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Extended Modal Logic

As promised in the preface, this chapter is the party at the end of the book. We’ve
chosen six of our favorite topics in extended modal logic, and we’re going to tell
you a little about them. There’s no point in offering detailed advice here: sim-
ply read these introductory remarks and the following Chapter Guide and turn to
whatever catches your fancy.

Roughly speaking, the chapter works it’s way from fairly concrete to more ab-
stract. A recurrent theme is the interplay between modal andfirst-order ideas. We
start by introducing a number of importantlogical modalities(and learn that we’ve
been actually been using logical modalities all through thebook). We then exam-
ine languages containing thesinceanduntil operators, and show that first-order
expressive completeness can be used to show modal deductivecompleteness. We
then explore two contrasting strategies, namely the strategy underlyinghybrid logic
(import first-order ideas into modal logic, notably the ability to refer to worlds) and
the strategy that leads to theguarded fragmentof first-order logic (export the modal
locality intuition to classical logic). Following this we discussmulti-dimensional
modal logic(in which evaluation is performed at a sequence of states), and see that
first-order logic itself can be viewed as modal logic. We conclude by proving a
Lindström Theoremfor modal logic.

Chapter guide

Section 7.1: Logical Modalities (Basic track).Logical modalities have a fixed in-
terpretation in every model. We introduce two of the most important (the
global modality, and thedifference operator) and briefly discussBoolean
Modal Logic(a system which contains an entirealgebra of diamonds).

Section 7.2: Since and Until (Basic track).We introduce the since and until op-
erators (and their stronger cousins, theStavi connectives), discuss the ex-
pressive completeness results they give rise to, and use expressive com-
pleteness to prove deductive completeness.
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416 7 Extended Modal Logic

Section 7.3: Hybrid Logic (Basic track).Hybrid languages are modal languages
which can refer to worlds. They do so using atomic formulas called nom-
inals which are true at exactly one world in any model. We introducethe
basic hybrid language and discuss its completeness theory.

Section 7.4: The Guarded Fragment (Advanced track).As is clear from the stan-
dard translation, modal operators perform a ‘guarded’ formof quantifica-
tion across states. What happens when this idea is exported to first-order
logic and generalized? This section provides some answers.

Section 7.5: Multi-Dimensional Modal Logic (Advanced track). By viewing as-
signments as possible worlds and quantifiers as diamonds, one can treat
first-order logic itself as a modal formalism. In fact, orthodox Tarskian
semantics for first-order logic provides a prime example of multi-dimen-
sional modal logic: formulas are evaluated at a sequence of points.

Section 7.6: A Lindstr̈om Theorem for Modal Logic (Advanced track).As a fa-
mous theorem due to Lindström tells us, any logic satisfying complete-
ness, compactness, and Löwenheim Skolem is essentially first-order logic.
Is there an analogous abstract characterization of modal logic?

7.1 Logical Modalities

Pure first-order logic has a significant expressive weakness: it’s not strong enough
to express the concept of equality in arbitrary structures.But because equality is
such an important relation, logicians introduce a special binary relation symbol
(namely =) andstipulatethat it denotes the equality relation. As the interpretation
of = is fixed, and as the relation it denotes is so fundamental,the equality symbol
is called alogical predicate.

Logical modalities trade on the same idea. Are there important relations which
ordinary modal languages cannot express? Very well then: let’s add new modal-
ities and stipulate that they be interpreted by the relationin question. In this
section we’ll discuss two of the most important logical modalities: the global
modality (which is interpreted by the relationW � W ) and thedifference oper-
ator (which is interpreted by6=, the inequality relation). We’ll also make a few
remarks aboutBoolean Modal Logic(BML ), a system containing an entire family
of logical modalities.

But before going any further, let’s get one thing absolutelyclear: we’ve been
using logical modalities all through the book. Here’s the simplest example. Sup-
pose we are working with the basic modal language. Now, for many purposes we
may be happy simply using3 to talk about the relationR — but sometimes we
may want to talk aboutR�, the converse ofR, as well. Now, we know (see Exer-
cise 2.1.2) that this can’t be done in the basic modal language, so we have to add
a new backward-looking modality as a primitive; doing so, ofcourse, gives us the
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basic temporal language. But note: wedon’t have to bring in the concept of time
to justify this extension. If a binary relationR is important, its converse is likely
to be too — so it’s simply common sense to consider adding a diamond forR�. In
short, the ‘temporal operator’P is really a logical modality.

The other important example isPDL. To motivatePDL we told a story about pro-
grams and transition systems — but a more abstract motivation is not only possible,
it’s more satisfying. The point is this. As soon as we fix a collection of relationsR�, regular algebra is staring us in the face: we can combine these relations using
union and composition, and form transitive closures. Any model containing the
initial R� relations implicitly contains many other interesting relations as well —
so it’s natural to add extra modalities to deal with them explicitly, and doing so
yields PDL. As this example shows, we can go way beyond the idea of addinga
single new logical modality: we can add an entirealgebra of diamonds. We’ll see
another example of this when we discussBML .

The global modality

Throughout the book we’ve emphasized the locality of modal logic, and for many
purposes local languages are ideal. For example, suppose we’re working with a
modal language for talking about computer networks, and in this language�means
Server 1 is active and meansServer 2 is active. Then we can
check whether the network makes it possible forServer 1 to be active by check-
ing whether� is satisfiable, and we can check whether it is possible forServer
2 to be inactive by testing for the satisfiability of: .

But suppose we want to know ifwheneverServer 1 is active, then so is
Server 2. There’s no obvious way to test this. Testing for the satisfiability
of � !  doesnot answer this question: if� !  is satisfiable, this only means
that there is a state where either� is false or is true. We want to know whether
everystate that makes� true is also a state that makes true. This is clearly a
global query. What are we to do?

Here’s an elegant answer: enrich the language language withtheglobal modal-
ity. To keeps things simple, suppose we’re working in the basic modal language
over some fixed choice of proposition letters; let’s call this languageML(3). We’ll
now add a second diamond, written E, and call the resulting languageML(3;E).
The interpretation of E isfixed: in any modelM = (W;R; V ), E must be inter-
preted using the relationW �W . That is:M; w 
 E� iff there is au 2W such thatM; u 
 �:
Thus E scans the entire model for a state that satisfies�. Its dual A� := :E:� has
the following interpretation:M; w 
 A� iff M; u 
 �; for all u 2W .
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That is, A� asserts that� holds atall points in the model. In effect, A brings the
metatheoretic notion of global truth in a model down into theobject language: for
any modelM, and any formula�, we have thatM 
 � iff A � is satisfiable inM. We’ll call E theglobal diamond, and A theglobal box. When it’s irrelevant
whether we mean E or its dual, we’ll simply sayglobal modality.

It should now be clear how to handle the computer network problem: to test
whetherServer 2 is active wheneverServer 1 is, we test the satisfiability
not of�!  , but of A(�!  ). This query has exactly the global force required.

Well — this looks appealing. But what are the properties of this (obviously
richer) new language? Maybe introducing the global modality destroys the prop-
erties that make model logic attractive in the first place! We’ve made an important
change, and we need to take a closer look at the consequences.

Now, we could begin by discussing the sublanguageML(E) — but this is not
very interesting (it’s easy to see that E is just anS5 modality). Anyway (as our
server example shows) the main reason for adding logical modalities is to have
them available asadditional tools. So the real question is: what doesML(3;E)
offer that ML(3) doesn’t? The most obvious answer isexpressivity. Let’s first
consider expressivity at the level of frames:

(R =W 2) Ep! 3p
(R 6= ?) E3>
(9x8y:Rxy) E2 ?
(8x9yRyx) p! E3p
(jW j = 1) Ep! p
(jW j � n)

Vn+1i=1 Epi ! Wi 6=j E(pi ^ pj)
(R is trichotomous) (p ^2q)! A(q _ p _3p)
(R� is well-founded) A(2p! p)! p
None of the frame classes listed is definable inML(3), but (as we ask the reader
to check in Exercise 7.1.1) theML(3;E) formulas to their right do define the cor-
responding property.

Where does this extra frame expressivity come from? From trivializing the no-
tion of generated submodel (generating onW �W always yieldsW �W ) and
rendering inapplicable the notion of disjoint union (for any disjoint frames(W;R)
and(W 0; R0), (W �W ) ℄ (W 0 �W 0) 6= (W ℄W 0)� (W ℄W 0)). By insisting
that E be interpreted usingW �W , we’ve trashed two of the classic modal preser-
vation results and thereby bought ourselves more expressivity. How much more?
For first-order definable frame classes, the answer is elegant:

Theorem 7.1 A first-order definable class of frames is definable in ML(3;E) iff it
is closed under taking bounded morphic images, and reflects ultrafilter extensions.
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This isexactlythe Goldblatt-Thomason Theorem — minus closure under disjoint
unions and generated subframes.

There is also a gain of expressivity at the level of models (the server example
makes this clear, and we already know from Section 2.1 that the global modality
is not definable in the basic modal language). Moreover, we can measure the gain
using our old friends: bisimulations. It’s an easy exerciseto adapt the definition
of bisimulation for the basic modal language toML(3;E), and a rather more de-
manding one to prove a van Benthem style characterization result for the language.
The reader is asked to attend to these matters in Exercises 7.1.3 and 7.1.4.

What about completeness? The set of validML(3;E) formulas can be axioma-
tized as follows. Take the minimal normal logic in3 and E (that is, apply Defini-
tion 4.13 to this two-diamond similarity type), and add the following axioms:

(reflexivity) p! Ep
(symmetry) p! AEp
(transitivity) EEp! Ep
(inclusion) 3p! Ep
Note that first three axioms are the familiar T, B, and 4 axioms(written in E and A
rather than3 and2). We discussedInclusion in Example 1.29(4). We’ll call this
logicKg.
Theorem 7.2 Kg is strongly complete with respect to the class of all frames.

This theorem says that to lift the minimal logicK (for the basic modal language)
to ML(3;E), we need merely treat the global modality as a normal operator that
satisfies four further axioms. In fact, we can liftany canonicalML(3) logic in
this way. IfK� is a normal modal logic inML(3), letKg� be the normal modal
logic in ML(3;E) obtained by treating E as a normal operator and adding the four
axioms listed above. Then:

Theorem 7.3 Let� be a set of ML(3) formulas, and letF be the class of frames
that� defines. IfK� is canonical, thenKg� is strongly complete with respect to
F.

Proof. LetM = (W;R3; RE; V ) be the canonical model forKg�. Note that asK� � Kg�, we have that(W;R3) belongs toF, forK� is canonical. Indeed,any
generated subframe of(W;R3) belongsF, for validity in the basic modal language
is closed under generated subframes.

Given aKg�-consistent set of sentences�, use Lindenbaum’s Lemma to ex-
pand it to anKg-MCS �+. By the Canonical Model Theorem,M; �+ 
 �.
Now, (reflexivity), (symmetry), and (transitivity) are canonical formulas, thusRE
is an equivalence relation. And although there is no guarantee thatRE isW �W ,
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this is easy to correct: letM0 = (W 0; R03; R0
E; V ) be the submodel ofM gener-

ated by�+ using theRE-relation. ThenR0
E = W 0 �W 0, so we have the global

relation we need. Furthermore, because ofInclusion, R3 � RE, thusM0 is also a
generated submodel ofM with respect toR3, henceM0; �+ 
 �. It only remains
to observe that (by our initial remarks)(W 0; R03) is in F, hence the result follows.
(Theorem 7.2 is the special case in which� = ?.) a
Example 7.4 Suppose we’re working withML(3) over transitive frames (so the
relevant logic isK4, which is canonical). Now, we may want to state global con-
straints on models, or insist that certain information holds somewhere or other, and
of course we can do this if we add the global modality. But how do we obtain a
complete logic for transitive frames in the enriched language?

Simply enrichK4 by treating the global modality as a normal operator and
adding the (reflexivity), (transitivity), (symmetry), and (inclusion) axioms. Doing
so yieldsK g4, and by the theorem just proved this logic is strongly complete with
respect to the class of transitive frames.a
What about decidability and complexity? We briefly met the global modality in
Section 6.5, and we saw that its global reach makes it possible to force the exis-
tence of gridlike models. This led to undecidability results for languages contain-
ing several diamonds, and it’s not difficult to adapt these arguments to find frame
classes with decidableML(3) logics and undecidableML(3;E) logics (we give
such an example in Exercise 7.1.5). Moreover, although undecidability does not
strike over the class of all frames,K g is probably more complex thanK , for K g has
an EXPTIME-complete satisfiability problem (the reader wasasked to prove this in
Exercises 6.8.1 and 6.8.2) whileK is PSPACE-complete (see Section 6.7). On the
other hand, there is a rather nice transfer result concerning the filtration method:
if we can prove the decidability of aML(3) logic by using filtrations to establish
establish the strong finite frame property, then we can also do so after adding the
global modality. For example, it follows that the logicK g4 (see Example 7.4) is
decidable. We’ll state and prove a stronger version of this result when we discuss
the difference operator.

All in all, the global modality is a strikingly natural extension of modal logic —
and at first glance this seems surprising. How can something so obviously global
blend so well with the locality of modal logic? Basically, because the enriched
language still takes aninternal perspective on relational structure. Although we
now have a global operator at our disposal, we still place formulasinsidemodels
and evaluate them at a particular state. To put it another way, the intuition that
a modal formula is an automaton scanning accessible states is remarkably robust:
even if we add a special automaton programmed to regardall states as accessible,
we retain much of the characteristic flavor of ordinary modallogic.



7.1 Logical Modalities 421

A lot more could be said about the global modality. For a start, it’s natural
when viewed from an algebraic perspective (it gives rise todiscriminator vari-
eties). Moreover, the global modality can be added to many richer modal systems,
includingPDL and the hybrid and multi-dimensional logics discussed later in the
chapter, often without raising the computational complexity (for examplePDL is
EXPTIME-complete, and adding E doesn’t change this). But for more information
the reader will have to consult the Notes and Exercises, for it’s time to discuss an
even more powerful logical modality.

The difference operator

At the bottom of every toolbox lies a heavy cast-iron hammer.It’s not the sort
of tool we use every day — for delicate jobs it’s inappropriate, and we may feel
slightly embarrassed about using it at all. Still, there’llalways come a time when
something simply won’t budge, and then we find ourselves reaching for it. Think
of the difference operator as that hammer.

Once again, we’ll start withML(3). We’ll add a second diamond D, thediffer-
ence operator, and call the resulting languageML(3;D). The interpretation of D
is fixed: in any modelM = (W;R; V ), D must be interpreted using the inequality
relation 6=. That is:M; w 
 D� iff there is au 6= w such thatM; u 
 �:
Thus the difference operator scans the entire model lookingfor adifferentstate that
satisfies�. Its dualD := :D:� has the following interpretationM; w 
 D� iff M; u 
 � for all u 6= w.

In what follows we discussML(3;D), but the sublanguageML(D) is quite inter-
esting in its own right, and we ask the reader is asked to explore it in Exercise 7.1.6.

Using the difference operator, we can define the global modality: E� := �_D�.
Thus all our earlier examples of frame classes definable inML(3;E) are definable
in ML(3;D) too. ButML(3;D) can define even more:

(irreflexivity) 3p! Dp
(antisymmetry) (p ^ :Dp)! 2(3p! p)
(9xy(x 6= y)) D>
(jW j > n) A(W1�i�n pi)! E

W1�i�n(pi ^ Dpi)
None of these frame classes is closed under bounded morphic images hence (by
Theorem 7.1) none of them is definable inML(3;E); but it is easy to see that the
listedML(3;D) formulas successfully capture them. Incidentally, we havealready
seen thatML(3;E) can definejW j � n, thus asML(3;D) can definejW j > n,
the difference operator can count states, at least as far asframesare concerned; in
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Exercise 7.1.7 we ask the reader to investigate whether it can count overmodelsas
well. Furthermore, note thep ^ :Dp antecedent in the definition of antisymmetry.
This is only true whenp is true at exactly one state in the model: in effect we are
using the power of D to forcep to act as ‘name’ for a state; we’ll put this power to
good use shortly.

What about completeness? The set of validML(3;D) formulas can be axioma-
tized as follows. Take the minimal normal logic in3 and D, and add the following
axioms:

(symmetry) p! DDp
(pseudo-transitivity) DDp! (p _ Dp)
(D-inclusion) 3p! p _ Dp
We’ll call this logicKd. Now, it’s not particularly difficult to prove the complete-
ness ofKd (we ask the reader to do so in Exercise 7.1.8) — but it’s harderthan
with Kg (we have to do more than simply take a generated submodel) andthe
result doesn’t extend to stronger logics so easily (there’sno obvious analog of The-
orem 7.3). Moreover, it’s easy to find frame incompleteness results, indeed we can
even find them in the sublanguageML(D)! Things aren’t looking too good . . .

Enter the hammer. When we discussed rules for the undefinable(Section 4.7) we
learned that proof rules which rely on ‘names’ can lead to general frame complete-
ness results. And as we noted above, the difference operatoris powerful enough
to simulate state names, thus we can formulate the followingrule of proof (the
D-rule): ` (p ^ :Dp)! �` �
(Herep is a proposition letter that doesn’t occur in�. The intuitions underlying
this rule are analogous to those underlying theIRR rule discussed in Section 4.7,
and we’ll leave it to the reader to verify that it preserves validity.) And now for a
remarkable result. TheD-rule neatly meshes with our earlier work on Sahlqvist
formulas to yield one of the most general completeness results known in modal
logic, the D-Sahlqvist theorem.

Here we only formulate a version in the basic temporal language. Consider the
language with operatorsF , P and D; let, for a set� of axioms in this logic,Ktd�
be the normal modal logic generated by the axioms of basic temporal logic, the
D-axioms and D-rule given above, and the formulas in�.

Theorem 7.5 Let � be a collection of Sahlqvist formulas in the basic temporal
language. ThenKtd� is strongly sound and complete with respect to the class of
bidirectional frames defined by (the first-order frame correspondents of) the axioms
in �.
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Proof. We will prove weak completeness only. The first step of the proof is to
prove the existence of a collectionW of maximal consistent sets such that

(i) each� in W contains a name, that is, a formula of the form� ^ :D�,
(ii) for each� in W and each formulaF 2 � , there is a� in W such that� and� are in the canonical accessibility relationR
F for F ; and likewise,

for the operatorsP and D.
(iii) for each pair of distinct points� and� in W we haveR
D��.

All of this can be proved in the style of Proposition 4.71.
It easily follows from (i) and (iii) above thatR
D is the inequality relation onW .

But then the model onW given byV (p) = f� 2 W j p 2 �g is named; that
is, for every point in the model there is a formula which is true only at this point,
see Definition 4.76. However, condition (ii) allows us to prove a Truth Lemma
which implies that all axioms of the logic are true throughout the model. But then
it follows from Theorem 4.77 that the Sahlqvist axioms are valid on the underlying
frame as well. a
The pinch of Theorem 7.5 lies in the fact that the first-order frame correspondents
it mentions useinequality for the ‘relation symbol’ referring to the accessibility
relation of D. This means that we can automatically axiomatize frame properties
like irreflexivity or antisymmetry. The reader doubt the usefulness of this: isn’t
the logic of the class of irreflexive frames is identical to the logic of the class of
all frames? True, but this may change when we consider irreflexivity in addition
with other properties. Conditions like irreflexivity, undefinable in themselves, may
nevertheless have ‘side effects’ so to speak. What we mean isthat there are frame
classesK such that the logic ofK differs from the logic of the irreflexive frames inK. In such cases the above theorem can be of tremendous help.

In a surprisingly large number of cases we find ourselves in the situation that
over a certain class of frames, the difference operator isdefinablein the underlying
modal language. For example, over the class of strict linearorders, the temporal
formulaFp _ Pp holds at a point if and only ifp holds at adifferent point. In
general, we say that a formulaÆ(p) acts asD on a frameF if F 
 Æ(p) $ Dp; ifÆ(p) acts as the difference operator on every frame in a classK then we say thatÆ
definesD overK.

Definability of the difference operator is of great use for axiomatizability, as the
following result shows. For a formulaÆ(p), letKtÆ� be the ‘Æ’-version ofKtd,
that is, the logic in the language without the D-operator obtained by replacing, in
all axioms and derivation rules ofKtd every formula D� with Æ(�).
Theorem 7.6 Let� be a collection of Sahlqvist formulas. ThenKtÆ� is strongly
sound and complete with respect to the class of those bidirectional frames on which� is valid and on whichÆ acts as the difference operator.
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In the section on multi-dimensional modal logic we will see an application of this
theorem; for a proof, we refer the reader to Exercise 7.1.9. We will examine another
name-driven proof rule (calledPASTE) in detail when we discuss hybrid logic. First
we turn to decidability issues concerning the difference operator.

ML(3;D) is a strong language. As it can define the global modality,Kd must
have an EXPTIME-hard satisfiability problem (in fact, the problem is EXPTIME-
complete; see Exercise 7.1.10) and it is even easier to find undecidable logics
than in ML(3;E). Nonetheless, decidability is often retained. In particular, if
theML(3) logic of a class of frames can be proved decidable by using a filtration
argument to establish the strong finite frame property, thentheML(3;D) logic of
that same frame class can be proved decidable in the same way.Let’s prove this.

