canonical hitsedf; rather, we
will work with the canonical relation$; for the atomic relations only, and define
relationsR, for the other programs in a way thfatrcesthe model to be regular.

Definition 4.85 (Regular PDL-model overY) Let X' be a set of formulas. For
all basic programs, defineR;’ to beS;-. For all complex programs, inductively
define thePDL-relations R in the usual way using unions, compositions, and
reflexive transitive closures. Finally, defifg, the regular PDL-model overX¥

to be (At(X), {R:},cr, V™), whereV~ is the canonical valuation. Again, we
generally drop the~ superscripts.

But of course,now the main question is, will be able to prove a Truth Lemma?
Fortunately, we can prove the key element of this lemma, haraa Existence
Lemma (cf. Lemma 4.89 below). First the easy part. As the mi@abrelationsS,

are identical to th&DL-relationsR, for all basic programs, we have:

Lemma 4.86 (Existence Lemma for Basic Programslet A be an atom, and
a basic program. Then for all formulag)q in —=FL(Y), (a)y) € A iff there is a
B € At(XY) such thatAR,B and € B.

Proof. This can be proved by appealing to the standard Existencerizeamd then
taking intersections (as in Lemma 4.83) — but it is more igé&ng to prove it
finitarily. For the right to left direction, suppose thereai3 € At¢(B) such that
AR B and1/1 € B. As R, and S, are identical for baS|c programAS B, thus
AN (a >B is consistent. Ag) is one of the conjuncts i3, A A (a)1 is consistent.
As (a)t is in =FL(Y) it must also be in4, for A is an atom and henamaximal
consistent inrmFL(Y').

For the left to right direction, suppose)y) € A. We construct an appropriate
atom B by forcing choices. Enumerate the formulas-RL(Y) asoy,...,op,.
Define B, to be{«}. Suppose as an inductive hypothesis tBatis defined such
thatA A <a>1§; is consistent (wheré < n < m). We have

(@) By 4 (@) (Bn A ong1) V (B A ~0ni1))
thus

~

F(a)Bpn < ((a)(Bp A pi1) V(@) (Bn A ~0pi1)).
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Therefore either foB’ = B,, U {0,,41} or for B’ = B,, U {~0,,4+1} we have that
A A (a)B’ is consistent. ChoosB,,;; to be this consistent expansion, and &t
be B,,,. B is the atom we seek. -

Now for the hard part. Axioms (v) and (vi) cannot enforce tlesiced identity
betweenS,. andR,.. But good news is at hand. These axioms are very strong and
manage to ‘approximate’ the desired behavior fairly wetl.particular, they are
strong enough to ensure thiat C R, for arbitrary programs. This inclusion will
enable us to squeeze out a proof of the desired Existence hemhe following
lemma is the crucial one.

Lemma 4.87 For all programs, S« C (Sr)*.

Proof. We need to show that for all programs if AS;-B then there is a finite
sequence of atomsy, ..., (), such thatd = CyS.C4,...,C,_15:C,, = B. Let
D be the set of all atoms reachable frotrby such a sequence. We will show that
B eD.

Defined to be\/ cp D. Note thaty A (m)—d is inconsistentfor suppose other-
wise. Then A (w)ﬁ would be consistent for at least one até@motin D, which
would mean thaD A <7r>E was consistent for at least oie € D. But then by
DS E, E could be reached from in finitely many S, steps, which would imply
that ¥ € D — which it is not.

As 0 A (m)—d is inconsistenti- § — [r]d, hence by generalizatian [7*](§ —
[7]0). By axiom (vi),F- & — [7*]6. Now, asAS:-A, A is one of the disjuncts
in 4, thust A — § and hence- A4 — [7*]6. As our initial assumption was that
AN (m >B is consistent, it follows thaﬁ A(m )(E A §) is consistent too. But this
means that for one of the d|SJunoIS of §, B A D is consistent. A$3 and D are
atoms,B = D and hencé? € D. -

With the help of this lemma, it is straightforward to prove thesired inclusion:

Lemma 4.88 For all programsm, S; C R;;.

Proof. Induction on the structure aof. The base case is immediate, for we defined
R, to bes, for all basic programs. SO SUpPPOSeLSy, ;x, B, that is, A A (75 7r2>B
is consistent. By axiom (jii)A A (1) (7r2>B is consistent as well. Using a ‘forcing
choices’ argument we can construct an atorsuch thatd A (71 )C andC A () B
are both consistent. But then, by the inductive hypothesis,C' andCR,B. It
follows thatAR, .., B, as required. A similar argument using axiom 4 shows that
S7nU7r2 g R7r1U7r2-

The case for reflexive transitive closures follows from thevpus lemma and
the observation thaf; C R, implies(S;)* C (R;)*. -

We can now prove an Existence Lemmadobitrary programs.
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Lemma 4.89 (Existence Lemma)Let A be an atom and letr)« be a formula in
—FL(Y). Then(m)y € A iff there is aB such thatAR, B and € B.

Proof. The left to right direction puts the crucial inclusion to \Wor Suppose
() € A. We can build an atonB such thatAS;B by ‘forcing choices’ in
the now familiar manner. But we have just proved tRatC R, thusAR,B as
well.

For the right to left direction we proceed by induction on Steicture ofr.
The base case is just the Existence Lemma for basic progsmssjpposer has
the formz; 7o, and further suppose thatR ..,B andy € B. Thus there is
an atomC' such thatAR,, C andCR,,B andy € B. By the Fischer Ladner
closure conditions{ms )1 belongs to-FL(Y'), hence by the inductive hypothesis,
(mo) € C. Similarly, as(m)(me )t is in =FL(X), (m)(m2)1 € A. Hence by
Lemma 4.81{m; m) € A, as required.

