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Extended Modal Logic

As promised in the preface, this chapter is the party at tleoéthe book. We've
chosen six of our favorite topics in extended modal logid &ae’re going to tell
you a little about them. There’s no point in offering detdil@dvice here: sim-
ply read these introductory remarks and the following Ceatuide and turn to
whatever catches your fancy.

Roughly speaking, the chapter works it's way from fairly cagte to more ab-
stract. A recurrent theme is the interplay between modalfigstdorder ideas. We
start by introducing a number of importdogical modalities(and learn that we've
been actually been using logical modalities all throughltbek). We then exam-
ine languages containing tlenceand until operators, and show that first-order
expressive completeness can be used to show modal dedcmtiydeteness. We
then explore two contrasting strategies, namely the glyatederlyinghybrid logic
(import first-order ideas into modal logic, notably the &@pito refer to worlds) and
the strategy that leads to thaarded fragmenof first-order logic (export the modal
locality intuition to classical logic). Following this westussmulti-dimensional
modal logic(in which evaluation is performed at a sequence of stated)sae that
first-order logic itself can be viewed as modal logic. We dode by proving a
Lindstrom Theorenfor modal logic.

Chapter guide

Section 7.1: Logical Modalities (Basic track)Logical modalities have a fixed in-
terpretation in every model. We introduce two of the mostangnt (the
global modality and thedifference operatgrand briefly discus8oolean
Modal Logic(a system which contains an entakyebra of diamonds

Section 7.2: Since and Until (Basic track)We introduce the since and until op-
erators (and their stronger cousins, 8tavi connectivgsdiscuss the ex-
pressive completeness results they give rise to, and ugsessige com-
pleteness to prove deductive completeness.

415
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Section 7.3: Hybrid Logic (Basic track) Hybrid languages are modal languages
which can refer to worlds. They do so using atomic formuldedaom-
inals which are true at exactly one world in any model. We introdilnee
basic hybrid language and discuss its completeness theory.

Section 7.4: The Guarded Fragment (Advanced trackds is clear from the stan-
dard translation, modal operators perform a ‘guarded’ fofrquantifica-
tion across states. What happens when this idea is expartédttorder
logic and generalized? This section provides some answers.

Section 7.5: Multi-Dimensional Modal Logic (Advanced tr&x By viewing as-
signments as possible worlds and quantifiers as diamon@scam treat
first-order logic itself as a modal formalism. In fact, olox Tarskian
semantics for first-order logic provides a prime example aftrdimen-
sional modal logic: formulas are evaluated at a sequenceinfg

Section 7.6: A Lindstéom Theorem for Modal Logic (Advanced track)As a fa-
mous theorem due to Lindstrom tells us, any logic satigfyeomplete-
ness, compactness, and Lowenheim Skolem is essentiathpfaler logic.
Is there an analogous abstract characterization of modaiio

7.1 Logical Modalities

Pure first-order logic has a significant expressive weakngsgsot strong enough
to express the concept of equality in arbitrary structuist because equality is
such an important relation, logicians introduce a spedighry relation symbol
(namely =) andstipulatethat it denotes the equality relation. As the interpretatio
of = is fixed, and as the relation it denotes is so fundametitalequality symbol
is called dogical predicate

Logical modalities trade on the same idea. Are there impor&lations which
ordinary modal languages cannot express? Very well theis: ddd new modal-
ities and stipulate that they be interpreted by the relatioiguestion. In this
section we’ll discuss two of the most important logical migess: the global
modality (which is interpreted by the relatio” x W) and thedifference oper-
ator (which is interpreted by#, the inequality relation). We'll also make a few
remarks abouBoolean Modal Logi¢BML), a system containing an entire family
of logical modalities.

But before going any further, let's get one thing absolutdbar: we've been
using logical modalities all through the booklere’s the simplest example. Sup-
pose we are working with the basic modal language. Now, farynpairposes we
may be happy simply using to talk about the relatiol® — but sometimes we
may want to talk abouR?’, the converse of?, as well. Now, we know (see Exer-
cise 2.1.2) that this can’t be done in the basic modal langiusg we have to add
a new backward-looking modality as a primitive; doing socofirse, gives us the
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basic temporal language. But note: den’t have to bring in the concept of time
to justify this extension. If a binary relatioR is important, its converse is likely
to be too — so it's simply common sense to consider addingraata for? . In
short, the ‘temporal operatoP is really a logical modality.

The other important exampleP®L. To motivatePDL we told a story about pro-
grams and transition systems — but a more abstract motivetioot only possible,
it's more satisfying. The point is this. As soon as we fix a@dilon of relations
R, regular algebra is staring us in the face: we can combirsethaations using
union and composition, and form transitive closures. Anydeta@ontaining the
initial R,, relations implicitly contains many other interesting telas as well —
so it's natural to add extra modalities to deal with them i}, and doing so
yields PDL. As this example shows, we can go way beyond the idea of adding
single new logical modality: we can add an entigebra of diamondsWe'll see
another example of this when we discess. .

The global modality

Throughout the book we've emphasized the locality of modgid, and for many
purposes local languages are ideal. For example, suppdse waking with a

modal language for talking about computer networks, anldiglanguage> means
Server 1 is activeandy meansServer 2 is active. Thenwe can
check whether the network makes it possibleSer ver 1 to be active by check-
ing whetherg is satisfiable, and we can check whether it is possible&sérver

2 to be inactive by testing for the satisfiability ef).

But suppose we want to know WheneverSer ver 1 is active, then so is
Server 2. There’s no obvious way to test this. Testing for the sabdity
of ¢ — ¢ doesnot answer this question: 6 — 1 is satisfiable, this only means
that there is a state where eithers false ory is true. We want to know whether
everystate that makeg true is also a state that makestrue. This is clearly a
global query. What are we to do?

Here’s an elegant answer: enrich the language languagdheitiiobal modal-
ity. To keeps things simple, suppose we’re working in the basidahlanguage
over some fixed choice of proposition letters; let's cal$ thinguagéviL (<). We’'ll
now add a second diamond, written E, and call the resultingdageML (<, E).
The interpretation of E ifixed in any modelt = (W, R, V'), E must be inter-
preted using the relatio” x W. That is:

M, w I+ Eg iff there is au € W such thadlt, u IF ¢.