Definition 7.7 Let � be a logic, and letF be a class of frames for�. We say that� admits filtrations onF if for any modelM which is based on a frame inF, and
for any finite subformula closed set� of ML(3) formulas, there is a filtrationMf
ofM through� which is based on a frame inF. a
Theorem 7.8 Suppose thatF is a class of frames, and that�F (the set of all
ML(3)-formulas valid onF) admits filtrations onF. Then the logic�dF (the set
of all ML(3;D)-formulas valid onF) has the strong finite frame property with
respect toF.

Proof. Let � be aML(3;D)-formula satisfiable in a modelM = (W;R; V ) of
which the underlying frame(W;R) is in F. We want to show that� is satisfiable in
anF-frame of bounded size.

Let� be the set of subformulas of�. First consider the relation�� which holds
between two points if they satisfy the same formulas in�. As the points of our
finite model we would like to take the equivalence classes of this relation but this
would not work out well (it is instructive to see how the proofof the filtration
lemma fails in the inductive step of the difference operator). The key idea of the
proof of the theorem is to solve this problem by splitting each equivalence class
in two parts — unless the original class is a singleton. To achieve this we add a
new proposition letterd to the language and we maked true at exactly one point of
each equivalence class. We would then like to filtrate the newmodel according the
equivalence relation��[fdg.

There is still a problem however: we can only guarantee that the underlying
frame of the filtrated model is inF if we filtrate through a set ofML(3) formulas.
But� may contain formulas with occurrences of D. In order to get rid of these, we
employ a little technical trick. For every formula of the form D in �, choose a
distinct propositional variableq that does not occur in any formula in�. LetV 0 be
the valuation that differs fromV , if at all, only in thatV 0(q ) = fw jM; w 
 D g
and thatV 0(d) is as indicated above. LetM0 be the model(W 0; R0; V 0).
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Now define the set�0 as follows. It is not difficult to see that for every� 2� there is aunique ML(3) formula �0 such that� can be obtained from�0 by
replacing in�0 every proposition letterq by D . Put�0 = f�0 j � 2 �g [ fd; q j D 2 �g:
Observe that the formulas in�0 are D-free and that�0 is subformula closed. The
modelM0 is (or can be seen as) anML(3)-model satisfyingM; s 
 � iff M0; s 
 �0 (7.1)

for all formulas� in �. Let��0 hold between two points iff they satisfy the same
formulas in�0; it is easy to see that every��-equivalence classjsj splits into
either one or two��0-equivalence classes, depending on whetherjsj has one or
more elements.

In any case, it follows from the assumption in the theorem that there is a filtrationMf through�0 which is based on a frame inF. Note that by definition, the points
ofMf are the��0-equivalence classes. We claim that this modelMf satisfies the
following property for allML(3;D)-formulas� in � and all statess inM:M; s 
 � iff Mf ; jsj 
 �: (7.2)

From this, the theorem is almost immediate.
The proof of (7.2) proceeds by a formula induction of which weomit the stan-

dard inductive steps concerning the boolean operators; theclauses for3 are fairly
easy as well — but note that for one direction, one needs (7.1). For the case that� is of the form D we also omit the easy right-to-left direction of (7.2). For the
other direction, suppose thatM; s 
 D . Then there is a points0 6= s such thatM; s0 
  . If jsj andjs0j are distinct then we are finished, so suppose otherwise.
But from s ��0 s0 it follows on the one hand thatM; s 
 d iff M; s0 
 d, and
on the other hand, thats ands0 belong to the same��-equivalence class. Since
we choseexactlyone point in each��-class to satisfyd, this means that neithers nor s0 can be this special point. Hence, there must beanotherpoint s00 in this��-equivalence class which does maked true. Froms0 �� s00 it follows thatM; s00 
  , so by the inductive hypothesis we have thatMf ; js00j 
  . But js00j is
distinct fromjsj sinced holds ats00 and not ats. This gives thatMf ; jsj 
 D , as
required. a
How does decidability follow? Any logic� that admits filtrations onF has the
strong finite frame property with respect toF — so if F is recursive we can apply
Theorem 6.7 and conclude that�F is decidable. But then by the result just proved,
we know that�dF also has the strong finite frame property with respect toF, so we
can apply the model enumeration idea underlying the proof ofTheorem 6.7 to for-
mulas of the richer languages. As D is always interpreted by the inequality relation,
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and as this relation is obviously computable on finite structures, the decidability of�dF follows.
A great deal more could be said about the difference operator(in particular,

bisimulations are easily adapted to cope with D, and a van Benthem style charac-
terization result is forthcoming; see Exercises 6.8.1 and 6.8.2) but it’s time to take
a brief look at a system containing a whole family of logical modalities.

Boolean modal logic

As we have remarked, as soon as we fix a collection of relationsR�, we can form
the regular algebra over this base; building an algebra of diamonds corresponding
to these leads toPDL. But an even more obvious algebra demands attention: we can
also form theboolean algebraover base relationsR�. Why not define an algebra
of diamond corresponding to1, �, \, and[? Doing so leads to Boolean Modal
Logic (BML ).

We define the language ofBML as follows. As withPDL, we fix a set of primitive
relation symbolsa, b, 
, . . . , and in addition a distinguished relation symbol1.
From these we build complex relations using the relation constructors�, \ and[:
that is, if� and� are relation symbols, then so are:�, � \ �, and� [ �. BML

is the modal language containing a diamondh�i for each relation symbol�. In
principle we can interpretBML on any model of appropriate similarity type — that
is triplesM = (W; fR� j � is a relation symbolg; V ) — but most such models
are inappropriate. We are only interested inboolean models, the models in whichR1 = W �W , and such that, for all relation symbols� and�, R�� = R� (that
is, (W �W ) nR�),R�\� = R� \R�, andR�[� = R� [R�.

BML is an expressive language — for a start, it contains the global modality
— and it may seem that we’ve bitten off more than we can chew. While the[
constructor is well behaved (in particularF 
 h�[�ip$ h�i�_h�ip iff R�[� =R� [ R�), the\ constructor is difficult to work with. However, as we will now
see, with the help of the� constructor we can get an exact grip on the relations of
interest.

First we define the following operator (often calledwindow): for any relation
symbol�: [j�j℄� := [��℄:�:
That is: M; w 
 [j�j℄� iff 8u(M; u 
 � ) R�wu):
Window is an extremely natural operator — once you’ve seen it, you wonder how
you ever managed without it. For example, if we read[�℄� as saying thatall
executions of program� lead to a� state, then[j�j℄� says thatonly executions of
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program� can lead to a� state, and it has other useful readings too (see the Notes)
But what concerns us here is the following result: window allows very smooth
definitions of the relations we are interested in.

Proposition 7.9 LetF be a frame(W; fR� j � is a relation symbolg). Then:

(i) F 
 [��℄p$ [j�j℄:p iff R� � R�
(ii) F 
 [�℄:p$ [j � �j℄p iff R� � R�

(iii) F 
 [j� \ �j℄p$ [j�j℄p ^ [j�j℄p iff R�\� = R� \R�.

Proof. We prove the third claim. The right to left direction is trivial. For the left
to right direction, assume thatF 
 [j� \ �j℄p $ [j�j℄p ^ [j�j℄p. We need to show
thatR�\� = R� \R�. To see thatR�\� � R� \R� , suppose thatR�\�wu, and
let V be any valuation onF such thatV (p) = fug. Then(F; V ); w 
 [j� \ �j℄p.
As F 
 [j� \ �j℄p $ [j�j℄p ^ [j�j℄p we have(F; V ); w 
 [j�j℄p ^ [j�j℄p. But u is the
only point satisfyingp, henceR�wu andR�wu. A similar argument shows thatR� \R� � R�\� . a
In a sense, the relations are divided into two kingdoms: the ordinary [�℄ modalities
govern relations built with[, the widow modalities[j�j℄ govern the relations built
with \, and the� constructor acts as a bridge between the two realms. Moreover
the bridging function of� also finds expression in a new rule of proof,BR. Unlike
the other additional rules discussed in this book,BR is not name-driven:` [�℄p! ([�℄p! [
℄p)` [�℄p! ([j
j℄:p! [j�j℄:p) (BR)
While it is possible to prove a completeness result forBML without usingBR, its
use leads to an elegant axiomatization, for it enables us to thread negations through
the structured modalities.

A final surprise is in store. In Theorem 6.31 we showed that thefragment con-
taining the\ constructor and the global modality was undecidable over determin-
istic frames. Nonetheless, the minimal logic inBML actually turns out to bede-
cidable. All in all, BML is a fascinating system. For more information, see the
Notes.

Exercises for Section 7.1
7.1.1 We listed numerous frame conditions definable inML(3;E) andML(3;D) which
were not definable inML(3). Show that these definability claims are correct.

7.1.2 Show thatML(3;E) validity is preserved under bounded morphisms and reflects
ultrafilter extensions. (That is, show the easy direction ofthe Goldblatt-Thomason style
result for ML(3;E) stated in Theorem 7.1.) Can you prove the (far more demanding)
converse?
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7.1.3 Extend the standard translation to the global modality and the difference opera-
tor. Extend the notion of bisimulation for the basic modal language toML(3;E) and
ML(3;D), and show prove that your definition leads to an invariance result.

7.1.4 Building on the previous exercise, characterize the expressivity of ML(3;E) and
ML(3;D) over models.

7.1.5 Let 2-3 be the class of frames(W;R) such that every state has 2R-successors, and
3R-successors ofR-successors. First show that the satisfiability problem inML(3) over
2-3 is decidable(note: thiscannotbe proved using a filtration argument). Then show that
the satisfiability problem inML(3;E) over2-3 is undecidable. (It may be helpful to note
that this exercise is related to Exercise 6.5.2.)

7.1.6 Show that a class of frames is definable inML(D) if and only if it is definable in
the first-order language over= (that is, the first-order language of equality). What is the
complexity of the satisfiability problem forML(D)?
7.1.7 Clearly we can define inML(3;D) an operatorQ with the following satisfaction
definition: for any modelM, any statew in M, and any formula�,M; w j= Q� iff there
is exactly one stateu in M such thatM; u j= Q�. But it is also possible in to define
modalitiesQ2�, Q3�, Q3�, and so on, that are satisfied when� holds at preciselyQn
states(n � 2) in the model?

7.1.8 Show thatKd is complete with respect to the class of all frames. (No need to try
anything fancy here — just fiddle with the canonical model.)

7.1.9 Prove Theorem 7.6. That is, let� be a collection of Sahlqvist formulas in the basic
modal language. Show thatKtÆ� is strongly sound and complete with respect to the class
of those frames on which� is valid and on whichÆ acts as the difference operator.
(Hint: use an auxiliary logicKtÆ�+ in the temporal language expanded with the difference
operator. Simply define this logic as havingboththe DandtheÆ versions of the D-axioms
and rules. Now first use Theorem 7.5 to prove that this logic issound and strongly complete
with respect to the class of�-frames on whichÆ acts as the difference operator. Then,
prove thatKtÆ�+ is conservative overKtÆ�; that is, show that for every purely temporal
formula�, we have that� belongs toKtÆ� iff it belongs toKtÆ�+.)

7.1.10 Use an elimination of Hintikka sets argument to show that theKd satisfiability
problem is solvable in EXPTIME.

7.2 Since and Until

The modal operators considered in previous chapters all have satisfaction defini-
tions involving only existential or only universal quantifiers. In this section we
look at a popular temporal logic whose operators are based onmodalities with
more complex satisfaction definitions:S (since) andU (until). The main rea-
son for considering these modalities is, again, to achieve an increase in expressive
power. We’ll first give some examples demonstrating why the increased expres-
sivity is useful. We’ll then learn that (over Dedekind complete frames) we have
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actually achieved expressivecompleteness: any expression in the first-order corre-
spondence language (in one free variable) has an equivalentin the modal language
in S andU . Finally, we’ll show that this (first-order)expressivecompleteness leads
to (modal)deductivecompleteness.

Basic definitions

The basic operators needed for temporal reasoning seem to beF andP . These
allow us to say things like ‘Something good will happen’ and ‘Something bad has
happened.’ q pPq, Fp -� � �?� �?
But in several application areas this is not enough. For example, in the semantics of
concurrent programs one often needs to be able to express properties of executions
of programs that have the general format ‘Something good is going to happen,and
until that time nothing bad will happen.’ Or, more concretely:p will be the case,
and until that timeq will hold:

. . . . . . . . . . . . . . . . . . .pq -� � �?U(p; q)
Such properties are sometimes calledguarantee propertiesin the computational
literature. To state them, the binaryuntil operatorU can be used; its satisfaction
definition reads:t 
 U(�;  ) iff

there is av > t such thatv 
 � and for alls with t < s < v: s 
  :
The mirror image ofU is thesinceoperatorS:t 
 S(�;  ) iff

there is av < t such thatv 
 � and for alls with v < s < t: s 
  .

That’s the basic idea — but before going further, let’s make our discussion a little
more precise. The set ofS, U -formulasis built up from a collection� of proposi-
tion letters, the usual boolean connectives, and thebinary operatorsS andU . The
mirror imageof a formula� is obtained by simultaneously substitutingS for U
andU for S in �.
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set of time points and< is a binary relation onT . U looks forward along<, andS looks backwards. We use the notation(T;<) for frames (rather than our usual(T;R)) because here we are primarily interested in the temporal interpretation ofS andU . In fact, will be working with frames(T;<) such that< is a Dedekind
complete order — more on this below. To emphasize our interest in the temporal
interpretation, we will often refer to frames asflows of time. As usual, a valuation
is a function assigning subsets ofT to the proposition letters in the language.

How does the language inS andU relate to the basic temporal language? First,
observe thatF andP are definable in the language withS andU : we can defineF� := U(�;>), P� := S(�;>), G� := :F:� andH� := :P:�. Thus the
language withS andU is at least as strong as the basic temporal language. In fact,
it is strictly stronger. For a start, we saw in Exercise 2.2.4that the basic temporal
language couldn’t defineU . Moreover, as the following proposition shows, even
if we restrict attention to models based on the real numbers,the basic temporal
language still isn’t strong enough to defineU .

Proposition 7.10 U is not definable over(R; <) usingF andP .

Proof. We will give two models that agree on all formulas in the language withF andP only, but that can be distinguished using the until operator. Consider the
following modelM1 based on the reals:

. . . . . . . . . . . . . . . .. . . . .. . . . . 0 
 U(p; q) 543210�1�2�3 pppppppp qqqq -�
So,V1(p) = fr j r 2 Zg, andV1(q) = f0g [ fr j 9n 2 N (�2n � 1 < r <�2n)g [ fr j 9n 2 N (2n < r < 2n+ 1)g.

Next, consider the modelM2 given by the following picture:

. . . . . . . . . . . . . . . .. . . . .. . . . . 0 6
 U(p; q) 543210�1�2�3 pppppp qqqq -�
We leave it to the reader to show that the modelsM1 andM2 agree on all for-
mulas inF andP , but thatM1; 0 
 U(p; q), whereasM2; 0 6
 U(p; q) (see
Exercise 7.2.1). a
So the temporal language inS andU is expressive — but just how expressive is
it? To answer such questions we need a correspondence language and a standard
translation ofS andU into the correspondence language. Let� be a collection of
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proposition letters, and letL1<(�), or simplyL1<, be the first-order language with
unary predicate symbols corresponding to the proposition letters in�, and with=
and< as binary relation symbols. We useL1<(x) to denote the set ofL1< formulas
having one free variablex. Note: this is the familiar correspondence language for
the basic temporal language, except that we are using< rather thanR as the binary
relation symbol.

Thestandard translationST x for the until operatorU isSTx(U(�;  )) = 9z (x < z ^ ST z(�) ^ 8y (x < y < z ! ST y( ))):
The standard translation ofS is the mirror image of that ofU . Observe that we need
3 variables to specify the translation of since and until! Weonly needed 2 variables
to specify the translation of the basic modal operators (seeProposition 2.49).

Let K be a class of models,ML a modal or temporal language, andL a classical
language. ThenML is expressively complete overK, if everyL1<(x)-formula has
an equivalent (overK) in the modal languageML. The study of expressive com-
pleteness is an important theme in temporal logics with since and until because of
the following remarkable result: the language withS andU is expressively com-
plete over the class of all Dedekind complete flows of time (wewill define this
class shortly). Moreover, below we will define an even richertemporal language
that is expressively complete for the class ofall linear flows of time. In the remain-
der of this section we will briefly explain these expressive completeness results,
and use them to obtain a deductive completeness result for since and until over
well-ordered flows of time.

Further preliminaries

A flow of time is calledDedekind completeif every subset with an upper bound has
a least upper bound. The standard examples are the reals(R; <) and the natural
numbers(N; <). A flow of time is well-orderedif every non-empty subset has a
smallest element; the canonical example here is(N; <).

To arrive at our goal of axiomatizing the well-ordered flows of time, we make a
detour through a still richer temporal language built usingtheStavi connectives.

Definition 7.11 (The Stavi Connectives)To introduce the Stavi connectives we
need the notion of a gap. Agapof a frameF = (T;<) is a proper subsetg � T
which is downward closed (that is,t 2 g ands < t implies s 2 g), and which
does not have a supremum. One can think of a gap as a hole in a Dedekind-
incomplete flow of time; see Figure 7.1 Now,U 0(�;  ) holds at a pointt if the
situation depicted in the above figure holds; that is, if

(i) there are a points and a gapg such thatt 2 g ands =2 g;
(ii)  holds betweent andg;
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Fig. 7.1. The Stavi connectives

(iii) � holds betweens andg; and
(iv) : is true arbitrarily soon afterg.S0(�;  ) is the mirror image ofU 0(�;  ).
The above informal second-order definition (we quantify over gaps, and hence

over sets) can be replaced by a first-order definition; see Exercise 7.2.2. a
Theorem 7.12 (Expressive Completeness)

(i) U , S is complete over Dedekind complete flows of time.
(ii) U , S, U 0, S0 are complete over all linear flows of time.

Next, we need an complete axiom system for the class of linearflows of time:

Definition 7.13 Consider the following collection of axioms:

(A1a) G(p! q)! (U(p; r)! U(q; r))
(A2a) G(p! q)! (U(r; p)! U(r; q))
(A3a) p ^ U(q; r)! U(q ^ S(p; r); r)
(A4a) U(p; q) ^ :U(p; r)! U(q ^ :r; q)
(A5a) U(p; q)! U(p; q ^ U(p; q))
(A6a) U(q ^ U(p; q); q)! U(p; q)
(A7a) U(p; q) ^ U(r; s)!U(p ^ r; q ^ s) _ U(p ^ s; q ^ s) _ U(q ^ r; q ^ s)
(Aib) the mirror images of (A1a)–(A7a)
(D) (F> ! U(>;?)) ^ (P> ! S(>;?))
(L) H? _ PH?
(W) Fp! U(p;:p)
(N) D ^ L ^ F> a
Axioms (D), (L), (W), and (N) are discussed in Lemma 7.14 and Exercise 7.2.3
below. As to the other axioms, (A1a) and (A2a) can be viewed ascounterparts of
the familiar distribution or K axiom2(p ! q) ! (2p ! 2q). (A3a) captures
the fact thatU andS explore relations that are each other’s converse. (A4a) and
(A5a) connect the current and the future point (at which something good is going
to happen) on the one hand with the points in between on the other hand. (A6a)
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expresses transitivity of the flow of time, and, finally, (A7a) forces the flow of time
to be linearly ordered.

Lemma 7.14 LetF be a linear flow of time. Then

(i) F j= D iff F is a discrete ordering.
(ii) F j= W ^ L iff F is a well-ordering.

(iii) F j= W ^N iff F �= (N; <).
The proof of Lemma 7.14 is left as Exercise 7.2.3.

Next, we define three axiom systems:B, BW, andBN. The set of axioms ofB
consists of all classical tautologies, (A1a)–(A7a), and (A1b)–(A7b). BW extends
B with W, andBN extendsBW with N. All three derivation systems have modus
ponens, temporal generalization, and uniform substitution as derivation rules:

(MP) If ` � and` �!  , then`  .
(TG) If ` �, then` G� and` H�.
(SUB) If ` �, then` [ =p℄�.

A modelM is called anX-modelif it hasM j= � for all X-theorems�, whereX 2 fB;BW;BNg.
For future use we state the following axiomatic completeness result:

Theorem 7.15 For all sets ofS,U -formulas� and formulas�: � `B � iff � j=B�.

We need one more preliminary result, on definable properties. By Exercise 7.2.4,
well-foundedness is a condition on linear frames which cannot be expressed in first-
order logic: it involves an essential second-order quantification over all subsets of
the universe. However, to arrive at our expressive completeness result we can get
by with less, namely the condition that everyfirst-order definablenon-empty subset
must have a smallest element; one can show that definably well-ordered models are
sufficiently similar to genuine well-ordered models.

The following definition and lemma capture what we need.

Definition 7.16 Let � be a first-order formula inL1<(x),M = (T;<; V ) a model
for L1<. DefineX� to be the set defined by�, that is,X� := ft 2 T jM j= �[t℄g.
Then,M is calleddefinably well-orderedif for all �(x) 2 L1<, the setX� has a
smallest element.