We leave the case = 7 U m» to the reader and turn to the reflexive transitive
closure: suppose is of the formp*. Assume thatdR,-B andvy € B. This
means there is a finite sequence of at@ys. ..,C), such thatd = CoR,C1, .. .,
Cn-1R,C,, = B. By a subinduction om we prove tha{p*)y € C; for all i; the
required result fod = () is then immediate.

Base casen = 0. This meansi = B. From axiom (v) we have that (p*)¢ <
¥V (p){p*)1, and hence that ) — (p*)¢. Thus(p*)y € A.

Inductive stepSuppose the result holds far< k, and that

A=CyR,CY, ...,CkR,Cry1 = B.

By the inductive hypothesigp*)y € C1. Hence(p)(p*)y € A, for (p){(p*)v €
—FL(Y). Butk (p*)y <> ¢ V (p)(p*)?. Hence(p*)y € A.

This completes the subinduction, and establishes therestjtésult for(p*). It
also completes the main induction and thus the proof of timerla.

Lemma 4.90 (Truth Lemma) Let R be the regulalPDL-model over}.. For all
atomsA and ally € =FL(Y), R, A IF ¢ iff © € A.

Proof. Induction on the number of connectives. The base case felfoon the
definition of the canonical valuation over. The boolean case follows from
Lemma 4.81 on the properties of atoms. Finally, the Existelbemma pushes
through the step for the modalities in the usual wayl

The weak completeness result for propositional dynamiic lfaglows.

Theorem 4.91 PDLis weakly complete with respect to the class of all regular
frames.
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Exercises for Section 4.8
4.8.1 Show that the induction axiom is not canonical.

4.8.2 Prove that for a finite seY, its closure setFL(Y') is finite as well.

4.8.3 Prove Lemma 4.82. That s, show th&t(Y) = {I'Nn=FL(X) | I' € M}, where
M is the set of alMcss, andY is any set of formulas.

4.8.4 Show that the finite models defined in tRBL completeness proofs are isomorphic
to certain filtrations.

4.8.5 Show that for any collection of formulas, = \/ ¢ 4 () A

4.8.6 Extend the completeness proof in the texptm with tests. Once you have found
an appropriate axiom governing tests, the main line of theraent follows that given in
the text. However because test builds modalities from féasiyou will need to think
carefully about how to state and prove analogs of the key lasnfsuch as Lemmas 4.87
and 4.88).

4.8.7 Use finite canonical models to show thdt is weakly complete with respect to the
class of finite strict partial orders (that is, the class otdiirreflexive transitive frames).
(Hint: given a formulap, let @ be the set of ali’s subformulas closed under single nega-
tions. Let the points in the finite canonical model be all theximalKL -consistent subsets
of @. For the relationR, defineRww' iff (1) for all d¢ € w, O¢, ¢ € w' and (2) there

is somed¢ € w' such thatd¢y ¢ w. Use the natural valuation. You will need to make
use of the fact that -7, O0¢ — O¢; bonus points if you can figure out how to prove this
yourself!)

4.8.8 Building on the previous result, show thiat is weakly complete for the class of
finite transitive trees. (Hint: unravel.)

4.9 Finitary Methods Il

As we remarked at the end of Section 4.4, although the incei@pss results show
that frame-theoretic tools are incapable of analyzing thiéres lattice of normal
modal logics, they are capable of yielding a lot of inforroatabout some of its
subregions. The normal logics extendiBg.3are particularly well-behaved, and
in this section we prove three results about them. First, iwegBull’'s theorem:
all such logics have thénite frame property Next, we show that they are all
finitely axiomatizable Finally, we show that each of these logics hasegative
characterization in terms of finite sets of finite frameshich will be important
when we analyze their computational complexity in Chapter 6
The logics extending4.3are logics of frames that are rooted, transitive, and

connectedY{xy (RxyV Ryx))). To see this, recall th&4.3has as axioms 4, T, and
.3. These formulas are canonical for transitivity, refléyj\and no branching to the
right, respectively. Hence any point-generated submofi#Heocanonical model
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A generated M definable 0
submodel variant
e bounded
filtration )
morphism
om/ oms
elimination

Fig. 4.2. The models we will construct, and their relatiapsh

for these logics inherits all three properties, and will oid#ion be rooted and
connected. Now, any connected model is reflexive. Thotednesstransitivity,
andconnectednesare the fundamental properties, and we will call any franag th
has them arB4.3frame Note that anyS4.3frame can be viewed as a chain of
clusters(see Definition 2.43), a perspective which will frequentiyuseful in what
follows.

Bull's Theorem

Our first goal is to prove Bull's theorem: all extensionsS#.3have the finite
frame property. In Definition 3.23 we defined the finite frameperty as follows:
A has the finite frame property with respect to a class of findenesF if and
only if F I A, and for every formulap such thatp ¢ A there is some € F
such thatp is falsifiable ong. Using the terminology introduced in this chapter,
we can reformulate this more concisely as followishas the finite frame property
if and only if there is a class of finite framéssuch thatd = Ag. So, to prove
Bull's Theorem, we need to show thatif extendsS4.3 then anyA-consistent
formula ¢ is satisfiable in a finite mod€liW, R, V') such that(W, R) IF A. In
short, Bull’'s Theorem is essentially a general weak corepless result covering
all logics extendinds4.3

But how are we to build the required models? By transformhmgy ¢anonical
model. Suppose is A-consistent. Letv be any/A-mcs containing¢, and let
MY = (W, R®, V) be the submodel @it generated by. Thendn®, w I ¢,
and (as just discussetlt” is based on a®4.3frame. We are going to transform
M™ into a finite mode®n® that satisfiesp and is based on af4.3frame that
validatesA.