Thus E scans the entire model for a state that satigfiéts dual Ap := —=E—¢ has
the following interpretation:

M, w - Ag iff M, u Ik ¢, for all u € W.
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That is, Ap asserts thab holds atall points in the model. In effect, A brings the
metatheoretic notion of global truth in a model down into dgect language: for
any model?t, and any formulap, we have thatit I ¢ iff A ¢ is satisfiable in
M. We'll call E theglobal diamond and A theglobal box When it's irrelevant
whether we mean E or its dual, we’ll simply sgipbal modality

It should now be clear how to handle the computer network Iprob to test
whetherSer ver 2 is active wheneveBer ver 1 is, we test the satisfiability
not of ¢ — 1, but of A(¢ — ). This query has exactly the global force required.

Well — this looks appealing. But what are the properties @ (obviously
richer) new language? Maybe introducing the global mogaléstroys the prop-
erties that make model logic attractive in the first place’W&/enade an important
change, and we need to take a closer look at the consequences.

Now, we could begin by discussing the sublangukti§ E) — but this is not
very interesting (it's easy to see that E is just@mmodality). Anyway (as our
server example shows) the main reason for adding logicalafiias is to have
them available aadditional tools. So the real question is: what ddd& (<, E)
offer thatML(<>) doesn't? The most obvious answeregpressivity Let'’s first
consider expressivity at the level of frames:

(R=W?) Ep — Op

(R # 2) ECT

(FzVy—-Rxy) EO L

(Vz3y Ryx) p — EOp

(wWl=1) Ep—p

(W] < n) N Epi = Vi Epi A py)

(R is trichotomou} (p A Og) — A(gVpV Op)
(R is well-founded A(Tp — p) — p

None of the frame classes listed is definabldiib(<), but (as we ask the reader
to check in Exercise 7.1.1) thdL (<, E) formulas to their right do define the cor-
responding property.

Where does this extra frame expressivity come from? Fronalizing the no-
tion of generated submodel (generatingldhx W always yieldsiW x W) and
rendering inapplicable the notion of disjoint union (fowyatisjoint frames W, R)
and(W',R"), W x W)W (W' x W') £ (W W W') x (W wW"). By insisting
that E be interpreted usifdg” x W, we've trashed two of the classic modal preser-
vation results and thereby bought ourselves more expirgssifow much more?
For first-order definable frame classes, the answer is etegan

Theorem 7.1 A first-order definable class of frames is definable in(MILE) iff it
is closed under taking bounded morphic images, and refldiredilier extensions.
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This isexactlythe Goldblatt-Thomason Theorem — minus closure underidisjo
unions and generated subframes.

There is also a gain of expressivity at the level of models @érver example
makes this clear, and we already know from Section 2.1 tleagkbbal modality
is not definable in the basic modal language). Moreover, went@asure the gain
using our old friends: bisimulations. It's an easy exer¢sadapt the definition
of bisimulation for the basic modal languageMh. (<, E), and a rather more de-
manding one to prove a van Benthem style characterizatguitrior the language.
The reader is asked to attend to these matters in Exercib@sand 7.1.4.

What about completeness? The set of v8did(<, E) formulas can be axioma-
tized as follows. Take the minimal normal logicé#nand E (that is, apply Defini-
tion 4.13 to this two-diamond similarity type), and add tb#dwing axioms:

(reflexivity p — Ep
(symmetry p — AEp
(transitivity) EEp — Ep
(inclusion <$p — Ep

Note that first three axioms are the familiar T, B, and 4 axigwritten in E and A
rather than® andd). We discussedhclusionin Example 1.29(4). We'll call this
logic K.

Theorem 7.2 K, is strongly complete with respect to the class of all frames.

This theorem says that to lift the minimal logdic (for the basic modal language)
to ML(<, E), we need merely treat the global modality as a normal opetaéd
satisfies four further axioms. In fact, we can ity canonicalML(<) logic in

this way. IfKI" is a normal modal logic iML(<), let K,I" be the normal modal
logic in ML(<, E) obtained by treating E as a normal operator and adding ttre fou
axioms listed above. Then:

Theorem 7.3 Let I" be a set of ML) formulas, and lef be the class of frames
that I" defines. IfKT" is canonical, therK,I' is strongly complete with respect to
F.

Proof. Let M = (W, R, Rg, V') be the canonical model fd€,I". Note that as
KT C K,I', we have thatW, R ) belongs td/, for KT is canonical. Indeediny
generated subframe Of, R ) belongsF, for validity in the basic modal language
is closed under generated subframes.

Given aK I'-consistent set of sentencé§ use Lindenbaum’s Lemma to ex-
pand it to anK,-MCS Y. By the Canonical Model Theoremt, ¥ |- X.
Now, (reflexivity), (symmetry, and (ransitivity) are canonical formulas, thugg
is an equivalence relation. And although there is no guaeatitatRg is W x W,
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this is easy to correct: leot’ = (W', ’<>,R’E, V') be the submodel dit gener-
ated byX'* using theRg-relation. ThenR’E = W' x W', so we have the global
relation we need. Furthermore, becausénefusion R C R, thusOt' is also a
generated submodel @it with respect taR¢, hencedt’, ¥ I+ X. It only remains
to observe that (by our initial remark§)i”’, R.,) is in F, hence the result follows.
(Theorem 7.2 is the special case in which= @.) -

Example 7.4 Suppose we're working witML (<) over transitive frames (so the
relevant logic isK4, which is canonical). Now, we may want to state global con-
straints on models, or insist that certain information k@dmewhere or other, and
of course we can do this if we add the global modality. But h@wa obtain a
complete logic for transitive frames in the enriched larggia

Simply enrichK4 by treating the global modality as a normal operator and
adding the ieflexivity), (transitivity), (symmetry, and (nclusior) axioms. Doing
so yieldsK ,4, and by the theorem just proved this logic is strongly corep¥eith
respect to the class of transitive framesd

What about decidability and complexity? We briefly met thebgll modality in
Section 6.5, and we saw that its global reach makes it pestiblorce the exis-
tence of gridlike models. This led to undecidability resutir languages contain-
ing several diamonds, and it's not difficult to adapt theggiarents to find frame
classes with decidabl®lL(<>) logics and undecidabl®¥IL(<, E) logics (we give
such an example in Exercise 7.1.5). Moreover, although ciddbility does not
strike over the class of all framés,; is probably more complex thaf, for K, has
an EXPTIME-complete satisfiability problem (the reader aslsed to prove this in
Exercises 6.8.1 and 6.8.2) whiteis PSPACE-complete (see Section 6.7). On the
other hand, there is a rather nice transfer result conagmhia filtration method:
if we can prove the decidability of BIL(<) logic by using filtrations to establish
establish the strong finite frame property, then we can alssodafter adding the
global modality. For example, it follows that the lodig,4 (see Example 7.4) is
decidable. We'll state and prove a stronger version of #ssiit when we discuss
the difference operator.