Two L1<-modelsM1 andM2 are calledn-equivalent, notationM1 �nFOL M2,
if for all first-order sentences� 2 L1< of quantifier depth at mostn, M1 j= � iffM2 j= �. a
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Proviso. For the remainder of this section we will assume that our collection of
proposition letters� is finite. This is not an essential restriction, but it simplifies
some of the arguments below (see Exercise 7.2.5 for a way of circumventing the
assumption).

Lemma 7.17 Let n 2 N. Them every definably well-ordered linear model isn-
equivalent to a fully well-ordered model.

Proof. LetM = (T;<; V ) be a definably well-ordered linear model. Fora, b 2 T
such thatb < a, define[b; a) = ft 2 T j b � t < ag, and(1; a) = ft 2 T j t <ag. Obviously, we can view such sets — with the ordering and valuation induced
byM— as linearL1<-models in their own right. DefineZ := fa 2 T j 8b < a ([b; a) has a well-orderedn-equivalent)g:
By Exercise 7.2.6 there are only finitely many first-order formulas�(x; y) of quan-
tifier depth at mostn, say�1(x; y), . . . ,�m(x; y). Let �1(x; y), . . . , �k(x; y) 2f�1(x; y), . . . ,�m(x; y)g be such that ifM j= �i(x; y)[ab℄ then[b; a) has a well-
orderedn-equivalent. ThenZ is defined by the formula�(x) := 8y 0�y � x! _i�k �(x; y)1A :
As a consequence,T n Z (the complement ofZ in M) is definable as well. We
will now show thatT n Z is empty. For, suppose otherwise. ThenZ must have
a smallest elementa (asM is definably well-ordered). Distinguish the following
cases:

(i) a is the first element ofT ,
(ii) a has an immediate successor, and

(iii) there exists an ascending sequence(b�)�<�, which is cofinal in[b; a) and
such thatb0 = b. (That is,b0 = b, bi < bj wheneveri < j, and for all
 2 [b; a) there exists abi > 
.)

It is easy to see that the first two cases lead to contradictions. As to the third
case, sincea is the minimal element ofT n Z, all b� are inZ. So, by definition,
every interval[b�; b�+1) has a well-orderedn-equivalentM�. By Exercise 7.2.7
the lexicographic sum

P�<�M� is well-ordered and ann-equivalent to[b; a). But
thena 2 Z — a contradiction.

ThereforeT n Z = ?, and henceZ = T , so every interval[b; a) of T has ann-equivalent well-ordered model. By using Exercise 7.2.7 again, we see thatM
must have a well-orderedn-equivalent, as required.a
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Completeness via completeness

With the above preliminaries out of the way, we are now in a position to use the
expressive completeness result recorded in Theorem 7.12 toarrive at an axiomatic
completeness result forBW over well-ordered flows of time.

We need the following lemma.

Lemma 7.18 Every linearBW-model is definably well-ordered.

Proof. LetM be a linear model satisfying all instances of theBW-theorems. We
will prove that every non-emptyL1<-definable subset ofT has a smallest element
via detour using the Stavi connectivesS0 andU 0.

LetX be a non-emptyL1<-definable subset ofT . By Theorem 7.12.2 it follows
thatX has a defining formula� in the language withS, U , S0, U 0. If we can show
that � does in fact belong to the sublanguage withS andU , then we are done,
because then we can use the validity of the axioms W and L to show that there
must be aminimalelement inX.

It suffices to show thateveryformula in the language withS, U , S0, U 0 is equiv-
alent to anS, U -formula overM. To this end we argue by induction of formulas in
the richer language. The only non-trivial case is for formulas of the formU 0(�;  )
(and their mirror images), where� and are already assumed to equivalent toS,U formulas by the induction hypothesis. So assumeM; t 
 U 0(�;  ). Then there
is a gapg after t such that (i) holds everywhere betweent andg, and (ii) is
false arbitrarily soon afterg. Now (i) implies thatM; t 
 F , so by the validity of
the W axiom inM it follows thatM; t 
 U(: ; ). But this contradicts (ii). a
Theorem 7.19 BWis (weakly) complete for the class of all well-ordered flows of
time.

Proof. Let� be aBW-consistent formula. Construct a maximalBW-consistent set� with � 2 �. As BW extendsB,� must also beB-consistent. By Theorem 7.15
there exists a linear modelM = (T;<; V ) in which� is satisfiable. Clearly, for
everyS, U -formula , the formulaHW( ) ^W( ) ^ GW( ) is in �, whereW( ) is the W axiom instantiated for . ThusM is aBW-model, and hence, by
Lemma 7.18 it is definably well-ordered.

Now, for the final step, letn be the quantifier rank ofST (�). By Lemma 7.17
there is well-ordered modelM0 that isn + 1-equivalent toM. Therefore,M0 j=9xST (�)(x), and we are done.a
Using Theorem 7.19 it is easy to obtain a further completeness result, for the tem-
poral logic of the natural numbers.

Theorem 7.20 BNis weakly complete for(!;<), the natural numbers with their
standard ordering.
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The proof of Theorem 7.20 is left as Exercise 7.2.8.

Exercises for Section 7.2
7.2.1 Supply the missing details for the proof of Proposition 7.10.

7.2.2 Give a first-order definition for the Stavi connectives introduced in Definition 7.11
— you may assume that we are working on linear flows of time.

7.2.3 Prove Lemma 7.14. That is, show that D defines discrete orderings, that W^ L,
defines well-orderings, and that ŴN picks out the natural numbers in their usual ordering
up to isomorphism.

7.2.4 Show that well-foundedness is a condition on linear frames which cannot be ex-
pressed in first-order logic.

7.2.5 Throughout this section we assumed that the collection of proposition symbols that
we are working with is finite. Show that this assumption can belifted.

7.2.6 Show that, over a finite vocabulary, there are at only finitelymany non-equivalent
first-order formulas�(x; y) of quantifier depth at mostn
7.2.7 Show that the lexicographic sum of a collection of structures that are well-ordered
andn-equivalent to a given structureM, is again well-ordered andn-equivalent toM.

7.2.8 Prove Theorem 7.20: show thatBN is weakly complete for(!;<), the natural num-
bers with their standard ordering.

7.3 Hybrid Logic

An oddity lurks at the heart of modal logic: although states are the cornerstone
of modal semantics, they are not directly reflected in modal syntax. We evaluate
formulas inside models, at some state, and use the modalities to scan accessible
states. But modal syntax offers no grip on the states themselves: it does not let us
name them, and it does not let us reason about state equality.Modal syntax and
semantics dance to different tunes.

For many applications, this is a drawback. As we mentioned inExample 1.17,
both feature and description logics can be viewed as modal logics — or at least,
they can up to a point. Real feature logics contain mechanisms for asserting that
two sequences of transitions lead to the same state, and description logics allow
us to name and reason about individuals. Such capabilities (which are crucial)
take us beyond the kinds of modal language we have consideredso far. Similarly,
it is often important to reason about what is going on at particular times, and the
temporal formalisms used in artificial intelligence usually provide expressions such
asHolds(i; �), asserting that the information� holds at the time named byi, to
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make this possible. The modal logics considered so far contain no analogs of these
important tools.

In their simplest form,hybrid languagesare modal languages which put this
right. Hybrid languages treat states as first class citizens, and they do so in a par-
ticularly simple way. The key idea is simply tosort the atomic formulas, and to
use one sort of atom — thenominals— to refer to states. Because this mecha-
nism is so simple, may of the attractive properties of modal logic (such as robust
decidability) are unaffected. Indeed, in certain respectshybrid logics are arguably
better behaved than their ordinary modal counterparts: their completeness theory
is particularly straightforward, and they are proof theoretically natural.

In this section we examine one of the simplest hybrid languages: a two-sorted
system with names for states. To build such a language, take abasic modal lan-
guage (built over propositional variablesp, q, r, and so on) and add a second sort
of atomic formula. These new atoms are callednominals, and are typically writ-
ten i, j andk. Both types of atom can be freely combined to form more complex
formulas in the usual way. For example,3(i ^ p) ^3(i ^ q)! 3(p ^ q)
is a well formed formula. And now for the key idea: insist thateach nominal be
true at exactly one state in any model. Thus a nominal names a state by being
true there and nowhere else. This simple idea gives rise to richer logics. Note,
for example, that the previous formula is valid: if the antecedent is satisfied at a
statew, then the unique state named byi must be accessible fromw, and bothp
andq must be true there. And note that the use of the nominali is crucial: if we
substituted the ordinary propositional variabler for i, the resulting formula could
be falsified.

Actually, what we call thebasic hybrid languageoffers more than this: it also
enables us to build formulas of the form�i�, wherei is a nominal. The composite
symbol�i is called asatisfaction operator, and it has the following interpretation:�i� is true at any state in a model if and only if� is satisfied at the (unique) state
named byi (so�i� is analogous toHolds(i; �)). Satisfaction operators play an
important role in hybrid proof theory.

Our discussion of basic hybrid logic is largely confined to a single topic: the
link between frame definability and completeness. We will show that whenpure
formulas are used as axioms they always yield systems which are complete with
respect to the class of frames they define. Now, a pure formulais simply a formula
whose only atoms are nominals, so in effect this result tellsus that frame complete-
ness is automatic for axioms constructed solely out of names. Our discussion will
center on a proof rule calledPASTE which is related to theIRR rule discussed in
Section 4.7 and the D-rule of Section 7.1.
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The basic hybrid language

Given a basic modal language built over propositional variables� = fp; q; r; : : :g,
let 
 = fi; j; k; : : :g be a nonempty set disjoint from�. The elements of
 are
callednominals; they are a second sort of atomic formula which will be used to
name states. We call�[
 the set ofatomsand definebasic hybrid language(over� [
) as follows: � ::= i j p j ? j :� j � ^  j 3� j �i�:
For any nominali, the symbol�i is called a satisfaction operator. Note that, syn-
tactically speaking, the basic hybrid language is simply a multimodal language (the
modalities being3 and all the�i), whose atomic symbols are subdivided into two
sorts. If a formula contains no propositional variables (that is, if its only atoms
are nominals) we call it apure formula. In what follows we assume that we are
working with a fixed basic hybrid languageL in which both� and
 are countably
infinite.

The basic hybrid language is interpreted on models. As usual, a modelM is
a triple (W;R; V ), where(W;R) is a frame, andV is a valuation. But although
the definition of a frame is unchanged, we want nominals to actas names, so we
will insist that a valuationV on a frame(W;R) is a function with domain� [ 

and rangeP(W ) such that for alli 2 
, V (i) is a singletonsubset ofW . That
is, as usual we place no restrictions on the interpretation of ordinary propositional
variables, but we insist that a valuation makes each nominaltrue at auniquestate.
We call the unique statew that belongs toV (i) thedenotationof i underV . We
interpret the basic hybrid language by adding the followingtwo clauses to the sat-
isfaction definition for the basic modal language:M; w 
 i iff w 2 V (i)M; w 
 �i� iff M; d 
 � whered is the denotation ofi underV :
As usual,M 
 � means that� is true at all states inM, F 
 � means that� is
valid on the frameF, and
 � means that� is valid on all frames.

Note that a formula of the form�ij expresses theidentity of the states named
by i andj. Further, note that a formula of the form�i3j says that the state named
by i has as anR-successor the state named byj.

Although it allows us to refer to states, and talk about stateequality, the basic
hybrid language is very much a modal language. Nominals name, but they are sim-
ply a second sort of atomic formula. Moreover, satisfactionoperators arenormal
modal operators: note that for every nominali, 
 �i(�!  ) ! (�i� ! �i );
is valid; and if
 �, then
 �i�.

Moreover, the basic hybrid language is quite a simple modal language. For
example, its satisfiability problem is known to be no more complex than the satis-
fiability problem for the basic modal language:
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Theorem 7.21 The satisfiability problem for the basic hybrid logic is PSPACE-
complete.

But in spite of its simplicity the basic hybrid language is surprisingly strong when
it comes to frame definability. For a start, many properties definable in the basic
modal language can be defined using pure formulas:

(reflexivity) i! 3i
(symmetry) i! 23i
(transitivity) 33i! 3i
(density) 3i! 33i
(determinism) 3i! 2i
Moreover, pure formulas also enable us to define many propertiesnot definable in
the basic modal language, as the reader can easily verify:

(irreflexivity) i! :3i
(asymmetry) i! :33i
(antisymmetry) i! 2(3i! i)
(intransitivity) 33i! :3i
(universality) 3i
(trichotomy) �j3i _�ji _�i3j
(at most 2 states) �i(:j ^ :k)! �jk
All the frame properties defined above are first-order. This is no coincidence: all
pure formulas define first-order frame conditions. This is easy to prove: there is a
natural way of extending the Standard Translation to cover nominals and satisfac-
tion operators which explains why (see Exercise 7.3.1).

But not only do pure formulas define first-order properties, when used as axioms
they are automaticallycompletewith respect to the class of frames they define.
More precisely, there is a proof system calledKh+ RULES such that for any set of
pure formulas�:

If P is the normal hybrid logic (which we will shortly define) obtained by
adding the formulas in� as axioms toKh + RULES, thenP is complete with
respect to the class of frames defined byP.

The rest of the section is devoted to proving this, but beforediving into the tech-
nicalities it is worth noting that the result hinges on a rather simple observation.
Let us say that a model(W;R; V ) is namedif every state in the model is the de-
notation of some nominal (that is, for allw 2W there is some nominali such thatV (i) = fwg). Furthermore, if� is a pure formula, we say that is apure instance
of � if  is obtained from� by uniformly substituting nominals for nominals. Then
we have:
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Lemma 7.22 LetM = (F; V ) be a named model and� a pure formula. Suppose
that for all pure instances of �,M 
  . ThenF 
 �.

Proof. Exercise 7.3.3. a
That is, for named models and pure formulas the gap between truth in a model and
validity in a frame is non-existent. So if we had a way of building named models,
we wouldn’t need to appeal to relatively complex syntactic criteria (such as being a
Sahlqvist formula) to obtain general completeness results: anypure formula would
give rise to strongly complete logic for the class of frames it defined. In essence,
the work that follows can be summed as follows: we are going toisolate the logicKh+RULESand show that we can build named models from itsMCSs and prove an
Existence Lemma. Once this is done, a wide range of frame completeness results
will be immediate by appeal to Lemma 7.22.

Pure extensions ofKh + RULES

Let’s first say what a normal hybrid logic is:

Definition 7.23 A set of formulas� in the basic hybrid language is anormal hy-
brid logic if it contains all tautologies,2(p ! q) ! (2p ! 2q), 3p $ :2:p,
the axioms listed below, and it is closed under the followingrules of proof: modus
ponens, generalization,�i-generalization(if � is provable then so is�i�, for any
nominal i) andsorted substitution(if � 2 �, and� results from� by uniformly
replacingpropositional letters by arbitrary formulas, andnominals by nominals,
then� 2 �). We call the smallest normal hybrid logicKh. a
The motivation for the sorted substitution rule should be clear: while propositional
variables are placeholder for arbitrary information, nominals are names, and sub-
stitution must respect the distinction.

The axioms needed to complete our definition ofKh fall into three groups. The
first identifies the basic logic of satisfaction operators:

(K�) �i(p! q)! (�ip! �iq)
(self-dual) �ip$ :�i:p
(introduction) i ^ p! �ip
As satisfaction operators are normal modal operators, the inclusion ofK� should
come as no surprise. As forself-dual, note that self-dual modalities are those whose
transition relation is afunction: given the jump-to-the-named-state interpretation of
satisfaction operators, this is exactly the axiom we would expect.Introductiontells
us how to place information under the scope of satisfaction operators. Actually,
it also tells us how to get hold of such information, for if we replacep by :p,
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contrapose, and make use ofself-dual, we obtain(i ^ �ip) ! p; we call this the
eliminationformula.

The second group is a modal theory of naming (or to put it another way, a modal
theory of state equality):

(ref) �ii
(sym) �ij $ �ji
(nom) �ij ^�jp! �ip
(agree) �j�ip$ �ip
Note that the transitivity of naming follows from thenom axiom; for example,
substituting the nominalk for the propositional variablep yields�ij^�jk ! �ik.

The final axiom pins down the interaction between @ and3:

(back) 3�ip! �ip
Note that3i ^ �ip ! 3p is another valid @-3 interaction principle; it is called
bridgeand we will use it when we prove the Existence Lemma. Howeverbridge is
provable inKh as the reader is asked to show in Exercise 7.3.4.

The soundness of these axioms is clear — but what about completeness? Let
us say that aKh-MCS is namedif and only if it contains a nominal, and call any
nominal belonging to aKh-MCS anamefor thatMCS. Now,Kh is strong enough to
prove a lemma which is fundamental to our later work: hidden inside anyKh-MCS

are a collection of namedMCSs with a number of desirable properties:

Lemma 7.24 Let� be aKh-MCS. For every nominali, let�i bef� j �i� 2 �g.
Then:

(i) For every nominali,�i is aKh-MCS that containsi.
(ii) For all nominalsi andj, if i 2 �j then�j = �i.

(iii) For all nominalsi andj, �i� 2 �j iff �i� 2 � .
(iv) If k is a name for� , then� = �k.

Proof. (i) First, for every nominali we have theref axiom �ii, hencei 2 �i.
Next,�i is consistent. For assume for the sake of a contradiction that it is not.
Then there areÆ1; :::; Æn 2 �i such that̀ :(Æ1 ^ � � � ^ Æn). By �i-necessitation,` �i:(Æ1 ^ � � � ^ Æn), hence�i:(Æ1 ^ � � � ^ Æn) is in � , and thus byself-dual:�i(Æ1 ^ � � � ^ Æn) is in � too. On the other hand, asÆ1; :::; Æn 2 �i, we have�iÆ1; :::;�iÆn 2 � . As�i is a normal modality,�i(Æ1 ^ � � � ^ Æn) 2 � as well,
contradicting the consistency of� . So�i is consistent.

Is �i maximal? Assume it is not. Then there is a formula� such that neither� nor :� is in �i. But then both:�i� and:�i:� belong to� , and this is
impossible: if:�i� 2 � , then by self-duality�i:� 2 � as well. We conclude
that�i is aKh-MCS named byi.
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(ii) Supposei 2 �j ; we will show that�j = �i. As i 2 �j , �ji 2 � .
Hence, bysym, �ij 2 � too. But now the result is more-or-less immediate. First,�j � �i. For if � 2 �j, then�j� 2 � . Hence, as�ij 2 � , it follows by nom
that�i� 2 � , and hence that� 2 �i as required. A similarnom-based argument
shows that�i � �j .

(iii) By definition �i� 2 �j iff �j�i� 2 � . By agree, �j�i� 2 � iff�i� 2 � . (We call this the@-agreement property; it plays an important role
in the completeness proof.)

(iv) Suppose� is named byk. Let � 2 � . Then ask 2 � , by Introduction�k� 2 � , and hence� 2 �k. Conversely, if� 2 �k, then�k� 2 � . Hence, ask 2 � , by eliminationwe have� 2 � . a
In what follows, if� is aKh-MCS andi is a nominal, then we will callf� j �i� 2�g anamed set yielded by� .

We have reached an important crossroad. It is now reasonablystraightforward to
prove thatKh is the minimal hybrid logic. We would do so as follows. Given aKh-
consistent set of sentences�, use the ordinary Lindenbaum’s Lemma to expand
it to aKh-MCS �+, and build a model by taking the submodel of the ordinary
canonical model generated by�+ [ f�i j �i is a named set yielded by�+g:
The reader is asked to do this in Exercise 7.3.5.

But we have a more ambitious goal in mind: we don’t want to build just any
model, we want a named model. This will enable us to apply Lemma 7.22 and
prove the completeness of pure axiomatic extensions. However we face two prob-
lems. The first is this. Given aKh-consistent set of formula, we can certainly
expand it to anMCS using Lindenbaum’s Lemma — but nothing guarantees that
this MCS will be named. The second problem is much deeper. Suppose we over-
came the first problem and learned how to expand any consistent set of sentences� to a namedMCS�+. Now, as we want to build a named model, this pretty much
dictates that only the namedMCSs yielded by�+ should be used in the model con-
struction. And now for the tough part: nothing we have seen sofar guarantees that
there are enoughMCSs here to support an Existence Lemma. Incidentally, note
that the completeness-via-generation method sketched in the previous paragraph
doesn’t face this problem: generation automatically givesus all successorMCSs,
so we can make use of the ordinary modal Existence Lemma. Unfortunately, not
all these successorMCSs need be named, so the generation method won’t help with
the stronger result we have in mind.

But these difficulties are similar to those we faced when discussing rules for the
undefinable, and this suggests a solution. In Section 7.22 wesimulated names us-
ing tense operators, and used the forward-and-backwards interplay ofF andP to
create a coherent network of namedMCSs which supported a suitable Existence
Lemma. Moreover, simulated names were used to define the D-rule mentioned in
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Section 7. But nominals are genuine names, and satisfactionoperators are an excel-
lent way of enforcing coherence — surely it must be possible to define analogous
proof rules for the basic hybrid language? Indeed it is:(NAME) ` j ! �` � (PASTE) ` �i3j ^�j�! �` �i3�! �
In both rules,j is a nominal distinct fromi that does not occur in� or �. The
NAME rule is going to solve our first problem, thePASTE rule our second. These
rules are clearly close cousins of theIRR rule and the D-rule, but let’s defer further
discussion till the end of the section, and put them to work right away.