Figure 4.2 shows what is involved. We are going to transfthin two distinct
ways. One involves taking a filtration and eliminating certpoints; this is the
technical heart of the proof. The other involves defining artated morphism on
a definable variar®t’ of 91%; this part uses the results on definable variants and
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distinguishing models proved in Section 3.4. These transdtions offer us two
perspectives on the properties ®t°, and together yield enough information to
prove the result.

And so to work. We first discuss the filtration/eliminatioantsformation. Le®
be the (finite) set consisting of all subformulasiaf, and letn/ = (W/, R/, V1)
be the result of transitively filtratingt® through®. Recall that the relatioR/
used in transitive filtrations is defined B/ |u||v| iff O € vimplies O € u, for
all &y € @, and allu, v € W¥; see Lemma 2.42. A& is finite, so isiW/. By the
Filtration Theorem (Theorem 2.39%/, |u| IF ¢ iff MY, w |F 4, for ally € @, and
all uw € W*. Moreover,R/ is transitive, reflexive, and connected, dadlis a root
of the filtration, thusit/ is based on as4.3frame. Hence the frame underlying
o/ is a finite chain of finite clusters.

Now for the key elimination step. We want to build a finite mbdased on a
frame for A. Now, we don't know whethe?t" is based on such a frame, but we
doknow thatit™ I+ A. If we could transfer the truth of in 9t to a finitedistin-
guishingmodel, then by item (iii) of Lemma 3.27 we would have immeeliahave
Bull's Theorem. Unfortunately, whilg/ is finite, and also (being a filtration) dis-
tinguishing, we have no guarantee thaf |- A. This reflects something discussed
in Section 2.3: the natural map associated with a filtratieadhnot be bounded
morphism. It also brings us to the central idea of the pretiminate all points in
9/ which prevent the natural map from being a bounded morphi®viously,
any model built fromt/ by eliminating points will be finite and distinguishing.
So the crucial questions facing us are: which points shoaléliminated? And
how do we know that they can be thrown away without affecthmeg gatisfiability
of formulas in?

Recall that the natural map associated with a filtration sexath point: in
the original model to the equivalence class$ in the filtration. So if the natural
map from the frame underlyin§jt* to the frame underlyingit/ is not a bounded
morphism, this means that for somien € W/ we have thaR/ 5o but

Vv € B3z (R vz Az € ),
or equivalently, thaR/ 3« but
dv € fVz (2 € a =» ~R"vz).

This motivates the following definition:

Definition 4.92 Supposes, o € W/. We say thaty is subordinateto 3 (o sub3)
if there is av € 3 such that for alk € «, itis notthe case thaR“vz. -

So: if M/ is not a bounded morphic image 6t under the natural map, then
there is somev € W/ such that for somé& € W/, R/ pa anda sub 3. We must
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get rid of all sucho; we will call themeliminablepoints. But to show that we can
safely eliminate them, we need to understandstliterelation a little better.

Lemma4.93 (i) If « sub s, then there is @ € S such that for allz € «,
RYzv.
(i) If o subg thenRfap.
(i) The sub relation is transitive and asymmetric.
(iv) Supposey, 3,y € W/ such thato sub~ and nota sub 3. Thenj3 sub-y.

Proof. For item (i), note that by definition there isvac 3 such that for alk € «,
itis notthe case thakR"“vz. But R" is a connected relation, hence for everg «,
RYzv.

For item (ii), supposex sub 5. By item (i), this means that there is some
element of 3, such that every element af R*-precedes. Now if &ip € 3, then
MY v IF O Hence (by the transitivity oRR™) for all z € «, MY, = I O too.
This means that+) € «, that is, R7a3. (It follows that if the natural map fails
to be bounded morphism because of its behavior on the pgiatsd «, then the
eliminable pointx belongs to thesamecluster ass.)

Items (i) and (iv) are left for the reader as Exercise 4.9.4

We are now ready for the key result: we can safely get rid offedleliminable
points; there are enougtoneliminable points left to prove an Existence Lemma:

Lemma 4.94 (Existence Lemma)etu € W* and supposey € u N &. Then
there is ajv| € W/ such thatR/ |u|[v], ¢ € |v|, and|v] is noteliminable.

Proof. Construct a maximal sequenag, a1, ... throughi¥’/ with the following
properties:

(i) ao = [u].
(i)) If 4 > 0 and odd, theny; is some|v| such that) € v, Rfa;_1|v|, and not
|v| suba;_;.
(i) If 4 > 0 and even, then; is somev| such thatR/|v|a;_; anda;_; sub|v].

Here’s the basic idea. Think of this sequence as a series wésrihrough the
model. We are giver>y, and our goal is to find &/ -related:-containing point
that is not eliminable. So, on our first move (add move) we select aR/-
related«-containing point (we are guaranteed to find one, pretty nash any
Existence Lemma). If the point isot-eliminable we have found what we need
and are finished. Unfortunately, the point may well be elabie. If so, we make
a second move (aavenmove) to another poinn the same cluster— namely a
point to which the first point we found is subordinate. Wedterthe process, and
eventually we will find what we are looking for. We now makestlgextremely
sketchy) outline precise.
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Claim 1. For every itemy; = |v| in the sequenceyy € v.