All'in all, the global modality is a strikingly natural extsion of modal logic —
and at first glance this seems surprising. How can somethiraipgiously global
blend so well with the locality of modal logic? Basically,daeise the enriched
language still takes aimternal perspective on relational structure. Although we
now have a global operator at our disposal, we still placeidasinside models
and evaluate them at a particular state. To put it another thayintuition that
a modal formula is an automaton scanning accessible ssatemarkably robust:
even if we add a special automaton programmed to reglaglates as accessible,
we retain much of the characteristic flavor of ordinary mddgic.
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A lot more could be said about the global modality. For a st#g natural
when viewed from an algebraic perspective (it gives riseliszriminator vari-
etie9. Moreover, the global modality can be added to many richedahsystems,
including PDL and the hybrid and multi-dimensional logics discussed latéhe
chapter, often without raising the computational compleffior examplePDL is
EXPTIME-complete, and adding E doesn’t change this). Bufrfore information
the reader will have to consult the Notes and Exercisest'otime to discuss an
even more powerful logical modality.

The difference operator

At the bottom of every toolbox lies a heavy cast-iron hammigés not the sort
of tool we use every day — for delicate jobs it's inapprom@jaand we may feel
slightly embarrassed about using it at all. Still, theralivays come a time when
something simply won't budge, and then we find ourselveshiegcfor it. Think
of the difference operator as that hammer.

Once again, we'll start withMML(<). We'll add a second diamond D, thigfer-
ence operatarand call the resulting languadéL (<, D). The interpretation of D
is fixed in any modeb)t = (W, R, V'), D must be interpreted using the inequality
relation#. That is:

M, w I- D¢ iff there is au # w such thatit, u IF ¢.

Thus the difference operator scans the entire model lodkingdifferentstate that
satisfiesp. Its dualD := —-D—¢ has the following interpretation

M, w - Do iff M, u Ik ¢ for all u # w.

In what follows we discusML(<, D), but the sublanguagelL (D) is quite inter-
esting in its own right, and we ask the reader is asked to exjlo Exercise 7.1.6.
Using the difference operator, we can define the global nitgd&¢ := ¢V Do.
Thus all our earlier examples of frame classes definabldLin®, E) are definable

in ML(<, D) too. ButML (<>, D) can define even more:

(irreflexivity)  <p — Dp

(antisymmetry (p A —=Dp) — O(Cp — p)

(Fzy(z #y)) DT

(W] >n) A(\/1§ignpz’) - Ev1§i§n(pi A Dp;)

None of these frame classes is closed under bounded morphges hence (by
Theorem 7.1) none of them is definableNth.(<, E); but it is easy to see that the
listedML(<, D) formulas successfully capture them. Incidentally, we rexeady
seen thaML(<, E) can defingWW| < n, thus asML(<, D) can defindW| > n,
the difference operator can count states, at least as fearagsare concerned; in
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Exercise 7.1.7 we ask the reader to investigate whethen itcant ovemodelsas
well. Furthermore, note the A —Dp antecedent in the definition of antisymmetry.
This is only true wherp is true at exactly one state in the model: in effect we are
using the power of D to forcg to act as ‘name’ for a state; we’'ll put this power to
good use shortly.

What about completeness? The set of vMid(<, D) formulas can be axioma-
tized as follows. Take the minimal normal logicdnand D, and add the following
axioms:

(symmetry p — DDp
(pseudo-transitivity DDp — (p V Dp)
(D-inclusion Op = pV Dp

We'll call this logic K. Now, it's not particularly difficult to prove the complete-
ness ofK, (we ask the reader to do so in Exercise 7.1.8) — but it's hattozm
with K, (we have to do more than simply take a generated submodeljhand
result doesn’t extend to stronger logics so easily (there’'sbvious analog of The-
orem 7.3). Moreover, it’s easy to find frame incompletenessits, indeed we can
even find them in the sublangualyi(D)! Things aren't looking too good ...

Enter the hammer. When we discussed rules for the undefi(aéttion 4.7) we
learned that proof rules which rely on ‘names’ can lead teegaiframe complete-
ness results. And as we noted above, the difference opesaporverful enough
to simulate state names, thus we can formulate the followirhg of proof (the
D-rule):

F(pA—-Dp)—0
)

(Herep is a proposition letter that doesn’t occurfn The intuitions underlying
this rule are analogous to those underlying ke rule discussed in Section 4.7,
and we’ll leave it to the reader to verify that it preservekdity.) And now for a
remarkable result. Thé&-rule neatly meshes with our earlier work on Sahlqvist
formulas to yield one of the most general completenessteeknbwn in modal
logic, the DSahlqgvist theorem

Here we only formulate a version in the basic temporal laggu&onsider the
language with operatots, P and D; let, for a sel’ of axioms in this logicK;; X
be the normal modal logic generated by the axioms of basipadeah logic, the
D-axioms and D-rule given above, and the formulag’in

Theorem 7.5 Let X' be a collection of Sahlqvist formulas in the basic temporal
language. Thei ;X is strongly sound and complete with respect to the class of
bidirectional frames defined by (the first-order frame cependents of) the axioms

in X.



7.1 Logical Modalities 423

Proof. We will prove weak completeness only. The first step of theopre to
prove the existence of a collectiéi of maximal consistent sets such that

(i) eachI"in W contains a name, that is, a formula of the fopm —D¢,
(i) for eachI” in W and each formuld™y) € I, there is aA in W such that
I"and A are in the canonical accessibility relati®j, for F'; and likewise,
for the operatorg® and D.
(i) for each pair of distinct pointd” and A in W we haveRE)FA.

All of this can be proved in the style of Proposition 4.71.

It easily follows from (i) and (iii) above thaR‘b is the inequality relation ofi’.
But then the model ol given byV (p) = {I" € W | p € I'} is named that
is, for every point in the model there is a formula which istamly at this point,
see Definition 4.76. However, condition (ii) allows us to yeaa Truth Lemma
which implies that all axioms of the logic are true throughthe model. But then
it follows from Theorem 4.77 that the Sahlqvist axioms arévan the underlying
frame as well.