LetKh + RULES be the logic obtained by adding theNAME andPASTE rules toKh. We say that anKh + RULES-MCS � is pastediff �i3� 2 � implies that for
some nominalj, �i3j ^ �j� 2 � . And now for the key observation: our new
rules guarantee we can extend anyKh + RULES-consistent set of sentences to a
named and pastedKh + RULES-MCS, provided we enrich the language with new
nominals:

Lemma 7.25 (Extended Lindenbaum Lemma) Let
0 be a (countably) infinite
collection of nominals disjoint from
, and letL0 be the language obtained by
adding these new nominals toL. Then everyKh+ RULES-consistent set of formu-
las in languageL can be extended to a named and pastedKh + RULES-MCS in
languageL0.
Proof. Enumerate
0. Given a consistent set ofL-formulas�, define�k to be� [ fkg, wherek is the first new nominal in our enumeration.�k is consistent.
For suppose not. Then for some conjunction of formulas� from �, ` k ! :�.
But ask is a new nominal, it does not occur in�; hence, by theNAME rule,` :�.
But this contradicts the consistency of�, so�k must be consistent after all.

We now paste. Enumerate all the formulas ofL0, define�0 to be�k, and sup-
pose we have defined�m, wherem � 0. Let�m+1 be them+1-th formula in our
enumeration ofL0. We define�m+1 as follows. If�m+1[f�m+1g is inconsistent,
then�m+1 = �m. Otherwise:

(i) �m+1 = �m [ f�m+1g if �m+1 is not of the form�i3�. (Herei can be
any nominal.)

(ii) �m+1 = �m [ f�m+1g [ f�i3j ^�j�g, if �m+1 is of the form�i3�.
(Herej is the first nominal in the new nominal enumeration that does not
occur in�m or�i3�.)

Let �+ = Sn�0�n. Clearly this set is named (byk), maximal, and pasted.
Furthermore, it is consistent, for the only non-trivial aspects of the expansion is
that defined by the second item, and the consistency of this step is precisely what
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the PASTE rule guarantees. Note the similarity of this argument to thestandard
completeness proof for first-order logic: in essence,PASTE gives us the deductive
power required to use nominals as Henkin constants.a
And now we can define the models we need. In fact, we’re basically going to use
the named sets examined in Lemma 7.24, but with one small but crucial change:
instead of starting with an arbitraryKh-MCS, we’ll insist on using the named sets
yielded by anamed and pastedKh + RULES-MCS.

Definition 7.26 Let � be a named and pastedKh + RULES-MCS. The named
model yielded by� , isM� = (W � ; R� ; V � ). HereW � is the set of all named sets
yielded by� , R is the restriction toW � of the usual canonical relation between
MCSs (soR�uv iff for all formulas�, � 2 v implies3� 2 u) andV � is the usual
canonical valuation (so for any atoma, V � (a) = fw 2W � j a 2 wg). a
Note thatM� really is amodel: by items (i) and (ii) of Lemma 7.24,V � assigns
every nominal asingletonsubset ofW � . And, because we insisted that� be
named and pasted, we can prove the Existence Lemma we require:

Lemma 7.27 (Existence Lemma)Let � be a named and pastedKh + RULES-
MCS, and letM = (W;R; V ) be the named model yielded by� . Supposeu 2 W
and3� 2 u. Then there is av 2W such thatRuv and� 2 v.

Proof. As u 2 W , for some nominali we have thatu = �i. Hence as3� 2 u,�i3� 2 � . But � is pasted so for some nominalj, �i3j ^ �j� 2 � , and so3j 2 �i and� 2 �j. If we could show thatR�i�j , then�j would be a suitable
choice ofv. So suppose 2 �j. This means that�j 2 � . By @-agreement
(item (iii) of Lemma 7.24)�j 2 �i. But3j 2 �i. Hence, byBridge,3 2 �i
as required. a
In short, we have successfully blended the first-order idea of Henkin constants with
the modal idea of canonical models, and it’s plain sailing all the way to the desired
completeness result.

Lemma 7.28 (Truth Lemma) LetM = (W;R; V ) be the named model yielded
by a named and pastedKh+RULES-MCS� , and letu 2W . Then, for all formulas�, � 2 u iff M; u 
 �.

Proof. Induction on the structure of�. The atomic, boolean, and modal cases are
obvious (we use the Existence Lemma just proved for the modalities). What about
the satisfaction operators? SupposeM; u 
 �i . This happens iffM;�i 
  (for
by items (i) and (ii) of Lemma 7.24,�i is the onlyMCS containingi, and hence,
by the the atomic case of the present lemma, the only state inM wherei is true) iff 2 �i (inductive hypothesis) iff�i 2 �i (using the fact thati 2 �i together
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with Introductionfor the left-to-right direction andeliminationfor the right-to-left
direction) iff�i 2 u (@-agreement). a
Theorem 7.29 (Completeness)EveryKh + RULES-consistent set of formulas in
languageL is satisfiable in a countable named model. Moreover, if� is a set
of pure formulas (inL), andP is the normal hybrid logic obtained by adding all
the formulas in� as extra axioms toKh + RULES, then everyP-consistent set
of sentences is satisfiable in a countable named model based on a frame which
validates every formula in�.

Proof. For the first claim, given aKh + RULES-consistent set of formulas�, use
the Extended Lindenbaum Lemma to expand it to a named and pasted set�+ in
a countable languageL0. Let M = (W;R; V ) be the named model yielded by�+. By item (iv) of Lemma 7.24, because�+ is named,�+ 2 W . By the Truth
Lemma,M; �+ 
 �. The model is countable because each state is named by
someL0 nominal, and there are only countably many of these.

For the ‘moreover’ claim, given aP-consistent set of formulas�, use the Ex-
tended Lindenbaum Lemma to expand it to a named pastedP-MCS�+. The named
modelM� that �+ gives rise to will satisfy� at �+; but in addition, as ev-
ery formula in� belongs to everyP-MCS, we have thatM� 
 �. Hence, by
Lemma 7.22, the frame underlyingM� validates�. a
Example 7.30 We know thati ! :3i defines irreflexivity and33i ! 3i de-
fines transitivity, hence adding these formulas as axioms toKh + RULES yields a
logic (let’s call it I4) which is complete with respect to the class of strict preorders.
Hence33p ! 3p, the ordinary modal transitivity axiom, must beI4-provable.
Furthermore, asi! :33i is valid on any asymmetric frame, andi! 2(3i! i)
is valid on any antisymmetric frame, these must beI4-provable too. The reader is
asked to supplyI4-proofs in Exercise 7.3.6. a
The PASTE rule has played an pivotal role in our work; is there anythingwe can
say about it apart from ‘Hey, it works!’? There is. As we will now see,PASTE is
actually a lightly-disguised sequent rule.

A sequentis an expression of the form� �! �, where� and� are multisets of
formulas (that is,� and� may contain multiple occurrences of the same formula).
Note that the sequent arrow�! is longer than the material implication arrow!.
Sequents can be read as follows: whenever all the formulas in� are true at some
state in a model, at least one formula in� is true at that state too. Asequent rule
takes a sequent as input, and returns another sequent as output.

Now, here’sPASTE as we stated it above:` �i3j ^�j�! �` �i3�! �



446 7 Extended Modal Logic

Let’s get rid of thè symbols and replace the implications by sequent arrows:�i3j ^�j� �! ��i3� �! �
Splitting the formula in the top line into two simpler formulas yields:�i3j;�j� �! ��i3� �! �
This rule works in arbitrary deductive contexts, so let’s add a left-hand multiset� ,
and turn� into a right-hand multiset�, thus obtaining:�i3j;�j�; � �! ��i3�; � �! �
But this is just a sequent rule, and a useful one at that. Let’sread it from bottom
to top: to prove� given the information�i3� and� (that’s the bottom line) in-
troduce a brand new nominalj and try to prove� from �i3j, �j� and� (that’s
the top line). That is, we should search for a proof by decomposing the formula�i3� into a near-atomic formula�i3j and simpler formula�j�. In fact, this
decomposition is the key idea needed to define sequent calculi, tableaux, and natu-
ral deduction systems for hybrid logics, and several systems which work this way
have been developed (see the Notes for details). In effect, such systems discardKh
fromKh + RULES (after all, why bother keeping the clumsy Hilbert-style part?)
and strengthen theRULEScomponent so it can assume full deductive responsibility.

To conclude, a general remark. As should now be clear (especially if you have
already done Exercises 7.3.1, 7.3.2, and 7.3.3), the basic hybrid language is a gen-
uine hybrid between first-order and modal logic: it makes available a number of
key first-order capabilities (such as names for states and state-equality assertions)
in a decidable (indeed, PSPACE-complete) propositional modal logic. But now
that we are used to viewing names as formulas, it is easy to go even further. For
example, instead of thinking of nominals as names, we could think of them as
variables over states and bind them with quantifiers. For example, we could allow
ourselves to form expressions such as9x (x ^39y(y ^ � ^�x2(3y!  ))):
This expression captures the effect of the until operator: it saysU(�;  ). Note that
in this example the9 quantifier is only used to bind nominals to thecurrent state.
This is such an important operation that a special notation,#, has been introduced
for it. Using this notation the definition ofU(�;  ) can be written as#x(x ^3#y(y ^ � ^�x2(3y !  ))):
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It turns out that when the basic hybrid language is enriched only with # (that is,
not with the full power of9) then the resulting language picks outexactlythe frag-
ment of the first-order correspondence language that is invariant under generated
submodels. See the Notes for more details.

Exercises for Section 7.3
7.3.1 Extend the standard translation to the basic hybrid language by adding clauses for
nominals and satisfaction operators. Use your translationto show that all classes of frames
defined by pure formulas are first-order definable. (Hint: translate nominals to free first-
order variables.)

7.3.2 For anyn � 1, let Rnxy be the first-order formula9z1 � � � 9zn(Rxz1 ^ Rz1z2 ^� � � ^ Rzny). Let  be a first-order formula that is a boolean combination of formulas of
the formRnxy, Rxy, andx = y. Show that the class of frames defined by the universal
closure of is definable in the basic hybrid language. (Hint: look at the way we defined
trichotomy.)

7.3.3 Prove Lemma 7.22. That is, ifM = (F; V ) is a named model and� is a pure formula
and for all pure instances of � we have thatM 
  , thenF 
 �.

7.3.4 Show that3i^�ip! 3p, theBridgeformula, is provable inKh. (Hint: prove the
contraposed form3i ^ 2p ! �ip with the help of3q ^ 2p ! 3(q ^ p), Introduction,
andBack.)

7.3.5 Prove thatKh is the minimal hybrid logic by fleshing out the completeness-via-
generation argument sketched in the text.

7.3.6 Find I4-proofs of33p! 3p, i! :33i, andi! 2(3i! i). (The logicI4 was
introduced in Example 7.30.)

7.3.7 ThePASTErule makes crucial use of @-operators. Prove an analog of Theorem 7.29
for the @-free sublanguage of the basic hybrid language. (Hint: you need to simulate the
satisfaction operators using the modalities. So for alln;m � 0, add the axiom3n(i^p)!2m(i! p). Furthermore, let3i� be shorthand for3(i^ �), and add all rules of the form` 3k � � �3i3j�! �` 3k � � �3i3�! �
Herej is a nominal distinct fromk; � � � ; i that does not occur in� or �.)
7.3.8 Let I4D be the normal hybrid logic obtained by adding the axiom3(i _ :i) to
I4. Clearly I4D lacks the finite frame property. Show that it possesses the finite model
property (and hence that Theorem 3.28 fails for hybrid languages). Exploit this by proving
the decidability ofI4D using a filtration argument.

7.3.9 Add the global diamond E to the basic hybrid language. Use a filtration argument to
show that the satisfiability problem the resulting languageis decidable. What is its com-
plexity? (Note that�i� can be defined to be E(i ^ �), so you don’t have to deal explicitly
with the satisfaction operators.) Show that a class of frames is definable in this language if
and only if it is definable in the basic modal language enriched with the D-operator. (Here
‘definable’ means definable by an arbitrary formula, not justa pure formula.)



448 7 Extended Modal Logic

7.4 The Guarded Fragment

In Chapter 2 we saw that modal languages can be viewed as fragments of first-
order logic, and in Chapter 6 we discovered that these fragments have some nice
computational properties. It thus seems natural to try and see how far we can
generalize these properties to larger fragments of first-order logic. This will be the
main aim of this section: we will define and discuss two extensions of the modal
fragment with reasonably nice computational behavior.

In order to isolate such fragments, what properties of the modal fragment of
first-order logic should we concentrate on? In particular, what makes modal logic
decidable? If we confine ourselves to the basic modal language, is it perhaps the
fact that the standard translation can be carried out entirely within the two variable
fragment of first-order logic (which has a decidable satisfiability problem)? This
argument immediately breaks down if we consider languages with modal operators
of higher arity: while giving rise to decidable logics as well, these languages have
standard translations that really needmorethan two variables. But as soon as we
are consideringn-variable fragments of first-order logic withn > 2, we face an
undecidablesatisfiability problem.

Rather, it seems to be the fact that the modal fragment of first-order logic allows
quantification only in a very restricted form, as is obvious from the modal clause
in the definition of the standard translation function:ST x(3�) = 9y (Rxy ^ ST y(�)): (7.3)

It is this restricted form of quantification which ensures that modal logic is the
bisimulation invariant fragment of first-order logic, and bisimulation invariance of
modal truth was critical in the first method of proving the finite model property for
the basic modal language (see Section 2.3). Recall that the starting point of this
method was the observation that modal logic has thetree model property(meaning
that every satisfiable modal formula is satisfiable on a tree model), and that bisimu-
lation invariance is pivotal in proving this result. In short, there seems to be a direct
line from the restricted quantifier pattern in (7.3), via bisimulation invariance and
the tree model property, to the finite model property and decidability.

This provides our first search direction: look for first-order fragments charac-
terized by restricted quantification. It turns out that one can easily relax many
constraints applying to the (basic) modal fragment. For example, we do not have
to confine ourselves to formulas using two variables only, toformulas having pre-
cisely one free variable, or to formulas with predicates of arity at most two. Relax-
ing these constraints naturally leads to the so-calledguarded fragmentof first-order
logic; the idea here is that quantifiers may appear only in thefollowing form:9y (G(x; y) ^  (x; y)) (7.4)

in whichG(x; y) is an atomic formula that we will call theguardof the quantifi-
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cation (or, of the formula). The crucial ingredient that wekeepfrom (7.3) is that
all free variables of are also free in the guardG(x; y). And indeed, it can be
shown that the guarded fragment has various nice properties, such as a decidable
satisfiability problem and the finite model property.

However, there are some very natural modal-like languages,or alternative but
intuitive interpretations for standard modal languages, that correspond to a decid-
able fragment of first-order logic as well, but are not covered by this definition. For
example, consider the language with the since and until operators: it is straightfor-
ward to turn the truth definitions for these operators into a standard translation to
first-order logic. The interesting clauses areST x(U(�;  )) = 9y (Rxy ^ ST y(�) ^ 8z ((Rxz ^Rzy)! ST z( ))); (�)
and a similar one for the since operator. We can prove that this kind of clause
takes us outside the guarded fragment of first-order logic: the problem concerns
the ‘betweenness conjunct’8z ((Rxz ^ Rzy) ! ST z( )) which has a ‘compos-
ite’ guard, (Rxz ^ Rzy). Nevertheless, the language with since and until has a
decidable satisfiability problem; apparently,somecomposite guards are admissible
as well.

Examples such as(�) lead to extensions of the guarded fragment to fragments
in which one is more liberal in the precise conditions imposed on the guard. One
can be a bit more liberal here because in the ‘direct line’ mentioned earlier there
are some steps that could be skipped on the way. In particular, if we are interested
in decidability rather than the finite model property, we could just as well settle
for fragments of first-order logic to which we may apply themosaic methodof
Section 6.4. Recall that the mosaic method is a way of provingdecidability by
‘deconstructing’ a model into a finite number of finite pieces, and then using such
finite toolboxes for constructing models again, models thatusually hang together
quite loosely (in a sense to be made precise later). This provides the second di-
rection in our quest: try to find fragments of first-order logic to which the mosaic
method applies, leading to aloose model property. Implementing this idea one
naturally finds quantifier restrictions of the form9y (�(x; y) ^  (x; y)) (7.5)

in which there are constraints on the presence of variables in certain subformulas
of the guard�. For such fragments one may find a direct line from the restricted
quantifier pattern in (7.5), via an appropriate notion of bisimulation invariance and
the loosemodel property, to some finitemosaicproperty and decidability.

The particular extension that we discuss in this section is that of thepacked
fragment; it fits very nicely in the mosaic approach. On a first reading of the
section the reader may choose to skip the parts referring to this packed fragment,
and concentrate on the guarded fragment.
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The guarded and the packed fragment

We need some preliminaries. The first-order language that wewill be working
in is purely relational, with equality; the language contains neither constants nor
function symbols. For a sequence of variablesx = x1; : : : ; xn, we frequently
write 9x�, which, as usual, has the same meaning as9x1 : : : 9xn �. However,
in this section we view9x not as an abbreviation, but as a primitive operator. In
particular this means that the subformulas of9x� are just9x� itself, together with
the subformulas of�. As usual, by writing�(x) we indicate that the free variables
of � are amongx1; : : : ; xn.

Definition 7.31 We say that a formula� packsa set of variablesfx1; : : : ; xkg if
(i) Free(�) = fx1; : : : ; xkg and (ii) � is a conjunction of formulas of the formxi = xj orR(xi1 ; : : : ; xin) or 9yR(xi1 ; : : : ; xin) such that (iii) for everyxi 6= xj ,
there is a conjunct in� in whichxi andxj both occur free.

The packed fragmentPF is defined as the smallest set of first order formulas
which contains all atomic formulas and is closed under the boolean connectives
and underpacked quantification. That is, whenever is a packed formula,� packsFree(�), andFree( ) � Free(�), then9x (� ^  ) is packed as well;� is called
theguardof this formula. Theguarded fragmentGF is the subfragment ofPF in
which we only allowguarded quantificationas displayed in (7.4); that is, packed
quantification in which the guard� is anatomicformula.PF n andGF n denote the restrictions ton variables and at mostn-ary predicate
symbols ofPF andGF , respectively. a
Examples of guarded formulas are

(i) the standard translation of any modal formula (in any language),
(ii) the standard translation of any formula in the basic temporal language,
(iii) formulas like8xy (Rxy ! Ryx), 9xy (Rxy ^Ryx ^ (Rxx _Ryy)), . . .

For an example of a packed formula which is not guarded, consider9xyz ((Rxy ^Rxz^Ryz)^:Cxyz). For another example, first consider the standard translation9y (Rxy^Py^8z ((Rxz^Rzy)! Qz)) of the formulaU(p; q). This formula is
not packeditself, because the guard of the subformula8z ((Rxz ^ Rzy) ! Qz))
has no conjunct in which the variablesx andy occur together. But of course, the
formula isequivalentto9x (Rxy ^ Py ^ 8z ((Rxz ^Rzy ^Rxy)! Qz))
which is packed. It is not hard to convert this example into a proof showing that
everyformula in the since and until language is equivalent to a packed formula.

Second, note that the notion of packedness only places meaningful restrictions
on pairs ofdistinct variables: since the formulax = x packs the set of variables
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variablex) is a packed formula, at least, provided that (x) is packed. Since the
given formula is equivalent to9x (x) this shows that packedness allows a fairly
mild form of ordinary quantification, namely over formulas with one free variable
only. A nice corollary of this is that we may perform the standard translation of the
global diamondE within the two variable guarded fragment:ST x(E�) = ST y(E�) = 9x (ST x(�)) � 9x (x = x ^ ST x(�)):
Finally, notall formulas are packed, or equivalent to a packed formula. For exam-
ple, thetransitivity formula8yz ((Rxy^Ryz)! Rxz) is not packed, and neither
is the standard translation of the difference operator:9y (x 6= y ^ Py).
Nice properties

Having defined the packed and the guarded fragment of first-order logic, let us
see now what we canproveabout these fragments. To start with, for each of the
two fragments we can find a suitable notion of bisimulation which characterizes
the fragment in the same way as the ordinary bisimulation characterizes the modal
fragment of first-order logic. Unfortunately we do not have the space to go into
detail here. Nevertheless, we will show that both fragmentshave what we call the
loose model property: in Theorem 7.33 we will show that every satisfiable packed
formula can be satisfied on a loose model. What, then, is a loose model?

Definition 7.32 LetA = (A; I) be a first-order structure. A tuple(a1; : : : ; an) of
objects inA is calledlive in A if either a1 = � � � = an or (a1; : : : ; an) 2 I(P )
for some predicate symbolP . A subsetX of A is calledguardedif there is some
live tuple (a1; : : : ; an) such thatX � fa1; : : : ; ang. In particular, singleton sets
are always guarded; note also that guarded sets are always finite. X is packedor
pairwise guardedif it is finite and each of its two-element subsets is guarded.