If i =0, a; = |u| and by assumptio>y € w. If i > 0 and odd, then) € |v| by
construction, hence € v. Aswv is aA-McCs it containsy — <, thusOy € v
also. Finally, ifi > 0 and even, then as we have just seén; € «;_;. By
construction,R/|v|a;_1 hence®y € |v| and hence>y € v. This proves Claim 1.

Claim 2. The sequence terminates.

Suppose is even. By property (iii)o;+1 Sub a;42 and by property (ii), it is not
the case thaty;;; sub «;. Hence by item 3 of Lemma 4.93;; sub a;;2. By
item (ii) of Lemma 4.93subis a transitive and asymmetric relation, thus eagh
for i even, is distinct. As there are only finitely many elementd/ih, the sequence
must terminate. This proves Claim 2.

Claim 3. The sequence does not terminate on &ven

Supposé is even. We need to show that there isan, € W/ such thatR/ o1
and nota;, | suba;. Let{By,...,B,} be{3 € W/ | 3 suba;}. Then for each
k(1 <k < m)thereis ay, € «; such that notR" vz, for all z € ;. Letv be
one of these points; such that for allk, R v,v, for1 < k& < m. (It is always
possible to choose suchvaasR" is connected.) As; = |v|, by Claim 104 € .
By the Existence Lemma for normal logics (Lemma 4.20), theer € W such
thaty € x and R”vx. Moreover, notlxz| sub |v|. For suppose for the sake of a
contradiction thatz| sub|v|. Then|z| = S, for somel < k& < m, and hence not
R"vx. But R%viv and R%vx, hence (by transitivity)R“ v,z — contradiction.
We conclude that ngtz| sub |v|, hence (recalling thaw| = «;) we can always
chooser;; to be|z|. This proves Claim 3.

We can now prove the result. By Claims 2 and 3, the sequenoeniaies on
o, = |v|, for some odd numbem. By construction,y € v, hencey € |v|.
Sincea,,,+1 does not exist,, is not eliminable. By construction, for all even
Rfaja;y1. By item (i) of Lemma 4.93, for all odd, R/ «;0;4,. Hence by the
transitivity of R/, R/|u||v|, and we are through.

We now define the modebt®. Let W* be the set of non-eliminable points in
W/, (Note that by the previous lemma there must be at least orte int, for
Op e wNn@.) Thend® = (WS, R, V?) is M/ restricted talV*. Henced® is a
finite distinguishing model, and¥*, R?) is anS4.3frame.

Lemma 4.95 91* satisfiesy.

Proof. First, we show by induction on the structureotthat for ally) € ¢, and
all ju] € W#, 9, |u| I+ ¢ iff v € u. The only interesting case concerns the
modalities. So supposé € u. By the previous lemma, there is somé such
that R/ |u||v|, ¢ € |v|, and|v| is not eliminable. As) € |v|, ¢ € v, hence by the
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inductive hypothesisht®, |v| IF ¢, hencedt®, |u| I &op as desired. The converse
is straightforward; we leave it to the reader.

It follows that ¢ is satisfied somewhere °. For, as¢o € w N @, by
Lemma 4.94 there is a non-eliminaltg such thatkR” |w||u| and¢ € |u|. Hence
¢ € u, andM?, |u| - ¢.

We are almost there. If we can show tB&t I+ A, then a9’ is a finite distin-
guishing model, its frame validatesand we are through. Showing thHat® I+ A,
will take us along the other path frodit” to 9t° shown in Figure 4.2. That is, we
will show that?1® is a bounded morphic image of a definable vartatitof 1.

The required bounded morphisfris easy to describe: it agrees with the natural
map on allnon-eliminable points, and where the natural map sent a poita a
point that has been eliminated(w) will be a point ‘as close as possible’ to the
eliminated point. Let's make this precise. Enumerate teenehts ofii’#. Define
f: W% — Ws by

|w|, if |w| € W*

flw) = the first element in the enumeration which is&irminimal
element off« € W* | R*|w|a}, otherwise.

As ¥ is finite, the minimality requirement (which captures the ¢dose as possi-
ble’ idea) is well defined.

As we will show, f is a bounded morphism frortiV*, R") into (W*, R*).
But we have no guarantee th#tis a bounded morphism from thmodel 9"
to M°, for while the underlying frame morphism is fine, we need teuza that
the valuations agree on propositional symbols. We fix thifodsws. For any
propositional symbop, defineV’(p) to be{u € W* | f(u) € V*(p)}, and lett’
be(W™,R¥ V'). Thatis ' is simply a variant oft* that agrees witit* under
the mappingf. But it is not just any variant: as we will now see, it islafinable
variant. It is time to pull all the threads together and prtheemain result.

Theorem 4.96 (Bull's Theorem) Every normal modal logic extendirgd.3 has
the finite frame property.

Proof. First we will show tha®)t’ is a definable variant abt™. If 3 is any of the
equivalence classes that make up the filtrafioh, then3 C W*. Moreover Y
can define any such: the defining formula3 is simply a conjunction of all the
formulas in some subset d@f, the set we filtrated through. (Incidentally, we take
the conjunction of the empty set to he) It follows that9* can definel’(p)

for any propositional symbagl. To see this, note that*(p) is either the empty set
or some finite collection of equivalence clas$és, ..., 3,}. In the former case,
defined, to be_L. In the latter case, defing to be\/; 3;. Either way,s, defines
V'(p) in 9, for V'(p) is{u € W" | f(u) € V3(p)}. ThusO' is a definable
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variant of91*. (Note that this argument makes use of facts about all foudatso
constructed in the course of the proof.)