The pinch of Theorem 7.5 lies in the fact that the first-ordamfe correspondents
it mentions usenequality for the ‘relation symbol’ referring to the accessibility
relation of D. This means that we can automatically axioneafiame properties
like irreflexivity or antisymmetry. The reader doubt the fuseess of this: isn’t
the logic of the class of irreflexive frames is identical te thgic of the class of
all frames? True, but this may change when we consider ixreiig in addition
with other properties. Conditions like irreflexivity, urfdeble in themselves, may
nevertheless have ‘side effects’ so to speak. What we mdhatishere are frame
classeX such that the logic oK differsfrom the logic of the irreflexive frames in
K. In such cases the above theorem can be of tremendous help.

In a surprisingly large number of cases we find ourselves ensituation that
over a certain class of frames, the difference operatdefiiablein the underlying
modal language. For example, over the class of strict lioeders, the temporal
formula F'p Vv Pp holds at a point if and only ip holds at adifferentpoint. In
general, we say that a formuldp) acts asD on a frame§ if § I d(p) <> Dp; if
d(p) acts as the difference operator on every frame in a ¢{atsen we say thai
definesD overK.

Definability of the difference operator is of great use foioaxatizability, as the
following result shows. For a formulé(p), let K;; ¥ be the §’-version of K4,
that is, the logic in the language without the D-operatoantsd by replacing, in
all axioms and derivation rules &, every formula D with §(¢).

Theorem 7.6 Let ¥’ be a collection of Sahlqvist formulas. ThEp; X is strongly
sound and complete with respect to the class of those bittired frames on which
Y is valid and on which acts as the difference operator.
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In the section on multi-dimensional modal logic we will seeagplication of this
theorem; for a proof, we refer the reader to Exercise 7.1 ©wWexamine another
name-driven proof rule (calleehsTE) in detail when we discuss hybrid logic. First
we turn to decidability issues concerning the differencerajor.

ML(<,D) is a strong language. As it can define the global modakty,must
have an EXPTIME-hard satisfiability problem (in fact, thelpem is EXPTIME-
complete; see Exercise 7.1.10) and it is even easier to fineaable logics
than in ML(<, E). Nonetheless, decidability is often retained. In particulf
the ML (<) logic of a class of frames can be proved decidable by usingratiin
argument to establish the strong finite frame property, theML (<, D) logic of
that same frame class can be proved decidable in the samé.etayprove this.

Definition 7.7 Let A be a logic, and leE be a class of frames fot. We say that
A admits filtrations orF if for any model9t which is based on a frame F and
for any finite subformula closed s&t of ML(<) formulas, there is a filtratiopt/
of M through X which is based on aframe bh

Theorem 7.8 Suppose thaf is a class of frames, and thatg (the set of all
ML(<)-formulas valid onF) admits filtrations onF. Then the IogicACFl (the set
of all ML(<, D)-formulas valid onF) has the strong finite frame property with
respect tar.

Proof. Let ¢ be aML(<, D)-formula satisfiable in a modéit = (W, R,V) of
which the underlying framélV, R) is in F. We want to show that is satisfiable in
anF-frame of bounded size.

Let X be the set of subformulas 6f First consider the relatios s, which holds
between two points if they satisfy the same formulasiin As the points of our
finite model we would like to take the equivalence classesisfrelation but this
would not work out well (it is instructive to see how the prauffthe filtration
lemma fails in the inductive step of the difference openatdihe key idea of the
proof of the theorem is to solve this problem by splitting leaquivalence class
in two parts — unless the original class is a singleton. Taesehthis we add a
new proposition letted to the language and we makérue at exactly one point of
each equivalence class. We would then like to filtrate the megel according the
equivalence relatioee x4y -

There is still a problem however. we can only guarantee thatunderlying
frame of the filtrated model is iR if we filtrate through a set dfIL(<>) formulas.
But X’ may contain formulas with occurrences of D. In order to gebfithese, we
employ a little technical trick. For every formula of the oDy in X, choose a
distinct propositional variable, that does not occur in any formulai LetV’ be
the valuation that differs frori, if at all, only in thatV”' (¢, ) = {w | 9, w IF Dy}
and thatl’’(d) is as indicated above. L&’ be the mode(W', R', V).
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Now define the set.’ as follows. It is not difficult to see that for every €
Y there is aunique ML<) formula ¢’ such thaty can be obtained fromd’ by
replacing in¢’ every proposition letteg,, by D). Put

Y ={¢'|peX}u{d q,| Dy e T}

Observe that the formulas ih’ are D-free and that’ is subformula closed. The
modelMt’ is (or can be seen as) ML (<>)-model satisfying

M, s I+ ¢ iff M, sk ¢ (7.1)

for all formulas¢ in ¥. Let=» hold between two points iff they satisfy the same
formulas inY’; it is easy to see that every o-equivalence clas$s| splits into
either one or twa=-equivalence classes, depending on whethehas one or
more elements.

In any case, it follows from the assumption in the theorerttiere is a filtration
o/ through X’ which is based on a frame F Note that by definition, the points
of M/ are the= s»-equivalence classes. We claim that this madg] satisfies the
following property for allML(<, D)-formulas¢ in ¥’ and all states in 9t:

M, s I+ ¢ iff MY, |s| IF ¢. (7.2)

From this, the theorem is almost immediate.

The proof of (7.2) proceeds by a formula induction of which emeit the stan-
dard inductive steps concerning the boolean operatorsléluses for> are fairly
easy as well — but note that for one direction, one needs.(Fd) the case that
¢ is of the form D/ we also omit the easy right-to-left direction of (7.2). Foet
other direction, suppose th@, s |- D¢. Then there is a point’ # s such that
M, s" I- 4. If |s| and|s'| are distinct then we are finished, so suppose otherwise.
But from s =5 s’ it follows on the one hand thamt, s I+ d iff 91, s’ IF d, and
on the other hand, thatands’ belong to the same: y;-equivalence class. Since
we choseexactlyone point in eache s-class to satisfyl, this means that neither
s nor s’ can be this special point. Hence, there mustahetherpoint s’ in this
=y-equivalence class which does makdrue. Froms’ =y s” it follows that
oM, s” I 1, so by the inductive hypothesis we have that, |s”| IF . But |s”| is
distinct from|s| sinced holds ats” and not ats. This gives thafit/, |s| I Dv, as
required. -

How does decidability follow? Any logicl that admits filtrations o has the
strong finite frame property with respectfo— so if F is recursive we can apply
Theorem 6.7 and conclude thé&g is decidable. But then by the result just proved,
we know that/l‘é also has the strong finite frame property with respeét,tso we
can apply the model enumeration idea underlying the pro@herem 6.7 to for-
mulas of the richer languages. As D is always interpretedhéyrtequality relation,
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and as this relation is obviously computable on finite stmeg, the decidability of
A¢ follows.