We say thatA is aloose model of degreek 2 N if there is some acyclic connected
graphG = (G;E) and a functionf mapping nodes ofG to subsets ofA of size
not exceedingk such that for every live tuple�s from A, the setL(s) = fg 2 G jsi 2 f(g) for all sig, is a non-empty and connected subset ofG. a
In words, we call a modelA = (A; I) loose if we can associate a connected graphG = (G;E) with it in the following way. Each nodet of the graph corresponds
to a small subsetf(t) of the model; a good way of thinking about this is thatt
‘describes’f(t). One then requires that the graph ‘covers’ the entire model in the
sense that anya 2 A belongs to one of these sets (this follows from the fact that
for anya 2 A, the ‘tuple’a is live). The fact that each setL(a) is connected when-
evera is live, implies that various nodes of the graph will not givecontradictory
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descriptions of the model. Finally, theloosenessof the model intuitively stems
from the acyclicity ofG and the connectedness of the setsL(a); for, this ensures
that in walking through the graph we may describe different parts of the model,
but we never have to worry about returning to the same part once we have left it.
Summarizing, we may see the graph as a loose, coherent collection of descriptions
of local submodels of the model. Loose models are the ones forwhich we can find
such a graph.

The following result states that the packed fragment of first-order logic has the
loose model property.

Theorem 7.33 Every satisfiable packed formula can be satisfied on a loose model
(of degree at most the number of9x subformulas of�).
But the big question is of course whether following this looseness principle we
have indeed arrived at a decidable fragment of first-order logic. The next theorem
states that we have.

Theorem 7.34 The satisfiability problems for the guarded and the packed frag-
ment are decidable; both problems are DEXPTIME-complete (complete for doubly
exponential time). However, for a fixed natural numbern, the satisfiability problem
for formulas in the packed fragmentPFn is decidable in EXPTIME.

And finally, what about the finite model property? Will every satisfiable packed
formula have a finite model? Here as well, the packed fragmentdisplays very nice
behavior. Unfortunately, we do not have the space for a proofof the finite model
property for the packed fragment — suffice it to say that it involves some quite
advanced techniques from finite model theory. For some further information the
reader is referred to the Notes at the end of the section.

Mosaics

The remainder of the section is devoted to proving the Theorems 7.34 and 7.33.
The main idea behind the proof is to use themosaic methodthat we met in Chap-
ter 6. Roughly speaking, this method is based on the idea of deconstructing mod-
els into a finite collection of finite submodels, and conversely, of building up new,
‘loose’, models from such parts. We will see that the packed fragment is in a sense
tailored towards making this idea work.

The proof is structured as follows. We start by formally defining mosaics and
some related concepts. After that we state the main result concerning the mosaic
method, namely theMosaic Theoremstating that a packed formula is satisfiable if
and only if there is a so-calledlinked set of mosaics for it, of bounded size. This
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equivalence enables us to define our decision algorithm and establish the com-
plexity upper bounds mentioned in Theorem 7.34. We then continue to prove the
Mosaic Theorem. In doing so we obtain the loose model property for the packed
fragment as a spin-off.

For a formal definition of the concept of a mosaic we first need some syntactic
preliminaries. Given a first-order formula�, we letVar(�) andFree(�) denote
the sets of variables and free variables occurring in�, respectively. LetV be a
set of variables. AV -substitutionis any partial map� : V ! V . The result of
performing the substitution� on the formula is denoted by �. (We can and
may assume that such substitutions can be carried out without increasing the total
number of variables involved; more precisely, we assume that if Var( ) � V thenVar( �) � V .)

As usual, we will employ a notion of closure to delineate a finite set ofrelevant
formulas, that is formulas that for some reason critically influence the truth of a
given formula�. Let thesingle negation�� of a formula� denote the formula 
if � is of the form: ; otherwise,�� is the formula:�; we say that a set� of
formulas is closed under single negations if�� 2 � whenever� 2 �.

Definition 7.35 Let � be a set of packed formulas in the setV of variables.
We call� V -closedif it is closed under subformulas, single negations andV -
substitutions (that is, if belongs to�, then so does � for everyV -substitution�). With Cl g(�) we denote the smallestVar(�)-closed set of formulas containing�. a
For the remainder of this section, we fix a packed formula� — all definitions to
come should be understood as being relativized to�. The number of variables oc-
curring in � (free or bound) is denoted byk; that is,k is the size ofVar(�). It
can easily be verified that the sets of guarded and packed formulas are both closed
under taking subformulas; hence, the setCl g(�) consists of guarded (packed, re-
spectively) formulas. An easy calculation shows that the cardinality of Clg(�) is
bounded bykk � (2j�j).

The following notion is the counterpart of the atoms that we have met in earlier
decidability proofs (see Lemma 6.29, for instance). All three defining conditions
are fairly obvious.

Definition 7.36 Let X � Var(�) be a set of variables. AnX-type is a set� �Clg(�) with free variables inX satisfying, for all formulas�^ ,��, � in Cl g(�)
with free variables inX, the conditions (i)� ^  2 � iff � 2 � and 2 � ,
(ii) � 62 � iff �� 2 � and (iii) if �; xi = xj 2 � then�� 2 � for any substitution� mappingxi to xj and/orxj to xi, while leaving all other variables fixed.a
The next definition introduces our key tool in proving the decidability of the packed
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fragment: mosaics and linked sets of them. Basically, a mosaic consists of a subsetX of Var(�) together with a set� encoding the relevant information on some
small part of a model. Here ‘small’ means that its size is bounded by the number of
objects that can be named using variables inX, and ‘relevant’ refers to all formulas
inClg(�) whose free variables are inX. It turns out that a finite set of such mosaics
contains sufficient information to construct a model for� provided that the set links
the mosaics together in a nice way. Here is a more formal definition.

Definition 7.37 A mosaicis a pair(X;� ) such thatX � Var(�) and� � Cl g(�).
A mosaic iscoherentif it satisfies the following conditions:

(C1) � is anX-type,
(C2) if  (x; z) and�(x; z) are in� , then so is9y (�(x; y) ^  (x; y)),

(provided that the latter formula belongs toClg(�)).
A link between two mosaics(X;� ) and(X 0; � 0) is a renaming (that is, an injec-
tive substitution)� with dom� � X and range� � X 0 which satisfies, for all
formulas� 2 Clg(�): � 2 � iff �� 2 � 0.

A requirementof a mosaic is a formula of the form9y (�(x; y) ^  (x; y)) be-
longing to� . A mosaic(X 0; � 0) fulfills the requirement9y (�(x; y) ^  (x; y))
of a mosaic(X;� ) via the link � if for some variablesu, v in X 0 we have that�(x) = u and�(u; v) and (u; v) belong to� 0. A setS of mosaics islinked if
every requirement of a mosaic ins is fulfilled via a link to some mosaic inS. S is
a linked set of mosaics for� if it is linked and� 2 � for some(X;� ) in S. a
Note that a mosaic(X;� ) may fulfill its own requirements, either via the identity
map or via some other map fromX toX.

The key result concerning mosaics is the following Mosaic Theorem.

Theorem 7.38 (Mosaic Theorem)Let � be a packed formula. Then� is satisfi-
able if and only if there is a linked set of mosaics for�.
Proof. The hard, right to left, direction of the theorem is treated in Lemma 7.39
below; here we only prove the other direction.

Suppose that� is satisfied in the modelA = (A; I). In a straightforward way
we can ‘cut out’ fromA a linked set of mosaics for�. Consider the set of partial
assignments of elements inA to variables inVar(�). For each such�, let (X�; ��)
be the mosaic given byX� = dom� and�� = f� 2 Cl g(�) j A j= �[�℄g:
We leave it to the reader to verify that this collection formsa linked set of mosaics
for �. a
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When establishing the hard direction of this proposition wewill in fact prove some-
thing stronger: starting from a linked set of mosaics for a formula� we will show,
via a step by step argument, that there is alooseor tree-like model for �. First
however, we want to show that the Mosaic Theorem is the key towards proving
the decidability of the packed fragment, and also for findingan upper bound for its
complexity.

The decision algorithm and its complexity

The mosaic theorem tells us that any packed formula� is satisfiable if and only if
there is a linked set of mosaics for�. Thus an algorithm answering the question
whether a linked set of mosaics exists for�, also decides whether� is satisfiable.
By providing such an algorithm we establish the upper complexity bound for the
satisfiability problem of the packed fragment.

Recall thatk denotes the number of variables occurring in�. The following
observations are fairly straightforward consequences of our definitions:

(i) up to isomorphism there are at most2k � 22j�j�kk mosaics. Using the bigO
notation, this is at most2O(j�j)�2k log k

.
(ii) given setsX;� with jXj � k and� � Cl g(�) it is decidable in time

polynomial inkk andj�j whether(X;� ) is a coherent mosaic.
(iii) given a setX of coherent mosaics and a requirement�(x) it is decidable in

time polynomial injXj andj�(x)j whetherX fulfills the requirement�(x).
Using methods similar to the elimination of Hintikka sets that we saw in the de-
cidability proof for propositional dynamic logic (see Section 6.8), we now give an
algorithm which decides the existence of a linked set of mosaics for �. Let S0 be
the set ofall coherent mosaics. By the observations above,S0 contains at most2O(j�j)�2k log k

elements and can be constructed in time polynomial injS0j. We now
inductively construct a sequence of sets of mosaicsS0 � S1 � S2 � S3 � � �. If
every requirement of a mosaic� in a setSi is fulfilled we call� happy. If every
mosaic inSi is happy then return ‘there is a linked set of mosaics for�’ if Si con-
tains a mosaic(X;� ) with � 2 � , and return ‘there is no linked set of mosaics for�’ otherwise. If, on the other hand,Si containsunhappymosaics, letSi+1 consist
of all happy mosaics inSi and continue the construction. Since our sets decrease in
size at every step, the construction must halt after at mostjS0j many stages. By the
observations above, computing which states inSi are happy can be done in time
polynomial in� and jSij. Thus the entire computation can be performed in time
polynomial injS0j. Clearly the algorithm is correct.

Hence, if we consider a formula� in a packed fragment with afixed number of
variables, jS0j is exponential inj�j. In general however, the number of variables
occurring in a formula depends on the formula’s length and hence in general,jS0j
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is doubly exponential inj�j. Thus, pending the correctness of Lemma 7.39 below,
this establishes the complexity upper bounds in the Theorem7.34.

Loose models

Finally, we show the hard direction of the Mosaic Theorem; asa spin-off we estab-
lish the ‘loose model property’ mentioned in Theorem 7.33.

Lemma 7.39 Let � be a packed formula. If there is a linked set of mosaics for�,
then� is satisfiable in a loose model of degreejVar(�)j.
Proof. Assume thatS is a linked set of mosaics for�. Using a step-by-step con-
struction, we will build a loose model for�, together with an acyclic graph asso-
ciated with the model. At each stage of the construction we will be dealing with
some kind of approximation of the final model and tree; these approximations will
be called networks and are slightly involved structures.

A network is a quintuple(A;G; �; �; �) such thatA = (A; I) is a model for
the first-order language;G = (G;E) is a connected, directed and acyclic graph;� : G ! S is a map associating a mosaic�t = (Xt; �t) in S with each nodet of
the graph;� is a map associating an assignment�t : Xt ! A with each nodet of
the graph; and finally,� is a map associating with each edge(t; t0) of the graph a
link �tt0 from �t to �t0 (we will usually simplify our notation by writing� instead
of �tt0).

The idea is that each mosaic�t is meant to give a complete description of the
relevant requirements that we impose on a small part of the model-to-be. Which
part? This is given by the assignment�t. And the word ‘relevant’ refers to the
fact that we are only interested in the formulas influencing the truth of�; that is,
the formulas inClg(�). The links between neighboring mosaics are there to ensure
that distinct mosaics agree on the part of the model that theyboth have access to.

Now obviously, if we want all of this to work properly we have to impose some
conditions on networks. In order to formulate these, we needsome auxiliary no-
tation. For a subsetQ � A, let L(Q) denote the set of nodes inG that have
‘access’ toQ; formally, we defineL(Q) = ft 2 G j A � range(�t)g. For a
tuple a = (a1; : : : ; an) of elements inA we setL(a) = L(fa1; : : : ; ang). Now
a network is calledcoherentif it satisfies the following conditions (all to be read
universally quantified):

(C1) Px 2 �t iff A j= Px[�t℄,
(C2) xi = xj 2 �t iff �t(xi) = �t(xj),
(C3) L(Q) is non-empty for every guarded setQ � A,
(C4) L(Q) is connected for every guarded setQ � A,
(C5) if Ett0 then�tt0(x) = x0 iff �t(x) = �t0(x0).
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A few words of explanation about these conditions: (C1) and (C2) ensure that ev-
ery mosaic is a complete description of the atomic formulas holding in the part of
the model it refers to. Condition (C3) states that no live tuple of the model remains
unseen from the graph, while the conditions (C4) and (C5) arethe crucial ones
making that remote parts of the graph cannot contain contradictory information
about the model — how this works precisely will become clear further on. Note
that condition (C5) has two directions: the left-to-right direction states that neigh-
boring mosaics have common access to part of the model, whilethe other direction
ensures that they agree on their requirements concerning this common part.

The motivation for using these networks is that in the end we want any formula�(x) 2 Clg(�) to hold inA under the assignment�t if and only �(x) belongs
to �t. Coherence on its own is not sufficient to make this happen. Adefectof
a network consists of a formula9y (�(x; y) ^  (x; y)) which is a requirement of
the mosaic�t for some nodet while there is no neighboring nodet0 such that�t0
fulfills 9y (�(x; y) ^  (x; y)) via the link�tt0 . A coherent networkN is perfectif
it has no defects. We say thatN is a networkfor � if for somet 2 G, �t = (Xt; �t)
is such that� 2 �t.
Claim 1 If N = (A;G; �; �; �) is a perfect network, then

(i) A is a loose model of degreejVar(�)j, and
(ii) for all formulas�(x) 2 Cl g(�) and all nodest ofG: � 2 �t iff A j= �[�t℄.

Proof of Claim. For part (i) of the claim, letN = (A;G; �; �; �) be the perfect
network for�. LetA = (A; I). As the functionf mapping nodes ofG to subsets
of A, simply take the map that assigns therangeof �t to the nodet. Since the
domain of each map�t is always a subset ofVar(�), it follows immediately thatf(t) will always be a set of size at mostjVar(�)j. Now take an arbitrary live tuples in A; it follows from (C3) and (C4) thatL(s) is a non-empty and connected part
of the graphG. ThusA is a loose model of degreejVar(�)j.

We prove part (ii) of the claim by induction on the complexityof �. For atomic
formulas the claim follows by conditions (C1) and (C2), and the boolean case of
the induction step is straightforward (since�t is anX–type) and left to the reader.
We concentrate on the case that�(x) is of the form9y (�(x; y) ^  (x; y)).

First assume that�(x) 2 �t. SinceN is perfect there is a nodet0 in G and
variablesu, v in Xt0 such thatEtt0, �(u; v) and (u; v) belong to�t0 , while the
link � from �t to �t0 mapsx to u. By the induction hypothesis we find thatA j= �(u; v) ^  (u; v)[�t0 ℄: (7.6)

But from condition (C5) it follows that�t0(x) = �t(u), whence (7.6) implies thatA j= 9y (�(x; y) ^  (x; y))[�t℄;
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which is what we were after.
Now suppose, in order to prove the converse direction, thatA j= �(x)[�t℄. Leta

denote�t(x), then there areb inA such thatA j= �(x; y)[ab℄ andA j=  (x; y)[ab℄.
Our first aims are to prove that L(ab) 6= ?; (7.7)

and L(Q) is connected for everyQ � fa; bg: (7.8)

Note that if we are working in the guarded fragment, then�(x; y) is an atomic
formula, whence it follows fromA j= �(x; y)[ab℄ that ab is live. Thusfa; bg is
guarded, and hence (7.7) is immediate by condition (C3). In fact,everyQ � fa; bg
is guarded in this case, so (7.8) is immediate by condition (C4).

In the more general case of the packed fragment we have to worka bit harder.
First, observe that itdoesfollow from A j= �(x; y)[ab℄ and the conditions on�(x; y) in the definition of packed quantification, thatf
; dg is guarded, and thus,L(
; d) 6= ?, for everypair (
; d) of points taken fromab. It follows from (C4) thatfL(
; d) j 
; d taken fromabg is a collection of non-empty, connected, pairwise
overlapping subgraphs of the acyclic graphG. It is fairly straightforward to prove,
for instance, by induction on the size of the graphG, that any such collection must
have a non-empty intersection. From this, (7.7) and (7.8) are almost immediate.

Thus, we may assume the existence of a nodet0 in G such thatfa; bg � range�t0 .
Let u andv in Xt0 be the variables such that�t0(u) = a and�t0(v) = b. The
induction hypothesis implies that�(u; v) and (u; v) belong to�t0 , whence�(u) 2�t0 by coherence of�t0 . Since botht andt0 belong toL(a), it follows from (7.8)
that there is a path fromt to t0 within L(a), sayt0 = s0Es1E : : : Esn = t. Let �i
be the link between the mosaics ofsi andsi+1, and define� to be the composition
of these maps. It follows by an easy inductive argument on thelength of the path
that� is a link between�t0 and�t such that�(u) = x. Hence, by definition of a
link we have that�(x) 2 �t0 . a
By Claim 1, in order to prove the Lemma it suffices to constructa perfect network
for �. This construction uses a step-by-step argument; to start the construction we
needsomecoherent network for�.
Claim 2 There is a coherent network for�.
Proof of Claim. By our assumption on� there is a coherent mosaic� = (X;� )
such that� 2 � . Without loss of generality we may assume thatX is the setfx1; : : : ; xng (otherwise, take an isomorphic copy of� in whichX does have this
form). Let a1; : : : ; an be a list of objects such that for alli and j we have thatai = aj if and only if the formulaxi = xj belongs to� . DefineA = fa1; : : : ; ang
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and put the tuple(ai1 ; : : : ; aik) in the interpretationI(P ) of the k-ary predicate
symbolP precisely ifPxi1 : : : xin 2 � . LetA be the resulting model(A; I) and
defineG as the trivial graph with one node0 and no edges. Let�(0) be the mosaic�; �0 : X ! A is given by�(xi) = ai; and finally,�00 is the identity map fromX toX.

We leave it to the reader to verify that the quintuple(A;G; �; �; �) is a coherent
network for�. a
The crucial step of this construction will be to show that anydefect of a coherent
network can be repaired.

Claim 3 For any coherent networkN = (A;G; �; �; �) and any defect ofN there
is a coherent networkN+ extendingN and lacking this defect.

Proof of Claim.Suppose that�(x) is a defect ofN because it is a requirement of
the mosaic�t and not fulfilled by any neighboring mosaic�t0 . We will define an
extensionN+ ofN in which this defect is repaired.

SinceS is a linked set of mosaics and�t belongs toS, �t is linked to a mosaic(X 0; � 0) 2 S in which the requirement is fulfilled via some link�. Let Y be
the set of variables inX 0 that do not belong to the range of�; suppose thatY =fy1; : : : ; ykg (with all yi being distinct). For the sake of a smooth presentation,
assume that� 0 contains the formulas:x0 = y for all variablesx0 2 X 0 andy 2 Y
(this is not without loss of generality — we leave the generalcase as an exercise
to the reader). Take a setf
1; : : : ; 
kg of fresh objects (that is, no
i is an element
of the domainA of A), and let
 be the assignment with domainX 0 defined as
follows: 
(x0) = � �t(x) if x0 = �(x);
i if x0 = yi;
and lett0 be an object not belonging toG. Now define the networkN+ = (A+,G+, �+; �+; �+) as follows:A+ = A [ f
1; : : : ; 
kg;I+(P ) = I(P ) [ fd j for somex, d = 
(x) andPx 2 � 0g;G+ = G [ ft0g;E+ = E [ f(t; t0)g;
while �+, �+ and�+ are given as the obvious extensions of�, � and�, namely
by putting�+t0 = (X 0; � 0), �+t0 = 
 and�tt0 = �.

Since the interpretationI+ agrees withI on ‘old’ tuples it is a straightforward
exercise to verify that the new networkN+ satisfies the conditions (C1)–(C3) and
(C5).

In order to check that condition (C4) holds, take some guarded subsetQ from



460 7 Extended Modal LogicA+; we will show thatL+(Q) is a connected subgraph ofG+. It is rather easy
to see thatL+(Q) is identical to eitherL(Q) or L(Q) [ ft0g; hence by the con-
nectedness ofL(Q) it suffices to prove, on the assumptions thatt0 2 L+(Q) andL(Q) 6= ?, thatt 2 L(Q). Hence, suppose thatt0 2 L+(Q); that is, eacha 2 Q
is in the range of
. But if L(Q) 6= ?, each such pointa must be old; hence, by
definition of
, eacha 2 Q must belong torange�t. This gives thatt 2 L(Q), as
required. a
As in our earlier step-by-step proofs, the previous two claims show that using some
standard combinatorics we can construct a chain of networkssuch that theirlimit
is a perfect network. This completes the proof of the lemma.a
Exercises for Section 7.4
7.4.1 In the loosely guarded fragmentthe following quantification patterns are allowed:9x(�(x; y) ^  (x; y)) is a loosely guarded formula if (x; y) is loosely guarded,�(x; y)
is a conjunction as in the packed fragment, and any pairz, z0 of distinct variables fromxy
occurs free in some conjunct of the guard�, unlessz andz0 are both fromy. For example,9x ((Ryx^Rxy0)^:Cxyy0) is loosely guarded, but not packed since there is no conjunct
having bothy andy0 free.

Show that for every loosely guardedsentence� there exists an equivalent packed sen-
tence�0 in the same language.