Next we claim thatf is indeed a surjective bounded morphism fr@rf onto
9'; we show here that it satisfies the back condition and leagerdht to the
reader. Suppos&®f(u)f(v). As f(v) € W, itis not eliminable, hence not
f(v) sub f(u). But this means that every elementfif.) R*-precedes an element
in f(v), as required.

But now Bull's Theorem follows. IfA is a normal modal logic extending4.3
and ¢ is a A-consistent formula, builét® as described above. By Lemma 4.95,
M*® satisfiesp. Moreoverdn® I+ A. To see this, simply follow the upper left-to-
right path through Figure 4.20t" |- A, hence so doe®tv, for it is a generated
submodel oD, As O is a definable variant dbt”, by Lemma 3.25 item (jii),
M |F A. Hence, a9’ is a bounded morphic image @', it too validatesA as
required. Bubli? is a finite distinguishing model, hence, by Lemma 3.27 iteiy (i
its frame validates! and we are through.

Finite axiomatizability

We now show that every normal logic extendigg.3is finitely axiomatizable (A
logic A is finitely axiomatizable if there is fnite set of formulas/” such that

is the logic generated b¥.) The proof makes use of a special representation for
finite S4.3frames.

Because every finit84.3frame is a finite chain of finite clusters, any such frame
can be represented as a list of positive integers: eachigositeger in the list
records the cardinality of the corresponding cluster. kangple, the lis{3, 1, 2]
represents the following frame:

Q
/\ — — | p—q

g

Such representations will allow us to reduce the combiratbeart of the follow-
ing proofs to a standard result about lists. The followin§rdion pins down the
relationship between lists that will be important.

Definition 4.97 A list is a finite non-empty list of positive integers. A liston-
tainsa listsif t has a sublist of the same lengthsagach item of which is greater
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or equal than the corresponding itemsofA list t coversa listsif t containss and
the last item ot is greater than or equal to the last itemsof

For example, the ligo, 40, 1,9, 3] contains the lis8, 2, 9], for it has[9, 40, 9] as a
sublist, but it does not cover this list. B 40, 1,9, 10] covers[8, 2, 9].
The modal relevance of list covering stems from the follapiemma:

Lemma 4.98 LetF and® be finiteS4.3frames, and let andg be their associated
lists. Therf coversg iff there is a bounded morphism fragnonto &.

Proof. Exercise 4.9.2. -

In view of this result, the following well-known result cae viewed as asserting
the existence of infinite sequences of bounded morphisms:

Theorem 4.99 (Kruskal's Theorem) Every countably infinite sequence of lists
contains an infinite subsequencsuch that for all listss; ands; in's, ¢ > j implies
5; COVErSs;.

Proof. Let us call a (finite or infinite) subsequen¢g);-; of a sequence of lists
t = (ti)icw achainint if for all 4, j € I, t; coverst; whenever; > i. We assume
familiarity with the notions of the head, the tail and the soina list. For instance,
the head of8,2,9] is 8, its tail is[2, 9] and its sum is 19. Ca# smallerthant if
the sum of is smaller than that of.

In order to prove the lemma, we will show the following holds:

every countably infinite sequence of listsontains a chain of length 2. (4.2)

Assume that (4.2) does not hold; that is, there are countalfilyite sequences
without chains of length 2 as subsequences.

Without loss of generality we may assume thdbes not contain infinitely many
lists of length 1. For otherwise, consider its subsequemnge-; of these one-
item lists. This subsequence may be identified with a sequehcatural numbers
(ni)icw- But

any sequenceén;);c., of natural numbers contains a subsequence

. . 4,
(ni)ier such that for ali, j € 1,7 < j impliesn; < nj, (4.3)

as can easily be proved. Butifi < n; then clearlyt; coverst;. But then we
may also assume thatdoes not contain one-item lists at all: simply consider the
sequence found by eliminating all one-item lists.

Let t be aminimal such sequence. That isjs a sequence of more-item lists,
t has no 2-chains, and for afl, there are no more-item list$, ¢, ;, ... such
thatt;, is smaller tharnt,,, while the sequence), ti, ..., t,—1, t,, t;, 1, ... has no
2-chains.
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Now we arrive at the heart of the argument. Defijng);c,, and (u;);c., as the
sequences of the heads and the tails; ¢that is, for each, n; is the head ot; and
u; is the tail oft;. By (4.3), there is a subsequen@e);-; such that < j implies
n; < nj, whenevetr, j € I. Now consider the corresponding subsequemngs
of u. We need the following result:

any subsequende;);c,, of tails oft contains a 2-chain (4.4)

By the same argument as before, we may assumevtbantains only more-item
lists. Letk be the natural number such thatis the tail oft;, and consider the
sequenceéy, t1, ..., tx 1, Vo, 1, - . .. Sincevyy is the tail oft, and hencesmaller
thanty, it follows by the minimality oft; that the mentioned sequence contains a
2-chain. But obviously this 2-chain can only occur in theart of the sequence.
This proves (4.4).

But if u contains a 2-chain, this means that there are two numbeansl j in
I with 7 < j andu; coversu;. Also, by definition of/, n; < n;. But then
ti = [my] * u; is covered byt; = [m;] * u;. This proves (4.2).