A great deal more could be said about the difference opefatgparticular,
bisimulations are easily adapted to cope with D, and a varir®em style charac-
terization result is forthcoming; see Exercises 6.8.1 aB®pbut it’s time to take
a brief look at a system containing a whole family of logicaldalities.

Boolean modal logic

As we have remarked, as soon as we fix a collection of relationave can form

the regular algebra over this base; building an algebraashdnds corresponding

to these leads tepL. But an even more obvious algebra demands attention: we can
also form theboolean algebraover base relationg,,. Why not define an algebra

of diamond corresponding tb —, N, andU? Doing so leads to Boolean Modal

Logic (BML).
We define the language BfiL as follows. As withpDL, we fix a set of primitive
relation symbolsa, b, ¢, ..., and in addition a distinguished relation symibol

From these we build complex relations using the relatiorstiactors—, N andu:
that is, if & and 5 are relation symbols, then so afey, « N 3, anda U 3. BML

is the modal language containing a diamdad for each relation symbak. In
principle we can interpreaML on any model of appropriate similarity type — that
is triples9 = (W,{R, | «is arelation symbo}, V') — but most such models
are inappropriate. We are only interestedovlean modelshe models in which
R, = W x W, and such that, for all relation symbalsandj3, R_, = R, (that
is, (W x W)\ Ry), Ruong = Ra N R, andRaU[g = R, U Rg.

BML is an expressive language — for a start, it contains the glolalality
— and it may seem that we've bitten off more than we can chewilé\the U
constructor is well behaved (in particulgit- (cU B)p < (a)yoV (B)p iff Roup =
R, U Rpg), then constructor is difficult to work with. However, as we will now
see, with the help of the constructor we can get an exact grip on the relations of
interest.

First we define the following operator (often calleihdow): for any relation
symbola:

That is:
M, w I Ja]o iff Vu(O,ul- ¢ = Rowu).
Window is an extremely natural operator — once you've segyoil wonder how

you ever managed without it. For example, if we rdafly as saying thaall
executions of program lead to agp state, therjaf¢ says thabnly executions of
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programa can lead to @ state, and it has other useful readings too (see the Notes)
But what concerns us here is the following result: windovovai very smooth
definitions of the relations we are interested in.

Proposition 7.9 Let§ be a frame(WV, { R, | « is a relation symbol). Then:

(i) FIF[—alp « |a]-piff R C Ry
(i) FIF[a]-p <+ |—alpiff Ry C Ry
(i) §IFJanBlp < Jalp ABp iff Ryng = Ra N Rp.

Proof. We prove the third claim. The right to left direction is taVi For the left
to right direction, assume thgtl- [o N Bp < |alp A |F]p. We need to show
that R,ns = R, N Ry. To see thal?,~s C R, N R, suppose thak,~zwu, and
let V' be any valuation off such thatV'(p) = {u}. Then(F, V), w IF Ja N S]p.
AsF IF JanBlp < |alp ABp we have(F, V), w IF |Ja]p A |B]p. Butw is the
only point satisfyingp, henceR,wu and Rgwu. A similar argument shows that
R,N Rz C Rynpg.

In a sense, the relations are divided into two kingdoms: th@ary [«] modalities
govern relations built withJ, the widow modalitie§«| govern the relations built
with N, and the— constructor acts as a bridge between the two realms. Mareove
the bridging function of- also finds expression in a new rule of proBR. Unlike

the other additional rules discussed in this bagk s not name-driven:

= lalp = ([Blp — [VIp)
= lalp = (Ivl=p — 1B]-p)

While it is possible to prove a completeness resultsiL without usingBR, its
use leads to an elegant axiomatization, for it enables us¢ad negations through
the structured modalities.

A final surprise is in store. In Theorem 6.31 we showed thafrdgment con-
taining then constructor and the global modality was undecidable ovesrden-
istic frames. Nonetheless, the minimal logicEmL actually turns out to bee-
cidable Allin all, BML is a fascinating system. For more information, see the
Notes.

(BR)

Exercises for Section 7.1

7.1.1 We listed numerous frame conditions definablévih(<, E) andML(<, D) which
were not definable iML(<). Show that these definability claims are correct.

7.1.2 Show thatML (<, E) validity is preserved under bounded morphisms and reflects
ultrafilter extensions. (That is, show the easy directiotthef Goldblatt-Thomason style
result forML(<, E) stated in Theorem 7.1.) Can you prove the (far more demajding
converse?
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7.1.3 Extend the standard translation to the global modality dreddifference opera-
tor. Extend the notion of bisimulation for the basic modaidaage toML(<,E) and
ML(<, D), and show prove that your definition leads to an invariansalte

7.1.4 Building on the previous exercise, characterize the esprigg of ML(<,E) and
ML(<, D) over models.

7.1.5 Let 2-3 be the class of framg3V, R) such that every state hag2successors, and

3 R-successors aR-successors. First show that the satisfiability problefdli{<) over

2-3 is decidable(note: thiscannotbe proved using a filtration argument). Then show that
the satisfiability problem itML(<, E) over2-3 is undecidable. (It may be helpful to note
that this exercise is related to Exercise 6.5.2.)

7.1.6 Show that a class of frames is definableMi(D) if and only if it is definable in
the first-order language over (that is, the first-order language of equality). What is the
complexity of the satisfiability problem fovL(D)?

7.1.7 Clearly we can define iML(<, D) an operatoi)) with the following satisfaction
definition: for any modedt, any statev in 9%, and any formula, M, w = Q¢ iff there
is exactly one state in 9t such thatht,u = Q¢. But it is also possible in to define
modalitiesQ, ¢, @30, @3¢, and so on, that are satisfied wherholds at preciselyy,,
stategn > 2) in the model?

7.1.8 Show thatK,; is complete with respect to the class of all frames. (No neetdyt
anything fancy here — just fiddle with the canonical model.)