7.4.2 Define theuniversal packed fragmentas the fragment of first-order logic that is gen-
erated from atoms, negated atoms, conjunction, disjunction, ordinary existential quantifi-
cation, and packed universal quantification. (With the latter we mean that8x(� !  ) is
in the fragment if is universally packed,� packs its own free variables, andFree( ) �Free(�).)

Show thatsatisfiabilityis decidable for the universal packed fragment.

7.4.3 Fix a natural numbern, and suppose that we are working in ann-boundedfirst-order
signature; that is, all predicate symbols have arity at mostn. Prove that in such a signature,
every guarded sentence is equivalent to a guarded sentence using at mostn variables. Does
this hold for packed sentences as well? What are the consequences for the complexity of
the respective satisfiability problems?

7.4.4 Let � be a packed formula, and suppose that� is satisfiable. Prove that� is satisfiable
in a loose model with an associated graphG of which theout-degreeis bounded by some
recursive function on�. In particular, this out-degree should befinite. (The out-degree of
a nodek of a graph(G;E) is defined as the number of its neighbors, or, formally, as the
size of the setfk0 2 G j kEk0g; the out-degree of a graph is defined as the supremum of
the out-degrees of the individual nodes.)

7.5 Multi-Dimensional Modal Logic

In Chapter 2 we backed up our claim that logical formalisms donot live in isola-
tion by developing the correspondence theory of modal logic: we studied modal
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languages as fragments of first-order languages. In this section we will turn the
looking glass around and examine first-order logic as if it were a modal formalism.
The basic observations enabling this perspective are that we may viewassignments
(the functions that give first-order variables their value in a first-order structure) as
statesof a modal model, and that this makes standard first-orderquantifiersbehave
just like modal diamonds and boxes. First-order logic thus forms an example of
a multi-dimensionalmodal system. Multi-dimensional modal logic is a branch of
modal logic dealing with special relational structures in which the states, rather
than being abstract entities, have some inner structure. More specifically, these
states are tuples or sequences over some base set, in our case, the domain of the
first-order structure. Furthermore, the accessibility relations between these states
are (partly) determined by this inner structure of the states.

Reverse correspondence theory

To simplify our presentation, in this section we will not treat modal versions of
first-order logic in general, but restrict our attention to certain finite variable frag-
ments. A precise definition of these fragments will be given later on (see Defini-
tion 7.40). For the time being, we fix a natural numbern � 2 and invite the reader
to think of a first-order language with equality, but withoutconstants or function
symbols, in which all predicates aren-adic. Consider the basic declarative state-
ment in first-order logic concerning the truth of a formula ina model under an
assignments: M j= � [s℄: (7.9)

The basic observation underlying our approach, is that we can read (7.9) from a
modal perspective as: ‘the formula� is true inM at states’. But since we have
only n variables at our disposal, sayv0, . . . , vn�1, we can identify assignments
with maps:n (= f0; : : : ; n � 1g) ! U , or equivalently, withn-tuples over the
domainU of the structureM — we will denote the set of suchn-tuples byUn.
But then we find ourselves in the setting of multi-dimensional modal logic: the
universe of our modal models will be of the formUn for some base setU . Now
recall that the truth definition of the quantifiers reads as follows:M j= 9vi �[s℄ iff there is anu 2 U such thatM j= � [siu℄,
wheresiu is the assignment defined bysiu(k) = u if k = i andsiu(k) = s(k) other-
wise. We can replace the above truth definition with the more ‘modal’ equivalent,M j= 9vi�[s℄ iff there is an assignments0 with s �i s0 andM j= � [s0℄;
where�i is given by s �i s0 iff for all j 6= i, sj = s0j. (7.10)
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In other words: existential quantification behaves like a modaldiamond, having�i
as itsaccessibility relation.

Since the semantics of the boolean connectives in the predicate calculus is the
same as in modal logic, this shows that the inductive clausesin the truth definition
of first-order logic neatly fit a modal mould. So let us now concentrate on the
atomic formulas. To start with, we observe thatequalityformulas do not cause any
problem: the formulavi = vj, with truth definitionM j= vi = vj[s℄ iff s 2 Id ij ;
can be seen as a modalconstant. HereId ij is defined bys 2 Id ij iff si = sj: (7.11)

The case of the other atomic formulas is more involved, however. Since we con-
fined ourselves to the calculus ofn-adic relations and do not have constants or func-
tion symbols, our atomic predicate formulas are of the formPv�(0) : : : v�(n�1).
Here� is ann-transformation, that is, a map:n! n. In the model theory of first-
order logic the predicate symbolP will be interpreted as a subset ofUn; but this is
precisely how modal valuations treat propositional variables in models where the
universe is of the formUn! Therefore, we can identify the set of propositional vari-
ables of the modal formalism with the set of predicate symbols of our first-order
language. In this way, we obtain a modal reading of (7.9) for the case where� is the
atomic formulaPv0 : : : vn�1: M j= Pv0 : : : vn�1[s℄ iff s belongs to the interpreta-
tion of P . However, as a consequence of this approach our set-up will not enjoy a
one-to-one correspondence between atomic first-order formulas and atomic modal
ones: the atomic formulaPv�(0) : : : v�(n�1) will correspond to the modal atomp
only if � is the identity function onn. For the cases where� is not the identity map
we still have to find some kind of solution. There are many options here.

Since we are working in a first-order language with equality,atomic formulas
with a multiple occurrence of a variable can be rewritten as formulas with only
‘unproblematic’ atomic subformulas, for instancePv1v0v0 � 9v2 (v2 = v0 ^ Pv1v2v2)� 9v2 (v2 = v0 ^ 9v0 (v0 = v1 ^ Pv0v2v2))� 9v2 (v2 = v0 ^ 9v0 (v0 = v1 ^ 9v1 (v1 = v2 ^ Pv0v1v2))):
This leaves the case what to do with atoms of the formPv�(0) : : : v�(n�1), where�
is a permutation ofn, or in other words, atomic formulas where variables have been
substitutedsimultaneously. The previous trick does not work here: for example, to
write an equivalent of the formulaPv1v0v2 one needsextra variables as buffers,
for instance, when replacingPv1v0v2 by9v39v4(v3 = v0 ^ v4 = v1 ^ 9v09v1(v0 = v4 ^ v1 = v3 ^ Pv0v1v2)):
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One might consider a solution where a predicateP is translated intovariousmodal
propositional variablesp�, one for every permutation� of n, but this is not very
elegant. One might also forget about simultaneous substitutions and confine one-
self to afragmentof n-variable logic where all atomic predicate formulas are of the
form Pv0 : : : vn�1 — this fragment ofrestrictedfirst-order logic is defined below.
A third solution is to take substitution seriously, so to speak, by adding special
‘substitution operators’ to the language. The crucial observation is that for any
transformation� 2 nn, we have thatM j= Pv�(0) : : : v�(n�1)[s℄ iff M j= Pv0 : : : vn�1 [s Æ �℄; (7.12)

wheres Æ � is the composition of� ands (recall thats is a map:n ! U ). So, if
we define the relation1�� Un � Un bys 1� t iff t = s Æ �; (7.13)

we have rephrased (7.12) in terms of an accessibility relation (in fact, a function):M j= Pv�(0) : : : v�(n�1)[s℄ iffM j= Pv0 : : : vn�1 [t℄ for somet with s 1� t:
So if we add an operator
� to the modal language for everyn-transformation�
in nn, with 1� as its intended accessibility relation, we have found the desired
modal equivalent for any atomic formulaPv�(0) : : : v�(n�1), namely in the form
�p. (As a special case, for the formulaPv0 : : : vn�1 one can take the identity
map onn.)

Definition 7.40 Let n be an arbitrary but fixed natural number. The alphabet ofLn and ofLrn consists of a set of variablesfvi j i < ng, a countable set ofn-adic
relation symbols (P0; P1; : : :), equality (=), the boolean connectives:;_ and the
quantifiers9vi. The collection of formulas is defined as usual in first-orderlogic,
with the restriction that the atomic formulas ofLrn are of the formvi = vj orPl(v0 : : : vn�1); for Ln we allow all atomic formulas (but note that all predicates
are of arityn).

A first-order structure forLn (Lrn) is a pairM = (U; V ) such thatU is a set
called the domain of the structure andV is an interpretation function mapping
everyP to a subset ofUn. The notion of a formula� being true in a first-order
structureM under an assignments is defined as usual. For instance, given our
notation we have, for any atomic formula:M j= P (v0 : : : vn�1) [s℄ if s 2 V (P );M j= P (v�(0) : : : v�(n�1)) [s℄ if s Æ � (= (s�(0) : : : s�(n�1))) 2 V (P ):
An Ln-formula� is true inM (notation:M j= �), if M j= � [s℄ for all s 2 Un;
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it is valid (notation: j=fo �), if it is true in every first-order structure ofLn. The
same definition applies toLrn. a
From now on, we will concentrate on themodalversions ofLrn andLn, which are
given in the following definition:

Definition 7.41 Let n be an arbitrary but fixed natural number.MLRn (short for:
modal language of relations) is the modal similarity type having constants�Æij and
diamonds3i, 
� (for all i; j < n; � 2 nn). CMLn, the similarity type ofcylindric
modal logic, is the fragment ofMLRn-formulas in which no substitution operator
� occurs.

A first-order structureM = (U; V ) can be seen as a modal model based on the
universenU , and formulas of these modal similarity types are interpreted in such a
structure in the obvious way; for instance, we haveM; s 
 �Æij iff si = sjM; s 
 
�� iff M; s Æ � 
 �(iff there is at with s 1� t andM; t 
 �)M; s 
 3i� iff there is at with s �i t andM; t 
 �:
If anMLRn-formula� holds throughout any first-order structure, we say that it is
first-order valid, notation:Cn 
 � (this notation will be clarified further on). a
The modal disguise ofLn in MLRn and ofLrn in CML is so thin, that we give the
translations mapping first-order formulas to modal ones without further comments.

Definition 7.42 Let (�)t be the following translation fromLn toMLRn:(Pv�(0) : : : v�(n�1))t = 
�p(vi = vj)t = �Æij(:�)t = :�t(� _  )t = �t _  t(9vi�)t = 3i�t: a
This translation allows us to seeLrn andCMLn as syntactic variants:(�)t is easily
seen to be anisomorphismbetween the formula algebras ofLrn andCMLn. Note
that in the case ofLn versusMLRn, we face a different situation: where inMLR
the simultaneous substitution of two variables for each other is aprimitiveoperator,
in first-order logic it can only be defined by induction. Nevertheless, we could
easily define a translation mappingMLRn-formulas to equivalentLrn-formulas. In
any case, the following proposition shows that we really have developed a reverse
correspondence theory; we leave the proof as an exercise to the reader.

Proposition 7.43 Let� be a formula inLn, then
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(i) for any first-order structureM, and anyn-tuple/assignments, we have thatM j= �[s℄ if and only ifM; s 
 �t;
(ii) as a corollary, we have thatj=fo � () Cn 
 �t.

Let us now put the modal machinery to work and see whether we can find out
something new about first-order logic.

Degrees of validity

Perhaps the most interesting aspect of this modal perspective on first-order logic is
that it allows us to generalize the semantics of first-order logic, and thus offers a
wider perspective on the standard Tarskian semantics. The basic idea is fairly ob-
vious: now that we are talking aboutmodallanguages, it is clear that the first-order
structures of Definition 7.41 arevery specificmodal models for these languages.
We may abstract from the first-order background of these models, and consider
modal models in which the universe is anarbitrary set and the accessibility rela-
tions arearbitrary relations (of the appropriate arity).

Definition 7.44 A MLRn-frameis a tuple(W;Ti; Eij ; F�)i;j<n;�2nn such that ev-
eryEij is a subset of the universeW , and such that everyTi and everyF� is a bi-
nary relation onW . A MLRn-modelis a pairM = (F; V ) with F aMLRn-frame
andV avaluation, that is, a map assigning subsets ofW to propositional variables.CMLn-models and frames are defined likewise.a
For such models,truth of a formula at a state is defined via the usual modal induc-
tion, for instance:M; w 
 
�� iff there is av with F�wv and M; v 
 �:
In this very general semantics, states (that is, elements ofthe universe) are no
longer real assignments, but rather, abstractions thereof. First-order logic now re-
ally has become a poly-modal logic, with quantification and substitution diamonds.
It is interesting and instructive to see how familiar laws ofthe predicate calculus
behave in this new set-up. For example, the axiom schema�! 9vi� will be valid
only inn-frames whereTi is a reflexive relation (this follows from the fact that the
modal formulap ! 3ip corresponds to the frame condition8xTixx). Likewise,
the axiom schemes9vi9vi�! 9vi� and�! 8vi9vi� will be valid only in frames
where the relationTi is transitive and symmetric, respectively.

Later on we will see more of such correspondences; the point to be made here
is that the abstract perspective on the semantics of first-order logic imposes a cer-
tain ‘degree of validity’ on well-known theorems of the predicate calculus. Some
theorems are valid inall abstract assignment frames, like distribution:8vi(�!  )! (8vi�! 8vi );
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which is nothing but the modalK-axiom. Other theorems of the predicate cal-
culus, like the ones mentioned above, are only valid insomeclasses of frames.
Narrowing down the class of frames means increasing the set of valid formu-
las, and vice versa. In particular, we now have the option to look at classes of
frames that are only slightly more general than the standardfirst-order structures,
but have much nicer computational properties. This new perspective on first-order
logic, which was inspired by the literature on algebraic logic, provides us with
enormous freedom to play with the semantics for first-order logic. In particu-
lar, consider the fact that first-order structures can be seen as frames of the form(Un;�i; Idij ;1�)i;j<n;�2nn whereall assignmentss 2 Un are available. But why
not study a semantics where states are still real assignments on the base setU , but
not all such assignments are available?

There are at least two good reasons to make such a move. First,it turns out that
the logic of such generalized assignment frames has much nicer meta-properties
than the logic of the cubes such as decidability, see for instance Theorem 7.46
below. These logics will provide less laws than the usual predicate calculus, but
their supply of theorems may be sufficient for particular applications. Note for
instance, that the schemes�! 9vi�, 9vi9vi� ! 9vi� and� ! 8vi9vi� are still
valid in every generalized assignment frame, since�i�W is always an equivalence
relation.

In some situations it may even beusefulnot to have all familiar validities. Con-
sider for instance the schema9vi9vj �! 9vj9vi �: (7.14)

It follows from correspondence theory that (7.14) is valid in a frameF iff (7.15)
below holds inF.8xz (9y (Tixy ^ Tjyz)! 9u (Tjxu ^ Tiuz)): (7.15)

The point is that the schema (7.14) disables us to make the dependency of vari-
ables explicit in the language (that is, whethervj is dependent ofvi or the other
way around), while these dependencies play an important role in some proof-
theoretical approaches. So, the second motivation for generalizing the semantics
of first-order logic is that it gives us a finer sieve on the notion of equivalence
between first-order formulas. Note for instance that (7.14)is not valid in frames
with assignment ‘holes’: taken = 2. In a square (that is, 2-cubic) frame we have(a; b) �0 (a0; b) �1 (a0; b0), but if (a; b0) is not an available tuple, then there is nos such that(a; b) �1 s �0 (a0; b0) — hence this frame will not satisfy (7.15). So,
the schema (7.14) will not be valid in this frame.

In this new paradigm, a whole landscape of frame classes and corresponding
logics arises. In the most general approach,anysubset ofUn may serve as the uni-
verse of a multi-dimensional frame, but it seems natural to impose restrictions on
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the set of available assignments. Unfortunately, for reasons of space limitations we
cannot go into further detail here, confining ourselves to the following definition.

Definition 7.45 LetU be some set, andW a set ofn-tuples overU , that is,W �Un. Thecube overU or full assignment frame overU is defined as the frameCn(U) = (Un;�i; Idij ;1�)i;j<n;�2nn:
TheW -relativized cube overU or W -assignment frame onU is defined as the
frame CWn (U) = (W;�i�W ; Idij \W;1��W )i;j<n;�2nn :Cn andRn are the classes of cubes and relativized cubes, respectively. a
Observe that this definition clarifies our earlier notation ‘Cn 
 �’ for the fact that
the modal formula� is ‘first-order valid’.

Decidability

As we already mentioned, one of the reasons for developing the abstract and gen-
eralized assignment semantics is to ‘tame’ first-order logic by looking for core
versions with nicer computational behavior. This idea is substantiated by the fol-
lowing theorem.

Theorem 7.46 It is decidable in exponential time whether a givenMLRn-formula
is satisfiable in a given relativized cube. As a corollary, the problem whether a
given first-order formula inLn can be satisfied in a general assignment frame is
also decidable in exponential time.

Proof. This theorem can be proved directly by using themosaic methodthat we
encountered in Section 6.4 — in fact, the mosaic method was developed for this
particular proof! However, space limitations prevent us from giving the mosaic
argument here. Therefore, we prove the theorem by a reduction of theRn satisfi-
ability problem to the satisfiability problem of then-variableguarded fragmentof
Section 7.4.

This reduction is quite interesting in itself: the key idea is that we find a syntactic
counterpart to the semantic notion of restricting the set ofavailableassignments.
There is in fact a very simple way of doing so, namely by introducing a specialn-adic predicateG that will be interpreted as the collection of available assign-
ments. One can then translate modal formulas (orLn-formulas) into first-order
ones, with the proviso that this translation issyntactically relativizedto G. The
formulaGv0 : : : vn�1 so to speak acts as aguard of the translated formula, and
indeed, it will be easily seen that the range of this translation formally falls inside
the guarded fragment.
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Now for the technical details. Given a collection� of propositional variables,
assume that with eachp 2 � we have an associatedn-adic predicate symbolP .
Also, fix a newn-adic predicate symbolG; let �+ denote the expanded signaturefP j p 2 �g [ fGg. Consider the following translation(�)� mappingMLRn-
formulas to first-order formulas:p� = Pv0 : : : vn�1�Æ�ij = vi = vj(:�)� = Gv0 : : : vn�1 ^ :��(� ^  )� = �� ^  �(
��)� = (Gv0 : : : vn�1 ^ ��)�(3i�)� = 9vi(Gv0 : : : vn�1 ^ ��)
Here, for a given transformation�, (�)� denotes the corresponding syntactic sub-
stitution operation on first-order formulas.

We want to show the following claim.

Claim 1 For anyMLRn-formula� we have thatRn 
 � if and only if the formulaGv0 : : : vn�1 ! �� is a first order validity.

Proof of Claim. In order to prove this claim, we need a correspondence between
modal models and first-order models for the new language. Given a relativized
assignment modelM = (CWn (U); V ), define the corresponding first-order modelM� as the structure(U; I) whereI(P ) = V (p) for every propositional variablep,
andI(G) = W . Conversely, given a first-order structureA = (A; I) for the ex-

panded first-order signature�, letA� be the relativized cube model(CI(G)n (A); V ),
where the valuationV is given byV (p) = I(P ).

For any relativized assignment modelM, and any available assignments, we
have M; s 
 � iff M� j= ��[s℄: (7.16)

This suffices to prove Claim 1, because of the following. First suppose that the
modal formula� is satisfiable in some relativized cube modelM, say at states.
Sinces is an available tuple, it follows from (7.16) that�� is satisfiable in the first-
order structureM� under the assignments; but also, sinces is available we haveM� j= Gv0 : : : vn�1[s℄. This shows that�� ^Gv0 : : : vn�1 is satisfiable.

Conversely, if the latter formula is satisfiable, there is some first-order structureA for the language�+, and some assignments such thatA j= ��^Gv0 : : : vn�1[s℄.
It is not difficult to see that(A�)� = A. SinceA j= Gv0 : : : vn�1[s℄, it follows by
definition thats is an available assignment ofA�. But then we may apply (7.16)
which yields thatA�; s 
 �; in particular,� is satisfiable inRn. The proof of (7.16)
proceeds by a standard induction, which we leave to the reader. a
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Finally, we leave it to the reader to verify that the range of(�)� indeed falls entirely
inside then-variable guarded fragmentFn. From Claim 1 and this observation the
theorem is immediate. a
Axiomatization

To finish off the section we will sketch how to prove completeness for the class of
cube models. For simplicity we confine ourselves to the similarity type of cylindric
modal logic — but observe that this completeness result willimmediately transfer
to the restrictedn-variable fragmentLrn.

Multi-dimensional modal logic is an area with a very interesting completeness
theory. For instance, if one only admits the standard modal derivation rules (modus
ponens, necessitation and uniform substitution), thenfiniteaxiomatizations are few
and far between. For instance, concerning theCMLn-theory of the classCn,
Andréka proved that if� is a set ofCMLn-formulas axiomatizingCn, then for
each natural numberm, � contains infinitely many formulas that contain all di-
amonds3i, at least one diagonal constant�Æij and at leastm propositional vari-
ables. . . However, if we allow special derivation rules, in the style of Section 4.7,
then a nice finite axiomatization can be obtained, as we will see now. A key role
in our axiomatization and in our proof will be played by a defined operator Dnp
which acts as thedifference operatoron the class of cube frames, see Section 7.1.
For its definition we need some auxiliary operators:
ij� = 3i(�Æij ^ �) (i 6= j)

Eni � = 30 : : :3i�13i+1 : : :3n�1�
Dn� = Wj 6=i
ji3i(:�Æij ^ Eni �):

The definition of Dn may look fairly complex, but it is directly based on the obser-
vation that twon-tupless andt aredistinct if and only for some coordinatei, si is
distinct fromti.
Proposition 7.47 Dn acts as the difference operator on the class of cubes.