Finally, it remains to prove the lemma from (4.2). ltéde an arbitrary countably
infinite sequence of lists. By successive applications d)(4it follows thatt
contains infinitely many chains. We claim that one thesersha infinite. For if
we suppose that there are only finite chains, we may considesgiquence of last
items of right-maximal finite chains it (a chain is right-maximal if it can not be
extended to the right). There must be infinitely many suchtsigaximal chains,
soz is an infinite sequence. Hence, by yet another applicatiqd.gj, z contains
a chain of length 2. But then some chain was not right-maxaitel all.

We now extract the consequences for logics exten8ihg

Corollary 4.100 There is no infinite sequenck,, A4, ... of normal logics con-
taining S4.3 such that for alli, A; C A;y;.

Proof. Suppose otherwise. Then for some infinite sequence of lotjjcsty, ...
extendingS4.3 and for all natural numberis there is a formulap; such thatp; ¢
A;and¢; € A;pq. So, by Bull's Theorem, for all natural numberghere is a
finite S4.3frameg; that validatest; and does not satisfy;. Lett be the infinite
sequence of list; associated with the frame¥;,. By the Kruskal's Theorem,
there exist natural numbeksand(, such thatt > [ andt; coverst;. Hence by
Lemma 4.98 there is a bounded morphism figponto;. It follows thatF; I+ ¢,
and we have a contradiction.H

Theorem 4.101 Every normal modal logic extendirfg4.3 is finitely axiomatiz-
able.
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Proof. To arrive at a contradiction, we will assume that there doést an ex-
tensionA of S4.3that is not finitely axiomatizable. We will construct a infai
sequencely C A; C --- of extensions 084.3 thus contradicting Corollary 4.100.

As A is not finitely axiomatizable, it must be a proper extensi6rs4.3 Let
¢ be an arbitrary formula inl \ S4.3, and definel to be the logic generated by
S4.3 U {¢o}. ThenS4.3 C Ay C A. The latter inclusion is strict becauskis
not finitely axiomatizable. Hence, there exigts€ A\ A,. Let A; be the logic
generated byly U {¢;}. Continuing in this fashion we find the required infinite
sequencely C A; C --- of extensions 064.3 -

A negative characterization

We turn to the final task: showing that every normal logic egtag S4.3has a
negative characterization in terms of finite sets of finimnfes. Once again, the
proof makes use of the representatiorbdi3frames as lists of positive integers.

First some terminology. A set of lists isflat if for every two distinct lists inX,
neither covers the other. In view of Lemma 4.98, the moda&veeice of flatness
is this: if two frames are associated with distinct listsooegjing to a flat set, then
neither frame is a bounded morphic image of the other.

Lemma 4.102 All flat sets are finite. Furthermore, for any set of lidfghere is a
maximal setX such thatX C Y and X is flat.

Proof. Easy consequences of Kruskal’'s Theoremt

If X is aflat set of lists, thed'(X) is the set of lists covered by some list ;.
Note thatC'(X) is finite and thatX C C'(X). If X is a set of lists, the®(.X) is
the class of all finites4.3framesg such that there is a bounded morphism frgm
onto some frame whose list is iX.

Theorem 4.103 For every normal modal logid extendingS4.3there is a finite set
N of finite S4.3frames with the following property: for any finite frar§eg IF A
iff § is an S4.3frame and there does not exist a bounded morphism famto
any frame inN.

Proof. Let A D S4.3 and letL’ be the set of lists associated with fin8d.3frames
which do not validatel. Let L be a maximal flat set such thatC L’. Note that
C(L)C L.

We claim that for any finit&S4.3frameg, § IF A iff § ¢ B(C(L)). The left to
right implication is clear, for as no frame whose list beleigC'(L) validatesA,
there cannot be a bounded morphism fr@monto any such frame. For the other
direction, we show the contrapositive. Suppose gt A. LetF’s list bef. Then
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f e L. Now eitherf € C(L)orf € L'\ C(L). If f € C(L), then the identity
morphism or§ guarantees thg € B(C(L)) as required. So suppose instead that
fe L'\ C(L). This means that ¢ L (asL C C(L)), hence ad. is amaximal
flat subset ofZ’, f must cover some lisg in L. Thus by Lemma 4.98, an$4.3
frame® whose list isg is a bounded morphic image 8f henceg € B(C(L)) as
required. This completes the proof of the claim.

We can now define the desired finite 8ktfor eachg € C'(L), choose a frame
whose list isg, and letN be the set of all our choices.H

Exercises for Section 4.9

4.9.1 Show that thesubrelation is transitive and asymmetric. Furthermore, shioat if
« sub~y and nota subg, thens sub-.

4.9.2 Prove Lemma 4.98. That s, Igtand® be finiteS4.3frames, and let andg be their
associated lists. Then show tHatoversg iff there is a bounded morphism frofhonto
&. (First hint: look at how we defined the bounded morphism usede proof of Bull's
theorem. Second hint: look at the statement (but not thefrobLemma 6.39.)

4.9.3 Give a complete characterization of all the normal logideeaingS5. Your answer
should include axiomatizations for all such logics.

4.9.4 Let K,;4.3 be the smallest tense logic containifidl’, .3; and.3,.. Show that there
are tense logics extendil§;4.3 that do not have the finite frame property. (Hint: look
at the tense logic obtained by adding the Grzegorczyk axiotmé operatoi'. Is the
Grzegorczyk axiom irP satisfiable in a model for this logic? Is the Grzegorczyk axio

P satisfiable in dinite model for this logic?)