7.1.9 Prove Theorem 7.6. That is, I1&t be a collection of Sahlqvist formulas in the basic
modal language. Show thEt,; X is strongly sound and complete with respect to the class
of those frames on whicl' is valid and on which acts as the difference operator.

(Hint: use an auxiliary logi@& ;s ¥ in the temporal language expanded with the difference
operator. Simply define this logic as havibgththe Dandthed versions of the D-axioms
and rules. Now first use Theorem 7.5 to prove that this loggoisd and strongly complete
with respect to the class df-frames on whichy acts as the difference operator. Then,
prove thafK;s ¥ is conservative oveK ;5 ; that is, show that for every purely temporal
formulag, we have that) belongs tdK ;s ¥ iff it belongs toK ;s ¥ 1.)

7.1.10 Use an elimination of Hintikka sets argument to show thatkhgesatisfiability
problem is solvable in EXPTIME.

7.2 Since and Until

The modal operators considered in previous chapters afl batisfaction defini-
tions involving only existential or only universal quargifs. In this section we
look at a popular temporal logic whose operators are basechadelities with

more complex satisfaction definitions§ (since) andU (until). The main rea-

son for considering these modalities is, again, to achievie@ease in expressive
power. We'll first give some examples demonstrating why tidased expres-
sivity is useful. We’'ll then learn that (over Dedekind comigl frames) we have
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actually achieved expressigempletenessany expression in the first-order corre-
spondence language (in one free variable) has an equivalér@ modal language
in S andU. Finally, we’'ll show that this (first-orde@xpressiveompleteness leads
to (modal)deductivecompleteness.

Basic definitions

The basic operators needed for temporal reasoning seem kbavel P. These
allow us to say things like ‘Something good will happen’ aS@mething bad has
happened.

i Y gl

Pq, Fp

But in several application areas this is not enough. For @kann the semantics of
concurrent programs one often needs to be able to exprgssrpes of executions
of programs that have the general format ‘Something goodirgggo happenand
until that time nothing bad will happenOr, more concretelyp will be the case,
and until that timey will hold:

Such properties are sometimes caltpthrantee propertiesn the computational
literature. To state them, the binamtil operatorU can be used; its satisfaction
definition reads:

tIEU(p,v) iff
there is a > t such thaw IF ¢ and for alls with t < s < v: s IF 1.

The mirror image olJ is thesinceoperators:

tIF S(p,) iff
there is a < t such thaw IF ¢ and for alls with v < s < t: s IF 9.

That’s the basic idea — but before going further, let's malkedscussion a little
more precise. The set 6f, U-formulasis built up from a collection? of proposi-
tion letters, the usual boolean connectives, andthary operatorsS andU. The
mirror image of a formula¢ is obtained by simultaneously substitutisgfor U
andU for S'in ¢.
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S, U-formulas are interpreted on frames of the fogm= (7, <), whereT is a
set of time points and: is a binary relation ofT". U looks forward along<, and
S looks backwards. We use the notatiGh, <) for frames (rather than our usual
(T, R)) because here we are primarily interested in the tempotadgretation of
S andU. In fact, will be working with frameg7’, <) such that< is a Dedekind
complete order — more on this below. To emphasize our inténebe temporal
interpretation, we will often refer to frames #isws of time As usual, a valuation
is a function assigning subsetsBfto the proposition letters in the language.

How does the language i1andU relate to the basic temporal language? First,
observe that’ and P are definable in the language withandU: we can define
F¢:=U(p,T), Pp = S(p,T), Gp := =F-¢ andH¢p := —P-¢. Thus the
language withS andU is at least as strong as the basic temporal language. In fact,
it is strictly stronger. For a start, we saw in Exercise 2iRat the basic temporal
language couldn't defin&. Moreover, as the following proposition shows, even
if we restrict attention to models based on the real numhbesbasic temporal
language still isn’t strong enough to defibie

Proposition 7.10 U is not definable ovefR, <) usingF" and P.

Proof. We will give two models that agree on all formulas in the laage with
F and P only, but that can be distinguished using the until operafansider the
following modelt; based on the reals:

P g P poq P P g P Pog P
3 -2 -1 0 1 2 3 4 5
0IFU(p,q)

So,Vi(p) = {r | re Z},andVi(q) = {0} U{r | In e N(-2n -1 < r <
—2n)}U{r|Ine N2n <r <2n+1)}
Next, consider the modé, given by the following picture:

P qpr q..... P gqpP P qglPb
-3 -2 -1 0 1 2 3 4 5
0l Ulp,q)

We leave it to the reader to show that the modets and 2, agree on all for-
mulas in £ and P, but that9t,,0 I+ U(p,q), whereasii,,0 I U(p,q) (see
Exercise 7.2.1). 4

So the temporal language $andU is expressive — but just how expressive is
it? To answer such guestions we need a correspondence ¢gngod a standard
translation ofS andU into the correspondence language. ©ete a collection of
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proposition letters, and lef (®), or simply £L, be the first-order language with
unary predicate symbols corresponding to the proposigtters in®, and with=
and< as binary relation symbols. We ugé () to denote the set of formulas
having one free variable. Note: this is the familiar correspondence language for
the basic temporal language, except that we are usirggher thank as the binary
relation symbol.

Thestandard translationST',. for the until operatof/ is

STo(U(p, ) = Fz(x <2AST,(¢) ANVy(z <y <z— STy(¥))).

The standard translation 6fis the mirror image of that di’. Observe that we need
3 variables to specify the translation of since and until! iy needed 2 variables
to specify the translation of the basic modal operators seposition 2.49).

LetK be a class of modelg/. a modal or temporal language, afich classical
language. Then/L is expressively complete ovi if every £L (x)-formula has
an equivalent (oveK) in the modal languag@/L. The study of expressive com-
pleteness is an important theme in temporal logics withesartd until because of
the following remarkable result: the language witland U is expressively com-
plete over the class of all Dedekind complete flows of time (i define this
class shortly). Moreover, below we will define an even ricteenporal language
that is expressively complete for the clasabfinear flows of time. In the remain-
der of this section we will briefly explain these expressieenpleteness results,
and use them to obtain a deductive completeness resultrfoe sind until over
well-ordered flows of time.

Further preliminaries

A flow of time is calledDedekind completi every subset with an upper bound has
a least upper bound. The standard examples are the(feats and the natural
numbers(N, <). A flow of time is well-orderedif every non-empty subset has a
smallest element; the canonical example hef&lis<).