Proof. LetM = (Cn(U); V ) be a cube model. We will show thatM; s 
 Dnp iff M; t j= p for somet such thats 6= t: (7.17)

For the sake of a clear exposition we assume thatn = 3, so that we may writes = (s0; s1; s2).
For the left to right direction of (7.17), suppose thatM; s 
 Dnp. Without loss

of generality we may assume thats 
 
1030(:�Æ01 ^ En0p). By definition of
10
it follows that(s0; s0; s2) 
 30(:�Æ01 ^En0p). This in its turn implies that there is
somes00 such that(s00; s0; s2) 
 :�Æ01 and(s00; s0; s2) 
 En0p. It is easily seen that
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the meaning of En0 is given byM; u 
 Eni  iff M; v j=  for somev such thatui = vi;
so (s00; s0; s2) 
 En0p means that there is somen-tuple t such thatt 
 p ands00 = t0. But it follows from (s00; s0; s2) 
 :�Æ01 thats0 6= s00, so that we find thatt0 6= s0. But then, indeed,t is distinct froms. We leave it to the reader to prove
the right to left direction of (7.17). a
However, the connection between Dn and the class of cubes is far tighter than this
Proposition suggests. In fact, the cubes are theonly frames on which Dn acts as
the difference operator, at least, against the right background of the classHCFn of
hypercylindric frames.

Definition 7.48 A CMLn-frame is calledhypercylindricif the following formulas
are valid on it:(CM1 i) p! 3ip(CM2 i) p! 2i3ip(CM3 i) 3i3ip! 3ip(CM4 ij) 3i3jp! 3j3ip(CM5 i) �Æii(CM6 ij) 3i(�Æij ^ p)! 2i(�Æij ! p)) (i 6= j)(CM7 ijk) �Æij $ 3k(�Æik ^ �Ækj) (k 62 fi; jg)(CM8 ij) (�Æij ^3i(:p ^3jp))! 3j(:�Æij ^3ip) (i 6= j) a
All these axioms are Sahlqvist formulas and thus express first-order properties of
frames. Clearly, the axiomsCM1–3 together say that eachTi is an equivalence
relation.CM6 ij then means that in everyTi-equivalence class there isat most one
element on the diagonalEij (i 6= j). One can combine this fact with the (first-
order translations of)CM5 j andCM7 jji to show that everyTi-equivalence class
containsexactlyone representative on theEij-diagonal. Apart from this effect,
the contribution ofCM7 is rather technical. Finally, the meaning ofCM4 andCM8 is best made clear by Figure 7.2 below, where the straight lines represent
the antecedent of the first-order correspondents, and the dotted lines, the relations
holding of the ‘old’ states and the ‘new’ ones given by the succedent.
The key theorem in our completeness proof is the following.

Theorem 7.49 For any frameF in HCFn, Dn acts as the difference operator onF
if and only ifF is a cube.

Proof. We have already proved the left to right direction of this equivalence in
Proposition 7.47. The proof of the other direction is technically rather involved
and falls outside the scope of this book.a
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Fig. 7.2. The meaning ofCM4 ij (left) andCM8 ij (right)

In fact, with Theorem 7.49 we have all the material in our hands to prove the
desired completeness result.

Definition 7.50 Consider the following modal derivation system
n. Its axioms
are (besides the ones of the minimal modal logic for the similarity typeCMLn),
the formulasCM1–8 ; as its derivation rules we take, besides the standard ones,
also the Dn-rule: ` (p ^ :Dnp)! �` �
As usual,
n will also denote thelogic generated by this derivation system.a
Theorem 7.51
n is sound and strongly complete with respect to the classCn.

Proof. It follows immediately from Theorem 7.6 and Theorem 7.49 that we obtain
a complete axiomatization forCn if we extend
n with the Dn-versions of the
axiomsSymmetry, Pseudo-transitivityand D-Inclusion. However, as its turns out,
these axioms are valid on the class of hypercylindric frames, so they are already
derivable in
n (even without the use of the Dn-rule). From this, the theorem is
immediate. a
Exercises for Section 7.5
7.5.1 Letn andm be natural numbers such thatn < m, and consider aCMLn-formula�.
First, observe that� is also aCMLm-formula. Prove thatCn 
 � iff Cm 
 �. Conclude
that our definition of anMLRn-formula beingfirst order valid, is unambiguous.

7.5.2 Prove that the formula30 � � �3n�1p acts as the global modality on the class of
hypercylindric frames. That is, show that for any modelM based on such a frame we have
that M; s 
 30 � � �3n�1p iff M; t 
 p for somet inM.
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Which of the axioms CM1–8 are actually needed for this?

7.5.3 Let L�n denote the equality-free fragment ofLrn; that is, all atomic formulas are of
the formPv0 : : : vn�1. In an obvious way we can define relativized assignment frames for
this language. Prove that the satisfiability problem forL�n in this class of frames can be
solved in PSPACE.

7.5.4 Prove that every hypercylindricCML2-frame is the bounded morphic image of a
square frame (that is, a 2-cube). Use this fact to find a complete axiomatization for the
classC2 that only uses the standard modal derivation rules.

7.5.5 Let CFn be the class of cylindric frames, that is, thoseCMLn-frames that satisfy
the axioms CM1–7. The class ofn-dimensional cylindric algebrasis defined asCAn =SPCmCFn. The classesHCFn andHCAn are defined similarly, now using all axioms
CM1–8.

(a) Prove thatCAn andHCAn are canonical, that is, closed under taking canonical
embedding algebras.

(b) Prove thatCAn andHCAn are varieties.

7.5.6 A full n-dimensional cylindric set algebrais an algebra of the form(P(Un);[;�;?; Ci; Id ij)i;j<n:
Here thei-th cylindrificationis defined as the mapCi : P(Un)! P(Un) given byCi(X) = fs 2 Un j t 2 X for somet in X with s �i t g:
If we close the class of these algebras under products and subalgebras, we arrive at the
varietyRCAn of representablen-dimensional cylindric algebras.

(a) Prove that every representablen-dimensional cylindric algebra is a boolean algebra
with operators.

(b) Prove thatRCAn is contained in the classesCAn andHCAn of the previous exer-
cise.

(c) Prove thatRCAn is canonical. (Hint: use Theorem 7.49 to show that the classCn
of n-dimensional cubes is first-order definable in the frame language ofCMLn.)

7.6 A Lindstr öm Theorem for Modal Logic

Throughout this book we have seen many examples of modal languages, espe-
cially in the present chapter. To get a clear picture of the emerging spectrum, these
languages may be classified according to their expressive power or their semantic
properties. But what — if any — is the special status of the familiar modal lan-
guages defined in Chapter 1. If we focus on characteristic semantic properties, then
clearly their invariance under bisimulations must be a key feature. But what else is
needed to single the out (standard) modal languages?

The answer to this question is a modal analogue of a classic result in first-order
model theory: Lindström’s Theorem. It states that, given asuitable explication
of what ‘classical logic’ is, first-order logic is the strongest logic to possess the
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Compactness and Löwenheim-Skolem properties. To prove ananalogous charac-
terization result for modal logic we need to agree on a numberof things:� What will be the distinguishing property of the logic that wewant to characterize

(on top of its invariance for bisimulations)? To answer thisquestion we will
exploit the notion of degree introduced in Definition 2.28.� What is a suitable notion of an abstract modal logic? To answer this question we
will introduce some bookkeeping properties from the formulation of the original
Lindström Theorem for first-order logic, and add a further property having to do
with invariance under bisimulations.

Our plan for this section is to discuss each of the above items, one after the other,
and to conclude with a Lindström Theorem for modal logic.

Background material

Throughout this section models for modal languages arepointed modelsof the
form (M; w), whereM is a relational structure andw is an element ofM (its
distinguished point) at which evaluation takes place.

Our main reasons for adopting this convention are the following. First, the basic
semantic unit in modal logic simplyis a structure together with a distinguished
node at which evaluation takes place. Second, some of the results below admit
smoother formulations when we adopt thelocal perspective of pointed models.

Bisimulations between pointed models(M; w) and(N; v) are required to link
the distinguished pointsw andv.

Definition 7.52 (In-degree) Let � be a modal similarity type, and letM be a� -
model. Thein-degreeof a stateu in M is the number of timesu occurs as an
non-first argument in a relation:Rw : : : u : : :. More formally, it is defined asjf~w 2M<! j for someR andi > 1, u = wi andRMw1 : : : wi : : : wn) gj: a
In addition to the in-degree of an element of a model, we will also need to use the
notion ofheightas defined in Definition 2.32.

Below we will want to get models that have nice properties, such as a low in-
degree or finite height for each of its elements. To obtain such models, the notion
of forcing comes in handy. Fix a similarity type� . A property P of models is$� -enforceable, or enforceable, iff for every pointed� -model(M; w), there is a
pointed� -model(N; v) with (M; w) $� (N; v) and(N; v) has P.

For example, the property ‘every element has finite height’ is enforceable. To
see this, let(M; w) be a pointed� -model; we may assume thatM is generated byw. Let (N; w) be the submodel ofM whose domain consists of all elements of
finite height. Then(M; w) $� (N; w).
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Proposition 7.53 below generalizes theunraveling constructionfrom the stan-
dard modal language to arbitrary vocabularies.

Proposition 7.53 The following properties of models are enforceable:

(i) tree-likeness, and
(ii) the conjunction of ‘having a root with in-degree 0’ and ‘every element (ex-

cept the root) has in-degree at most 1’.

Proof. Item (ii) follows from item (i). A proof of item (i) for similarity types
only involving diamonds is given in Proposition 2.15; for the general case, consult
Exercise 2.1.7. a
We will characterize modal logic (in the sense of Definitions1.12 and 1.23) by
showing that it is the only modal logic satisfying a modal counterpart of the original
Lindström conditions: having a notion offinite degreewhich gives a fixed upper
bound on the height of the elements that need to be consideredto verify a formula;
recall Definition 2.28 for the definition.

To wrap up our discussion of background material needed for our Lindström
Theorem, let us briefly recall some basic facts related to degrees and height. Here’s
the first of these facts; recall that((M; w) � n;w) denotes the submodel ofM that
is generated fromw and that only has states of height at mostn.

Proposition 7.54 Let� be a modal formula withdeg(�) � n. Then(M; w) 
 �
iff ((M; w) � n;w) 
 �.

Next, recall from Proposition 2.29 that, up to logical equivalence, there are only
finitely many non-equivalent modal formulas with a fixed finite degree over a finite
similarity type.

We say that(M; w) and (N; v) aren-equivalentif w and v satisfy the same
modal formulas of degree at mostn.

Proposition 7.55 Let � be a finite similarity type. Let(M; w), (N; v) be two
rooted models such that the roots have in-degree 0, every element different from
the root has in-degree at most 1, all nodes have and height at mostn.

If (M; w) and(N; v) aren+ 1-equivalent, then(M; w) $ (N; v).
Proof. DefineZ � A�B by xZy iff:height(x) = height(y) = m and(M; x) and(N; y) are(n�m)-equivalent.

We claim thatZ : (M; w) $ (N; v). To prove this, we only show the forth
condition. AssumexZy andRMxx1 : : : xk, whereheight(x) = height(y) = m.
Thenn�m � 1. LetM be the modal operator whose semantics is based onR.

As � is finite, there are only finitely many non-equivalent formulas of degree at
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mostn � m � 1. Let  i be the conjunction of all non-equivalent modal formu-
las of at most this degree that are satisfied atxi (1 � i � k). Then(M; x) 
M( 1; : : : ;  k), andM( 1; : : : ;  k) has degreen �m. Hence, asxZy, (N; y) 
M( 1; : : : ;  k). So there arey1, . . . ,yk inN such thatRNyy1 : : : yk and(N; yi) 
 i (1 � i � k).

Now, as all states have in-degree at most 1,height(xi) = height(yi) = m+ 1,
and (M; xi) and (N; yi) (1 � i � k) are (n � (m + 1))-equivalent. Hence,(M; xi)$� (N; yi). This proves the forth condition.a
Abstract modal logic

The original Lindström Theorem for first-order logic starts from a definition of an
abstract classical logic as a pair (L; j=L) consisting of a set of formulasL and a
satisfaction relationj=L betweenL-structures andL-formulas that satisfies three
bookkeeping conditions, an Isomorphism property, and a Relativization property
which allows one to consider definable submodels. Then, an abstract logic extend-
ing first-order logic coincides with first-order logic if, and only if, it satisfies the
Compactness and Löwenheim-Skolem properties. We will nowset up our modal
analogue of Lindström’s Theorem along similar lines.

The definition runs along the same lines as the definition of anabstract classical
logic. An abstract modal logic is characterized by three properties: two book keep-
ing properties, and a Bisimilarity property to replace the Isomorphism property.

Definition 7.56 (Abstract Modal Logic) By an abstract modal logicwe mean
a pair (L;
L) with the following properties (hereL is the set of formulas, and
L is its satisfaction relation, that is, a relation between (pointed) models andL-
formulas):

(i) Occurrence property.For each� in L there is an associated finite languageL(��). The relation(M; w) 
L � is a relation betweenL-formulas� and struc-
tures(M; w) for languagesL containingL(��). That is, if� is in L, andM is
anL-model, then the statement(M; w) 
L � is either true or false ifL containsL(��), and undefined otherwise.

(ii) Expansion property.The relation(M; w) 
L � depends only on the reduct ofM to L(��). That is, if (M; w) 
L � and(N; w) is an expansion of(M; w) to a
larger language, then(N; v) 
L �.

(iii) Bisimilarity property. The relation(M; w) 
L � is preserved under bisimu-
lations: if (M; w) $� (N; v) and(M; w) 
L �, then(N; v) 
L �. a
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If we compare the above definition to the list of properties defining an abstract
classical logic, we see that it’s the Bisimilarity propertythat determines themodal
character of an abstract modal logic.

Obviously, ordinary modal formulas provide an example of anabstract modal
logic, but so does propositional dynamic logic. In contrast, the language of basic
temporal logic provides an example of a logic that isnot an abstract modal logic,
as formulas from basic temporal logic are not preserved under bisimulations.

Next, we need to say what we mean by ‘(L;
L) extends basic modal logic’ and
by closure under negation.

Definition 7.57 We say that(L;
L) extends modal logicif for every basic modal
formula there exists an equivalentL-formula, that is, if for each basic modal for-
mula � there exists anL-formula  such that for any model(M; w) we have(M; w) 
 � iff (M; w) 
L  .

Also, (L;
L) is closed under negationif for all L-formulas� there exists anL-formula:� such that for all models(M; w), (M; w) 
 � iff (M; w) 6
 :�. a
Of course, propositional dynamic logic is an example of an abstract modal logic
that extends (basic) modal logic.

Logics in the sense of Definition 7.56 deal with the same classof pointed mod-
els as (basic) modal logic, and only the formulas and satisfaction relation may be
different. This implies, for example, that intuitionisticlogic or the hybrid logics
considered in Section 7.3 are not abstract modal logics: their models need to sat-
isfy special constraints. The original Lindström characterization of first-order logic
suffers from similar limitations (by not allowing!-logic as a logic, for example).

As a final step in our preparations, we need to say what the notion of degree
means in the setting of an abstract modal logic.

Definition 7.58 (Notion of Finite Degree) An abstract modal logic has anotion
of finite degreeif there is a functiondegL : L ! ! such that for all(M; w), all �
in L, (M; w) 
L � iff ((M; w) � degL(�)); w 
L �:
If L extends (basic) modal logic, we assume thatdegL behaves regularly with
respect to standard modal operators and proposition letters. That is, ifM is a modal
operator (see Definition 1.12), thendegL(p) = 0 anddegL(M(�1; : : : ; �n)) =1 +maxfdegL(�i) j 1 � i � ng.

Finally, two models(M; w) and(N; v) for the same language areL-equivalent
if for every� in L, (M; w) 
 � iff (N; v) 
 �. a
Having a finite degree is a very restrictive property, which is not implied by the
finite model property (FMP). To see this recall that propositional dynamic logic
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has the FMP: it has the property that every satisfiable formula� is satisfiable on a
model of size at mostj�j3, where� is the length of�. However, it does not have a
notion of finite degree. To see this, consider the model(!;Ra; V ), whereRa is the
successor relation andV is an arbitrary valuation, and let� = [a�℄hai>; clearly(!;Ra; V ); 0 
 �. But for non 2 ! does the restriction(!;Ra; V ) � n satisfy�
at0. It follows thatPDL does not have a notion of finite degree.

Characterizing modal logic

We are almost ready now to prove our characterization result. The following lemma
is instrumental.

Lemma 7.59 Let (L;
L) be an abstract modal logic which is closed under nega-
tion. AssumeL has a notion of finite degreedegL. Let � be anL-formula withdegL(�) = n. Then, for any two models(M; w), (N; v) such that(M; w) and(N; v) aren-equivalent, we have that(M; w) 
L � implies(N; v) 
L �.

Proof. Assume that the conclusion of the lemma does not hold. Let(M; w), (N; v)
be such that(M; w) and(N; v) aren-equivalent, but(M; w) 
L � and(N; v) 
L:�.

By the Occurrence and Expansion properties we may assume that L = L(��),
whereL(��) is the finite language in which� lives.

By Proposition 7.53 we can assume that(M; w) and(N; v) are rooted such that
the roots have in-degree 0, while all other nodes have in-degree at most 1. Then((M; w) � n;w) and((N; v) � n; v) aren-equivalent, and((M; w) � n;w) 
L �
but ((N; v) � n; v) 
L :�. In addition ((M; w) � n;w) and ((N; v) � n; v)
both have in-degree 1 and roots of in-degree 0. By Proposition 7.55 it follows
that ((M; w) � n;w) and ((N; v) � n; v) are bisimilar — but now we have a
contradiction with the Bisimilarity property as((M; w) � n;w) and((N; v) � n; v)
are bisimilar but don’t agree on�. a
Theorem 7.60 Let (L;
L) extend modal logic. If(L;
L) has a notion of finite
degree, then it is equivalent to the modal language as definedin Definition 1.12.

Proof. We must show that everyL-formula � is L-equivalent to a basic modal
formula , that is, for all(M; w), (M; w) 
L � iff (M; w) 
L  . As before,
by the Occurrence and Expansion properties we may restrict ourselves to a finite
language. Moreover,� has a basic modal equivalent iff it has such an equivalent
with the same degree; so we have to locate the equivalent we are after among the
basic modal formulas whose degree equals theL-degree of�.

Assumen = degL(�). By Proposition 2.29 there are only finitely many (non-
equivalent) basic modal formulas whose degree equalsn; assume that they are all
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contained in�n. It suffices to show the following

if (M; w) and(N; v) agree on all formulas in�n, then they agree on�. (7.18)

For then,� will be equivalent to a Boolean combination of formulas in�n. To see
this, reason as follows. The relation ‘satisfies the same formulas in�n’ is an equiv-
alence relation on the class of all models; as�n is finite, there can only be finitely
many equivalence classes. Choose representatives(M1; w1), . . . , (Mm; wm), and
for eachi, with 1 � i � m, let i be the conjunction of all formulas in�n that are
satisfied by(Mi; wi). Then� is equivalent to

Wf i j (Mi; wi) 
L �g.
Now to conclude the proof of the theorem we need only observe that condition

(7.18) is exactly the content of Lemma 7.59.a
To conclude this section a few remarks are in order. First, the property of having a
notion of finite degree can be characterized algebraically in terms of preservation
under ultraproducts over the natural numbers; Theorem 7.60can then be reformu-
lated accordingly.

Second, in the proof of the Lindström Theorem the basic modal formula that is
found as the equivalent of the abstract modal formula� is in the same vocabulary
as�. This means, for example, that the only abstract modal logicover a binary
relation that has a notion of finite degree is the standard modal logic with a single
modal operator3.

Here, we have only covered the modal logics as defined in Definition 1.12; in
some cases extensions beyond this pattern can easily be obtained. As a first exam-
ple, consider the basic temporal language with operatorsF andP , wherex 
 Fp
(x 
 Pp) iff for somey, Rxy andy 
 � (Ryx andy 
 �). Considertemporal
bisimulationsin which one not only looks forward along the binary relation, but
also backward, and adopt the notion of height accordingly. Given the obvious def-
inition of anabstract temporal logic, standard temporal logic is the only temporal
logic over a single binary relation that has a notion of finitedegree.