4.10 Summary of Chapter 4

» CompletenessA logic A is weaklycomplete with respect to a class of structures
S if every formula valid onS is a A-theorem. It isstrongly complete with
respect td5 if whenever a set of premises entails a conclusion &e¢hen the
conclusion isA-deducible from the premises.

» Canonical Models and Frame£ompleteness theorems are essentially model
existence theorems. The most important model buildingriecte is the canon-
ical model construction. The points of the underlying cacalframes are max-
imal consistent sets of formulas, and the relations ancatialu are defined in
terms of membership of formulas in such sets.

» CanonicityMany formulas are canonical for a prope; That is, they are
valid on any frame with property?, and moreover, when used as axioms, they
guarantee that the canonical frame has proprtyWhen working with such
formulas, it is possible to prove strong completeness teselatively straight-
forwardly.
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Sahlqvist's Completeness Theoreahlgvist formulas not only define first-
order properties of frames, each Sahlqgvist formula is eswuoical for the first-
order property it defines. As a consequence, strong conmglssels automatic
for any logic that is axiomatized by axioms in Sahlgvist form

Limitative Results The canonical model method is not universal: there are
weakly complete logics whose axioms are not valid on any mi@abframe. In-
deed, no method is universal, for there are logics that arsound and weakly
complete with respect to any class of frames at all.

Unraveling and BulldozingOften we need to build models with properties for
which no modal formula is canonical. Sometimes this can loe dby transform-
ing the logic’s canonical model so that it has the relevaaperties. Unraveling
and bulldozing are two useful transformation methods.

Step-by-steplnstead of modifying canonical models directly, the stgpstep
method builds models by selectingcss. Because it builds these selections
inductively, it offers a great deal of control over the prdjgs of the resulting
model.

Rules for the UndefinahleBy enriching our deductive machinery with special
proof rules, it is sometimes possible to construct candnicalels that have the
desired properties right from the start, thus avoiding teedhto massage the
(standard) canonical model into some desired shape.

Finitary Methods The canonical model method establisls®ng complete-
ness. Onlyweakcompleteness results are possible for for non-compaatdogi
such as propositional dynamic logic, and finite canonicatet® (essentially
filtrations of standard canonical models) are a natural fimoproving such re-
sults.

Logics extending4.3 Although the incompleteness results show that a frame
based analysis of all normal logics is impossible, manyemibns of the lattice
of normal modal logics are better behaved. For example,dbed extend-
ing S4.3all have the finite frame property, are finitely axiomatizgtdnd have
negative characterizations in terms of finite frames.

Notes
Modal completeness results can be proved using a varietyetfiods. Kripke’s

original modal proof systems (see [290, 291] were tableaistems, and com-
pleteness proofs for tableaux typically don’t make use of ddQFitting [145] is
a good introduction to modal tableaux methods). Complsten&a normal form
arguments have also proved useful. For example, Fine [1s34 normal forms to
prove the completeness of the normal logic generated by tti&émdey axiom; this

logic is not canonical (see Goldblatt [193]).
Nonetheless, most modal completeness theory revolvesstigiror indirectly,
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around canonical models; pioneering papers include Makii314] (who uses a
method tantalizingly close to the step-by-step constoacto pick out generated
subframes of canonical models) and Cresswell [97]. Butuligobwer of canoni-
cal models and completeness-via-canonicity argumentaatiémerge clearly till
the work of Lemon and Scott [303]. Their monograph statedmoded the Canon-
ical Model Theorem and used completeness-via-canonigjiynaents to establish
many important frame completeness results. One of thearémes was a general
canonicity result for axioms of the ford*07/p — O™, wherek, 7, m, n > 0.
Although not as general as Sahlqvist’s [388] later resutte@rem 4.42), this cov-
ered most of the better known modal systems, and was impegtesitimony to the
generality of the canonical model method.

ThatKL is weakly complete with respect to the class of finite trareitrees
is proved in Segerberg [396]. (Strictly speaking, Segerhmoved thakL4 is
complete with respect to the transitive trees, as it was@htknown that 4 was
derivable inKL ; derivations of 4 were independently found by De Jongh, k&jp
and Sambin: see Boolos [67, page 11] and Hughes and Cre$8dklpage 150].)
Segerberg first proves weak completeness with respect tadhle of finite strict
partial order (the result we asked the reader to prove indise#.8.7), however
he does so by filtrating the canonical model Kdr , whereas we asked the reader
to use a finite canonical model argument. Of course, the tgonaents are in-
timately related, but the finite canonical model argumerhi¢tv we have taken
from taken from Hughes and Cresswell [241, Theorem 8.4]tleeramore direct.
Segerberg then proves weak completeness with respectteotfiggs by unraveling
the resulting model (just as we asked the reader to do in E5ee4c8.8).

The incomplete tense logi€,; ThoM discussed in the text was the first known
frame incomplete logic, and it's still one of the most elegand natural exam-
ples. It can be found in Thomason [427], and the text follolwsmason’s original
incompleteness proof. Shortly afterward, both Fine [137d dhomason [427]
exhibited (rather complex) examples of incomplete logicshie the basic modal
language. The (much simpler) incomplete loKieB examined in Exercise 4.4.2
is due to van Benthem [38KvVB is further examined in Cresswell [96]. In Exer-
cise 4.4.3 we listed three formulas which jointly define afinsler class of frames,
but which when used as axioms give rise to an incomplete ridogia; this exam-
ple is due to van Benthem [36]. Both the original paper anditseussion in [42]
are worth looking at. The logic of the veiled recession framaes first axiomatized
by Blok [63]. It was also Blok [64, 65] who showed that incorigness is the rule
rather than the exception among modal logics.