To arrive at our goal of axiomatizing the well-ordered flovidime, we make a
detour through a still richer temporal language built ugimgStavi connectives

Definition 7.11 (The Stavi Connectives)To introduce the Stavi connectives we
need the notion of a gap. dapof a frame§ = (7, <) is a proper subset C T
which is downward closed (that i, g ands < t impliess € g), and which
does not have a supremum. One can think of a gap as a hole in ekibed
incomplete flow of time; see Figure 7.1 NoW, (¢, ) holds at a point if the
situation depicted in the above figure holds; that is, if

(i) there are a point and a gag such that € g ands ¢ g;
(ii) + holds between andg;
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(G ¢

- ~N 7~ ~

e Y
M) |
T U T
g S

Fig. 7.1. The Stavi connectives

(iii) ¢ holds between andg; and
(iv) — is true arbitrarily soon aftey.

S'(¢, 1) is the mirror image o/’ (¢, v).
The above informal second-order definition (we quantifyrayaps, and hence
over sets) can be replaced by a first-order definition; seecksee7.2.2.

Theorem 7.12 (Expressive Completeness)

(i) U, S is complete over Dedekind complete flows of time.
(i) U, S,U’', S" are complete over all linear flows of time.

Next, we need an complete axiom system for the class of liit@as of time:

Definition 7.13 Consider the following collection of axioms:

(Ala) G(p—q)— (Ulp,r) = Ulg,r))

(A2a) G(p —q) — (U(r,p) = U(r,q))

(A3a) pAU(q,r) = U(gNS(p,r),r)

(Ada) U(p.q) AN=U(p,r) = U(gA-r,q)

(A5a) Ulp,q) = Up,qAU(p,q))

(A6a) U(gAUl(p,q),q9) = Ulp,q)

(A7a) U(p,q) NU(r,s) —
UpAr,gNs)VU(pPANs,gNs)VU(gAr,qANs)

(Aib) the mirror images of (Ala)—(A7a)

(D) (FT = U(T,L)A(PT —=S5(T,1))

(L) H1lvVvVPHL

W)  Fp—U(p,—p)

(N DALAFT H

Axioms (D), (L), (W), and (N) are discussed in Lemma 7.14 amxeérEise 7.2.3
below. As to the other axioms, (Ala) and (A2a) can be viewecbasterparts of
the familiar distribution or K axiond(p — ¢) — (Op — Og). (A3a) captures
the fact thatV and S explore relations that are each other’s converse. (A4a) and
(A5a) connect the current and the future point (at which sbing good is going
to happen) on the one hand with the points in between on ther btnd. (A6a)
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expresses transitivity of the flow of time, and, finally, (ATarces the flow of time
to be linearly ordered.

Lemma 7.14 Let§ be a linear flow of time. Then

(i) § = Diff §is adiscrete ordering.
(i) § =W ALIff §is awell-ordering.
(i) §E=WANIff §= (N, <).

The proof of Lemma 7.14 is left as Exercise 7.2.3.

Next, we define three axiom systenid; BW, andBN. The set of axioms oB
consists of all classical tautologies, (Ala)—(A7a), andifA-(A7b). BW extends
B with W, andBN extendsBW with N. All three derivation systems have modus
ponens, temporal generalization, and uniform substitudi® derivation rules:

(MP) If F ¢ andF ¢ — 4, thent 4.
(TG) If+ ¢, thenk G and+ H¢.
(SUB) Ift- ¢, thent [¢/p]o.

A model 91 is called anX-modelif it has M = ¢ for all X-theoremsp, where
X € {B,BW,BN}.
For future use we state the following axiomatic completsresult:

Theorem 7.15 For all sets ofS, U-formulasX’ and formulasp: ¥ g ¢iff ¥ =g
o.

We need one more preliminary result, on definable properBgsExercise 7.2.4,
well-foundedness is a condition on linear frames which oabe expressed in first-
order logic: it involves an essential second-order quaatifon over all subsets of
the universe. However, to arrive at our expressive compést® result we can get
by with less, namely the condition that evdirgt-order definableon-empty subset
must have a smallest element; one can show that definabhowdlred models are
sufficiently similar to genuine well-ordered models.
The following definition and lemma capture what we need.

Definition 7.16 Let « be a first-order formula i€l (z), 9 = (T, <, V') a model
for £LL. Define X, to be the set defined hy, that is,X,, := {t € T | M |= a[t]}.
Then, M is calleddefinably well-orderedf for all «(z) € £L, the setX, has a
smallest element.

Two £1<—models£)ﬁ1 and9i, are calledr-equivalent notationdt; =%, Mo,
if for all first-order sentences € £1< of quantifier depth at most, M, = « iff
My =a.
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Proviso. For the remainder of this section we will assume that ourectitbn of
proposition lettersp is finite. This is not an essential restriction, but it sirfiph
some of the arguments below (see Exercise 7.2.5 for a way@froventing the
assumption).

Lemma 7.17 Letn € N. Them every definably well-ordered linear modehis
equivalent to a fully well-ordered model.

Proof. LetMt = (T, <, V') be a definably well-ordered linear model. Fob € T
such that < «, definelb,a) ={t € T | b <t < a},and(oco,a) ={t €T |t <
a}. Obviously, we can view such sets — with the ordering andatada induced
by Mt — as Iinear£1<—models in their own right. Define

Z :={a €T |Vb<a(b,a) has awell-ordered-equivalent}.

By Exercise 7.2.6 there are only finitely many first-ordenfatasa(zx, y) of quan-
tifier depth at most, sayo; (z,y), ..., an(x,y). Let Bi(x,y), ..., Bk(x,y) €

{ai(z,y), ..., am(z,y)} be such that il |= 3;(x, y)[ab] then[b, a) has a well-
orderedn-equivalent. Ther¥ is defined by the formula

alz) =Yy |y <o —\/Blz.y)
i<k

As a consequencd, \ Z (the complement of in 91) is definable as well. We
will now show thatT" \ Z is empty. For, suppose otherwise. Th&must have
a smallest element (ast is definably well-ordered). Distinguish the following
cases:

() «ais the first element of’,
(i) @ has an immediate successor, and
(i) there exists an ascending sequeribg)¢», which is cofinal in[b, a) and
such thathy = b. (Thatis,by = b, b; < b; whenever; < j, and for all
c € [b,a) there exists &; > c.)