7.7 Summary of Chapter 7I Logical Modalities: Logical modalities receive a fixed interpretation in every
model. Simple examples are the past tense operatorP , the global diamond E,
and the difference operator D. As well a enhancing expressivity, some of them
(notablyP and D) make it possible to prove general completeness theorems
using additional rules of proof.I Algebra of Diamonds: Some modal languages offer not just a single logical
modality but an entire algebra of diamonds. Good examples are PDL andBML .I Since and Until: The since and until operators are interesting in applied logic
because they enable us to specify guarantee properties. They are mathematically
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interesting because they are expressively complete over Dedekind complete to-
tal orders.I Completeness-via-Completeness: While deductive completeness of since and
until logic can be proved using standard modal techniques, for Dedekind com-
plete total order there is an interesting alternative: taking a detour via expressive
completeness.I Hybrid Logic: The basic hybrid language lets us refer to states using nominals,
atomic symbols true at exactly one state in every model. Somestronger hybrid
languages allow us to bind nominals.I Hybrid Proof Theory: We can define a rule of proof calledPASTE in the basic
hybrid language. This rule is essentially a sequent rule lightly disguised. With
its help, a frame completeness result covering all pure formulas can be proved
fairly straightforwardly.I Guarded fragment: As the standard translation shows, modalities are essentially
macros which permit restricted forms of quantification. Abstracting from this
insight leads to the guarded fragment, a decidable fragmentof first-order logic
with the final model property.I Packed Fragment: By taking this observation even further, and noting that the
mosaic method suffices to prove decidability, it is possibleto isolate an even
larger decidable fragment of first-order logic: the packed fragment. This frag-
ment also has the finite model property.I Multi-Dimensional Modal Logic: Multi-dimensional modal logic is essentially
modal logic in which evaluation is performed at a sequence ofstates, rather
than at a single state. By viewing variable assignments as sequence of states, it
is possible to view first-order logic itself as a multi-dimensional modal logic.I Lindström’s Theorem: Given a suitable (bisimulation centered) explication of
what an abstract modal logic is, our Lindström Theorem for modal logic says
that the general modal languages defined in Definition 1.12 are the strongest
ones to have a notion of finite degree.I Extended Modal Logic: In many ways, this chapter is badly named. Among
other things, we’ve just seen that not only it is possible to introduce global-
ity, more complex quantifier alternations in satisfaction definitions, names for
states, and evaluation at sequences of states, but we can do so without losing
the properties that made modal logic attractive in the first place. So forget the
‘extended’. As we said in the Preface:it’s all just modal logic!

Notes

A really serious guide to extended modal logic would have to cover the (vast)
literature on temporal logics, fixed point logics, and variants of PDL discussed in
the theoretical computer science literature, plus formalisms such as feature and
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description logic, and much else besides. We don’t have space to do all that, and
the following Notes stick to the six topics discussed in the text. Nonetheless, with
the help of the following remarks (coupled with a little judicious reference chasing)
the reader should be able to form a coherent map of territory.

Logical Modalities. It’s hard to precise about when the idea of adding fixed in-
terpretation operators to modal languages came to be seen asstandard. Certainly
the writings of Johan van Benthem (for example, his book on temporal logic, his
‘manual’ on intensional logic, and his influential survey ofcorrespondence theory)
played an important role. So did the new applications of modal logic, particularly
in computer science (once you’ve seenPDL it’s hard to believe that the basic modal
language is the be-all and end-all of modal logic). At any rate, by the end of the
1980s the idea that modal languages are abstract tools for talking about relational
structures — tools that it was not only legitimate, but actually interestingto extend
— was well established in both Amsterdam and Bulgaria. Nowadays this view is
taken for granted by many (perhaps most) modal logicians, and given this perspec-
tive the use of logical modalities is as natural as breathing.

Of course, many of the operators we now call ‘logical’ have been around a lot
longer than that. In a way, the global modality has always been there (after all its
just a plain oldS5operator). But when did it first emerge as anadditionaloperator?
We’re not sure. Prior used it on a number of occasions (see, for example, [369,
Appendix B4]), though sometimes Prior’s global modality isactually the master
modality2* discussed in Section 6.5 (that is, sometimes Prior views globality as
the reflexive transitive closure of the underlying relation).

But it seems fair to say that it was the Bulgarian-school who first exploited it
systematically: it’s the Swiss Army knife underlying theirinvestigation of BML,
and their work on hybrid logic. Goranko and Passy [198] is a systematic study of
the global modality as an additional operator, and is the source of Theorem 7.1, the
Goldblatt-Thomason theorem forML(3;E). The operator has also been studied
from an algebraic angle, being closely connected to the notion of a discriminator
variety; these classes display nice algebraic behavior andhave been intensively
investigated in universal algebra. For, in the context of boolean algebra with oper-
ators, having the global modality is equivalent to having a so-called discriminator
term; this is why in algebraic circles this modality is sometimes dubbed a ’unary
discriminator term’; see Jipsen [253] for some information. The basic complexity
results for the global modality were proved in Hemaspaandra’s thesis [412]. Inci-
dentally, the global modality is usually referred to as the ‘universal’ modality in the
literature. However the word ‘universal’ suggests that we are working with a box,
so we prefer the term ‘global’, which is appropriate for bothboxes and diamonds.

The history of the difference operator is harder to untangle. It is probably due
to von Wright [457] (who viewed it as a ‘logic of elsewhere’) and Segerberg gave
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an axiomatization in afestschriftfor von Wright (see [399]). Segerberg’s axioma-
tization, together with a more detailed completeness proof, was later published in
[401]. But Segerberg treats D as an isolated modality. The use of D as an additional
modality seems to have been proposed independently by Koymans [276, 277] and
Sain [389]. The difference operator is also discussed in Goranko [195]. For a sys-
tematic investigation of D as an additional, logical modality, see de Rijke [104].
The D-Sahlqvist theorem in the text is due to Venema [439]. Theorem 7.8 is an
unpublished result due to Szabolcs Mikulás.

BML is a Bulgarian school invention. The system is first described in Gargov,
Passy and Tinchev [173] (as part of a wide ranging discussionof extended modal
logic) and Gargov and Passy [172] concentrates onBML and gives proofs of the key
completeness and decidability results. See also the results on modal definability in
Goranko [195]. All these papers view modal languages as general tools for talking
about structures, very much in the spirit of the present book. The window operator
has an interesting independent history: van Benthem [37] used it as part of a logic
of permissions and obligations, Goldblatt [182] used it to define negation in quan-
tum logic, Humberstone [242] used it in a discussion of inaccessible worlds, while
Gargov, Passy and Tinchev [173] view it as a ‘logic of sufficiency’ that balances
the usual ‘logic of necessity’ provided by2. Complexity-theoretic aspects ofBML

have been studied and surveyed by Lutz and Sattler [310], while resolution-based
decision procedures for extensions ofBML and related languages are explored by
Hustadt and Schmidt [244].

As we pointed out in the text, bothBML and PDL are examples of modal lan-
guages equipped with highly structured collections of modal operators. The dy-
namic modal logic of De Rijke [112] is a further example, and many description
logics allow for the construction of complex roles (that is,accessibility relations)
by means of some or all of the booleans, converse, and sometimes even transitive
closure and least fixed point constructors; see Doniniet al. [123].

The algebraic counterparts of modal languages with structured collections of
modal operators can best be phrased in terms of multi-sortedalgebras, where the
(algebraic counterparts of the) modal operators provide the links between the sorts.
Kleene algebras [278] and Peirce algebras [108, 111] are twoimportant examples.
The former provide an algebraic semantics forPDL and consist of a boolean algebra
and a regular algebra together with systematic links between them that are used
to interpret the diamonds. The latter provide an algebraic semantics of dynamic
modal logic and consist of a boolean algebra and a relation algebra together various
links between that are, again, used to interpret the modalities in the language.

Since and Until. The invention of since and until logic was a major breakthrough
in the study of modal logic. Hans Kamp tells the story this way. In a semester-long
course Arthur Prior gave on tense logic at UCLA in the fall of 1965, when Kamp
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had just started his PhD, Prior stressed that theP andF operators operators were
strictly topological, and asked whether it was possible to develop some notion of
metric time within the framework of tense logic. Now, a first requirement on such
an enterprise is that it can express what it is for some proposition q to have been
true since the last time some periodically true propositionp was true. Trying to
find a genuinely topological tense logic in which these kindsof relations could be
expressed lead Kamp to the definitions of since and until. As the technical interest
of the new operators became clear, the original topologicalmotivation seems to
have been shelved (Kamp, personal communication, remarks that ‘The question
of how to embed a logic of metric temporal notions within a topological tense
logic unfortunately never got properly off the ground.’). Kamp first showed thatP andF were not capable of expressing since and until, and eventually succeeded
in proving Theorem 7.12(i), the expressive completeness ofsince and until logic
over Dedekind complete total orders (see his thesis [263]).At that time, deductive
completeness was the dominant interest in modal logic. Kamp’s result showed that
the neglected topic of modal expressivity deserved furtherattention, and can be
regarded as a precursor to the study of correspondence theory that emerged in the
1970s.

The next step was taken by Dov Gabbay. Kamp’s result was clearly important,
but his direct proof was complex, and although Jonathan Stavi [415] succeeded
in providing a direct proof of Theorem 7.12(ii), it was not obvious how proceed
further. Matter were greatly simplified when Gabbay introduced the notion ofsep-
arability (see [157, 159]). Roughly speaking, a language is separableover a class
of models if every formula is equivalent to a boolean combination of atomic for-
mulas, formulas that only talk about the past, and formulas that only talk about
the future. This idea drastically simplifies the proofs of Theorem 7.12(i) and Theo-
rem 7.12(ii), and opens the way to more general investigations. Nowadays a variety
of techniques are used for proving expressive completenessresults for modal (and
other) languages; game-based approaches (see Immerman andKozen [246]) have
proved particularly useful. The best introduction to expressive completeness is
the encyclopedic Gabbay, Hodkinson, and Reynolds [163]; both separability and
game-based proofs are discussed. It also contains many other results on since and
until logic and a useful bibliography.

But what really made the until operator so popular is the simple observation
made in the text: it offers precisely the what is needed to express guarantee prop-
erties (this was first noted in Gabbay, Pnueli, Shelah, and Stavi [167]). Nowadays
until may well be the single best known modal operator (at least in computer sci-
ence) and it occurs in both in its original form, and in a number of variant forms
in the study of linear and branching time temporal logics (see Clarke and Emer-
son [92], Goldblatt [183]).

Good discussions of step-by-step completeness proofs for since and until can
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be found in Burgess [76] and Xu [458]. The classification of properties of flows
of time (in terms of safety, liveness, and guarantees) referred to in Section 7.2
can be found in Manna and Pnueli’s textbook [318] on using temporal logic for
specifying concurrent and reactive systems. Theorem 7.19 is due to Venema [438];
the strategy of using expressive completeness to obtain axiomatic completeness
results goes back at least to Gabbay and Hodkinson [164].

One final remark: in spite of the fact that its satisfaction definition makes use of a
more complex patterns of quantification, the since and untiloperators are genuinely
modal. In particular, the notion of bisimulation can be adapted to these operators:
the only complication is that, instead of the simple ‘complete the square’ idea il-
lustrated in Figure 2.3 (65), bisimulations now need to match relational stepsplus
intermediate intervalsin suitable ways. Kurtonina and de Rijke [295] contain a
solution to this issue as well as a survey of earlier proposals.

Hybrid Logic. Arthur Prior introduced and made systematic use of hybrid logic;
see Prior [369] (in particular, Chapter 5 and Appendix B.3),several of the papers
in Prior [370], and the posthumously published Prior and Fine [371]. Prior’s sys-
tems typically allowed explicit quantification over statesusing8 and9, and con-
tained the global modality. Technical aspects of such languages were explored in
Bull [71], an important paper, which among other things notes that pure formulas
give rise to easy frame completeness results. In the mid 1980s Passy and Tinchev
independently reinvented the idea of ‘names as formulas’. Their earliest paper
[360] added nominals and the global modality to a rich version of PDL; in [361]
they considered8 and9 (again in the setting of PDL); and [362], their beautiful
essay on hybrid languages, remains one of the key papers on hybrid languages.

The subsequent history of hybrid languages revolves aroundattempts to find
well-behaved sublanguages of such strong systems. The mostobvious way to do
this is one explored in the text: treat nominals as names, rather than variables open
to binding, and keep the underlying modal language relatively weak. Early papers
which explore this option include Gargov and Goranko [171] (the basic modal
language enriched with nominals and the global modality) and Blackburn [52] (the
basic tense language enriched with nominals alone). The basic hybrid language
discussed in the text can be viewed as an interesting compromise between simply
adding nominals to the basic modal language (which makes theaxiomatics messier,
as Exercise 7.3.7 shows) and adding both nominals and the global modality (which
raises the complexity to EXPTIME-complete). A proof of Theorem 7.21 (that the
basic hybrid language has a PSPACE-complete satisfiabilityproblem) can be found
in Areces, Blackburn and Marx [14]. For a more detailed look at the complexity
of hybrid logic, see [13] by the same authors. Theorem 7.29 isa modification of
results proved in Blackburn and Tzakova [61]. It simplifies similar a result proved
in Gargov and Goranko [171] with the aid of the global modality.
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But the idea of binding variables to states turns out to be important. Binding
admits a rich expressivity hierarchy. For a start, even if binding with 8 and 9
is allowed, when there are no satisfaction operators in the language, the result-
ing language doesnot have full first-order expressivity; see Blackburn and Selig-
man [57]. Moreover, as we mentioned in the text, the# binder simply binds vari-
ables to thecurrentstate; in effect, it lets us create a name for the here-and-now (see
Goranko [196], Blackburn and Seligman [57, 58], Blackburn and Tzakova [61]). If
we enrich the basic hybrid language with the# binder we obtain a hybrid language
which corresponds to precisely the fragment of the first-order correspondence lan-
guage which is invariant under generated submodels. This isproved in Areces,
Blackburn and Marx [14] by isolating notions of bisimulation suitable for various
hybrid languages and proving a characterization theorem. The paper also links
these notions of bisimulation to restricted forms of Ehrenfeucht-Fraı̈ssé games.

Hybrid logic provide a natural setting for modal proof theory. Seligman [404]
is the pioneering paper here, and Seligman [405] discusses satisfaction operator
based natural deduction and sequent systems. Blackburn [55] defines satisfaction
operator driven tableau and sequent systems and uses Hintikka sets to prove an
analog of Theorem 7.29. Tzakova [431] combines the use of nominals with the
prefix systems of Fitting [145]. Demri [115] defines a sequentcalculus for the
basic tense language enriched with nominals, and Demri and Gore [116] introduce
a display calculus for the basic tense language enriched with nominals and D.

Hybrid logics turn up naturally in a number of applications.The AVMs used
in computational linguistics (recall Example 1.17) can be viewed as modal log-
ics: path re-entrancy tags are treated as nominals (see, forexample, Blackburn and
Spaan [59]). And while it has long been known that description logics are nota-
tional variants of modal logics, this relation only holds atthe level of concepts.
So-called A-Box (or assertional) reasoning — that is, reasoning about how con-
cepts apply to particular individuals — corresponds to a restricted use of satisfac-
tion operators, while the ‘one-of’ operators used in some versions of description
logic are essentially disjunctions of nominals; see Blackburn and Tzakova [60],
Areces and de Rijke [15], and Areces’s PhD thesis [12]. Nominals also turn up in
the Polish tradition of modal logics for information systems and rough-set theory:
see Konikowska [274, 275]. They also provide a natural modelof tense and other
forms of temporal reference in natural language (see Blackburn [54]).

A final remark. The basic hybrid language shows that sorting is interesting in
the setting of modal logic — so why not introduce further sorts? In fact, this
step was already taken in Bull [71] who introduced a third sort of atomic symbol:
path nominals, true at precisely the points belonging to some path throughthe
model. For more information on hybrid logic, see the Hybrid Logic home page at
www.hylo.net. For a recent ‘manifesto’ on hybrid logic that touches on most
of the themes just mentioned, see Blackburn [56]
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The Guarded Fragment. The guarded fragment was introduced by Andréka, van
Benthem and Németi in 1994. The roots of the decidability proof date back to
1986, when Németi [345] showed that the equational theory of the class of so-
called relativized cylindric set algebras is decidable. The first-order counterpart of
this result is that a certain subfragment of the guarded fragment is decidable.

The importance of this result for first-order logic was realized in 1994 when
Andréka, van Benthem and Németi introduced the guarded fragment and showed
that many nice properties of the basic modal systemK generalize to it. In par-
ticular, the authors established a characterization in terms of guarded bisimula-
tions, decidability and a kind of tree model property. The journal version of their
paper is [9]. Some time later van Benthem, was able to generalize some of the
results, introducing the loosely guarded fragment in [433]. The slightly more gen-
eral packed fragment was introduced in Marx [323] in order togive a semantic
characterization in terms of packed bisimulations. (An example of a packed sen-
tence which is not equivalent to a loosely guarded sentence in the same signature
is 9xyz (9wCxyw ^ 9wCxzw ^ 9wCzyw ^ :Cxyz).)

The mosaic based decision algorithms of Andréka, van Benthem and Németi
were essentially optimal: a result established by Grädel [200]. In this paper, Grädel
also defines and establishes the loose model property for theloosely guarded frag-
ment. Our definition of a loose model is based on the definitionof a tree model
given there. Grädel and Walukiewicz [203] showed that the same bounds obtain
when the guarded fragment is expanded with least and greatest fixed point oper-
ators. Marx, Mikulás and Schlobach [325] defined a PSPACE-complete guarded
fragment with the finite tree model property. This fragment satisfies both locality
principles.

The finite model property for the guarded fragment, and several subfragments of
the packed fragment, was established in an algebraic setting by Andréka, Hodkin-
son and Németi [7]. Grädel [200] provides a direct proof for the guarded fragment.
The remaining open question for the full packed fragment wassolved affirmatively
by Hodkinson [236]. All these results are based on variants of a result due to Her-
wig [228]. The use of Herwig’s Theorem to establish the finitemodel property
and to eliminate the need of step-by-step constructions originates with Hirschet
al. [232].

Multi-Dimensional Modal Logic. The idea of evaluating modal languages at se-
quences of points, rather than at the points simpliciter, isextremely natural, so it
is no surprise that over the years modal logicians with very diverse interests have
devised multi-dimensional systems.

It seems that logicians interested in natural language werefirst off the mark.
Natural language utterances are so context dependent, thatevaluating at sequences
of points (each coordinate modelling a different aspect of context) proved a useful
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idea. Evaluation at pairs of points is built into Montague’s[342] general framework
for natural language semantics. Kamp’s [264] classic analysis of the word ‘now’
uses a second coordinate to keep track of utterance time. Vlach [445] provided an
analysis of the word ‘then’, and in a series of papers,Åqvist and co-workers [11]
developed a number of rich multi-dimensional modal logics for analyzing natu-
ral language temporal phenomena. Before long, such systemswere subjected to
rigorous logical investigation: see, for example, Segerberg’s elegant decidability
and completeness result in [398], and Gabbay’s work on expressiveness and other
topics (much of which reappeared in the later work by Gabbayet al. [163]).

Somewhat later, a rich source of inspiration came from logicitself. Some work
here, such as the sorted modal logicPREDBOXof Kuhn [293], fitted in the tradition
of Quine-style first-order logic without variables, but most of it was linked, one
way or another, with the algebraic logic framework of the Tarskian school (see the
Notes of Chapter 5). This certainly applies to the multi-dimensional logics that we
presented in Section 7.5. Venema [436], from which our Theorem 7.51 originates,
made the connection between modal logic and cylindric algebras. Subsequent re-
search drew on existing ideas on relativized cylindric algebras (see Németi [345])
to use the modal framework to ‘tame’ first-order logic and itsfinite variable frag-
ments (see our discussion of the abstract and relativized assignment frames in the
text; more information on this program can be found in van Benthem [47] or
Mikulás [335]). This line of work is closely related to arrow logic, which is a
multi-dimensional modal logic in its own right (see Marxet al. [324] for more
information) and in fact this strand of work ultimately leadto the isolation of the
guarded fragment. All of these (and more) multi-dimensional modal logics are cov-
ered in the monograph Marx and Venema [326]; readers interested in complexity
results should consult Marx [322].

Computer scientists have different motivations for studying multi-dimensional
modal logics. In order to build formal models of an application domain, they
need to take account of various features simultaneously. Ofthe wealth of litera-
ture on this topic we’ll just mention Faginet al. [133], which concentrates on the
combination of temporal and epistemic logics in the contextof distributed systems.
Such applications have led logicians to study various ways of constructing complex
logics from relatively simple ones. A particularly interesting and mathematically
non-trivial branch of multi-dimensional modal logics arises if one studies a modal
language with various modal operators over a semantics in which the frames are
cartesian products of frames for the individual operators.This area of so-called
product logics, which has an early predecessor in Shehtman [406], has recently
become very active; a monograph Gabbayet al. [153] is on its way.

Finally, multi-dimensional modal logic remains one of the most philosophically
important branches of modal logic. Important references include Kaplan [269,
270], Stalnaker [414], and Chalmers [88]
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The Lindstr öm Theorem for Modal Logic. Theorem 7.60, a Lindström-type
characterization of the modal languages defined in Definitions 1.9 and 1.12 is due
to De Rijke [107]; the result was obtained as part of a generalprogram to come up
with modal counterparts of model-theoretic results in first-order logic [106]. The
original first-order version of Lindström’s Theorem was first presented in Lind-
ström [309]. The original result states that, given a suitable explication of a ‘clas-
sical logic’, first-order logic is the strongest logic to possess the Compactness and
Löwenheim-Skolem properties; it formed an important source of inspiration for
the area of model-theoretic logics [25]. Definitions of the abstract notion of a logic
can be found in Chang and Keisler [89] and in Barwise [24]. A very accessible pre-
sentation of Lindström’s Theorem for first-order logic canbe found in Doets [119,
Chapter 4].