Although filtration and unraveling had been used earlier riave@ complete-
ness results, the systematic use of transformation metsiedss from the work
of Segerberg [396]. Segerberg refined the filtration mettledeloped the bulldoz-
ing technique, and used them (together with other transftom) to prove many
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important completeness results, including characteozstof the tense logics of
(N, <), (Z,<),(Q <), (R, <) and their reflexive counterparts.

We do not know who first developed the modal step-by-step odetertainly
the idea of building models inductively is a natural one, bad long been used in
both algebraic logic (see [237]) and set-theory (see [410f)e influential source
for the method is the work of Burgess: for example, in [76] lseait to prove
completeness results in Since-Until logic (see also Xu [468some instructive
step-by-step proofs for this language). Moreover, in [T¥$, survey article on
tense logic, Burgess proves a number of completenesssdsuthe basic modal
language using the method. A set of lecture notes by De Jamjketman [255] is
the source of the popularity among Amsterdam logicians.eRework on Arrow
Logic uses the method (and the related mosaic method) keafién combined
with the use of rules for the undefinable (see, for exampl6])3 Step-by-step
arguments are now widely used in a variety of guises.

Gabbay [158] is one of the earliest papers on rules for thefimable, and one of
the most influential (an interesting precursor is Burge&$, [n which these rules
are used in the setting of branching time logic). Gabbay amdkithson [164] is an
important paper which shows that such rules can take a pkatig simple form in
the basic temporal language. For rules in modal languageippeed with the D-
operator, see de Rijke [104] and Venema [439]. For rules idahlanguages with
nominals, see Passy and Tinchev [362], Gargov and Goraridq,[Blackburn and
Tzakova [61], and Blackburn [55].

The axiomatization oPDL given in the text is from Segerberg’s 1977 abstract,
(see [400]). But there was a gap in Segerberg’s completgiresd, and by the
time he had published a full corrected version (see [402} déferent proofs by
Parikh [357] and Kozen and Parikh [279], had appeared. ihsdkat several other
unpublished completeness proofs were also in circulatidhi@time: see Harel's
survey of dynamic logic [215] for details. The proof in thettes based on lecture
notes by Van Benthem and Meyer Viol [48].

Bull's Theorem was the first general result about the finectire of the lattice
of normal modal logics. Bull’s original proof (in [72]) wadgebraic; the model-
theoretic proof given in the text is due to Fine [136]. A dission of the relation-
ship between the two proofs may be found in Bull and Segerfd@&jy Moreover,
Goldblatt [183] presents Fine’s proof from a rather diffarperspective, empha-
sizing a concept he calls ‘clusters within clusters’; theder will find it instructive
to compare Goldblatt’s presentation with the one in the, testich uses Fine’s
original argument. Fine’s paper also contains the finitemsatizability result for
logics extendings4.3(Theorem 4.101) and the (negative) characterization mgser
of finite sets of finite frames (Theorem 4.103), and the tetics Fine’s original
proofs here too.

The work of Bull and Fine initiated a (still flourishing) instgation into subre-
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gions of the lattice of normal modal logics. For example, gbsition of logics in
the lattice characterized by a single structure is invastig) in Maksimova [317],
Esakia and Meskhi [132] and (using algebraic methods) B&&K.[In [138] and
[141], Fine adapts his methods to analyze the logics extgri¢i.3 (the adapta-
tion is technically demanding as not all these logics haeefithite frame prop-
erty). Moreover, the Berlin school has a long tradition ifsthrea: see Rauten-
berg [374, 375, 376], Kracht [283, 285, 286], and Wolter [45Rlore recently,
the structure of the lattice of tense logics has receivezhaitin: see, for exam-
ple, Kracht [281] and Wolter [450]. And Wolter [451] invegdites the transfer of
properties when the converse operatdis added to a logic (in the basic modal
language) that extend&4, obtaining various axiomatizability and decidability re-
sults.

Work by Zakharyaschev has brought new ideas to bear. As wegqabbut in
the Notes to Chapter 3, in the 1960s (the early years follgwire introduction
of relational semantics for modal logic) it was hoped thag could describe and
understandany modal formula by imposing first-order conditions on its fesn
But the incompleteness results, and the discovery of mautaiulas that do not
correspond to any first-order conditions, destroyed thigeholn a series of pa-
pers Zakharyaschev [462, 463, 464, 465] has studied amatitex, purely frame-
theoretic approach to the classification of modal formusen a modal (or intu-
itionistic) formula¢, one can effectively construct finite rooted franggs...,§x
such that a general frangerefutese iff there is a (not necessarily generated) sub-
frameg’ of g which satisfies certain natural conditions and which can bppad
to one of theg; by a bounded morphism. Conversely, with every finite rooted
frame§ Zakharyaschev associatesanonicalformula which can be refuted on
a frame iff that frame contains a subframe (satisfying aentatural conditions)
that can be mapped © by a bounded morphism. Like the search for first-order
characterizations, the classification approach in terneaobnical formulas is not
universal either. But its limitations are of a different &init only characterizes
transitive general frames — but for every modal (and intuitionistic)nfiala. Za-
kharyaschev [459] is a very accessible survey of canonarahidlas, with plenty
of motivations, examples and definitions; technical detaild discussions of the
algebraic and logical background of canonical formulaspaorided by Chagrov
and Zakharyaschev [86, Chapter 9].