It is easy to see that the first two cases lead to contradgtioks to the third
case, since is the minimal element of"\ Z, all b¢ are inZ. So, by definition,
every intervallbe, bs ) has a well-orderea-equivalentd)t,. By Exercise 7.2.7
the lexicographic sunz§<A M, is well-ordered and an-equivalent tdb, ). But
thena € Z — a contradiction.

ThereforeT' \ Z = @, and henceZ = T, so every intervalb, a) of 7' has an
n-equivalent well-ordered model. By using Exercise 7.2.&imgwe see thad)t
must have a well-ordered-equivalent, as required.
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Completeness via completeness

With the above preliminaries out of the way, we are now in dtjmosto use the
expressive completeness result recorded in Theorem 7 dr2ive at an axiomatic
completeness result f@W over well-ordered flows of time.

We need the following lemma.

Lemma 7.18 Every linearBW-model is definably well-ordered.

Proof. Let 9t be a linear model satisfying all instances of Bi&/-theorems. We
will prove that every non-empty ! -definable subset of has a smallest element
via detour using the Stavi connective€sandU’.

Let X be a non-emptyL -definable subset &f. By Theorem 7.12.2 it follows
that X has a defining formula in the language witts, U, S’, U’. If we can show
that ¢ does in fact belong to the sublanguage witland U, then we are done,
because then we can use the validity of the axioms W and L tw shat there
must be aninimalelement inX.

It suffices to show thatveryformula in the language with, U, S’, U’ is equiv-
alent to anS, U-formula ovet. To this end we argue by induction of formulas in
the richer language. The only non-trivial case is for forasubf the forml/’ (¢, )
(and their mirror images), whekgand are already assumed to equivalentSto
U formulas by the induction hypothesis. So ass¥g I+ U’(¢, ). Then there
is a gapg aftert such that (i)y> holds everywhere betweenand g, and (i) ¢ is
false arbitrarily soon aftey. Now (i) implies thatt, ¢ |- F'i, so by the validity of
the W axiom indt it follows that9, ¢ I- U(—, ). But this contradicts (ii). -

Theorem 7.19 BWis (weakly) complete for the class of all well-ordered flows o
time.

Proof. Let ¢ be aBW-consistent formula. Construct a maxinB-consistent set
A with ¢ € A. AsBW extendsB, A must also bé-consistent. By Theorem 7.15
there exists a linear modélt = (7, <, V') in which A is satisfiable. Clearly, for
every S, U-formula v, the formulaHW (/) A W(¢)) A GW () is in A, where
W (%) is the W axiom instantiated fap. Thus9t is aBW-model, and hence, by
Lemma 7.18 it is definably well-ordered.

Now, for the final step, let. be the quantifier rank of 7'(¢). By Lemma 7.17
there is well-ordered modéh’ that isn + 1-equivalent tat. Therefore ' =
Jx ST (¢4)(x), and we are done. -

Using Theorem 7.19 it is easy to obtain a further completenesult, for the tem-
poral logic of the natural numbers.

Theorem 7.20 BNis weakly complete fofw, <), the natural numbers with their
standard ordering.
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The proof of Theorem 7.20 is left as Exercise 7.2.8.

Exercises for Section 7.2
7.2.1 Supply the missing details for the proof of Proposition 7.10

7.2.2 Give a first-order definition for the Stavi connectives idimoed in Definition 7.11
— you may assume that we are working on linear flows of time.

7.2.3 Prove Lemma 7.14. That is, show that D defines discrete arglerithat WA L,
defines well-orderings, and thatAN picks out the natural numbers in their usual ordering
up to isomorphism.

7.2.4 Show that well-foundedness is a condition on linear framb&glvcannot be ex-
pressed in first-order logic.

7.2.5 Throughout this section we assumed that the collection @bgsition symbols that
we are working with is finite. Show that this assumption catiftes.

7.2.6 Show that, over a finite vocabulary, there are at only finitegny non-equivalent
first-order formulasy(z, y) of quantifier depth at most

7.2.7 Show that the lexicographic sum of a collection of strucéuteat are well-ordered
andn-equivalent to a given structuf&, is again well-ordered and-equivalent ta).

7.2.8 Prove Theorem 7.20: show thalN is weakly complete fofw, <), the natural num-
bers with their standard ordering.

7.3 Hybrid Logic
An oddity lurks at the heart of modal logic: although states the cornerstone
of modal semantics, they are not directly reflected in mogatex. We evaluate
formulas inside models, at some state, and use the modatitiscan accessible
states. But modal syntax offers no grip on the states themseit does not let us
name them, and it does not let us reason about state equdiitgtal syntax and
semantics dance to different tunes.

For many applications, this is a drawback. As we mentionexample 1.17,
both feature and description logics can be viewed as modade— or at least,
they can up to a point. Real feature logics contain mechanfemasserting that
two sequences of transitions lead to the same state, andpdiesclogics allow
us to name and reason about individuals. Such capabilitvescli are crucial)
take us beyond the kinds of modal language we have consider&dt. Similarly,
it is often important to reason about what is going on at paldr times, and the
temporal formalisms used in artificial intelligence usyaltovide expressions such
asHoldg(7, ¢), asserting that the informatiop holds at the time named by to
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make this possible. The modal logics considered so far tontaanalogs of these
important tools.

In their simplest formhybrid languagesare modal languages which put this
right. Hybrid languages treat states as first class citizand they do so in a par-
ticularly simple way. The key idea is simply sort the atomic formulas, and to
use one sort of atom — theominals— to refer to states. Because this mecha-
nism is so simple, may of the attractive properties of modgid (such as robust
decidability) are unaffected. Indeed, in certain respbygtsid logics are arguably
better behaved than their ordinary modal counterpartsr toepleteness theory
is particularly straightforward, and they are proof théicedly natural.

In this section we examine one of the simplest hybrid langaag two-sorted
system with names for states. To build such a language, thkesia modal lan-
guage (built over propositional variablgsg, r, and so on) and add a second sort
of atomic formula. These new atoms are calleininals and are typically writ-
teni, j andk. Both types of atom can be freely combined to form more corple
formulas in the usual way. For example,

CEAP) NO(ENg) = C(pAg)

is a well formed formula. And now for the key idea: insist tleach nominal be
true at exactly one state in any modelhus a nominal names a state by being
true there and nowhere else. This simple idea gives risecherilogics. Note,
for example, that the previous formula is valid: if the aeident is satisfied at a
statew, then the unique state named bynust be accessible from, and bothp
andq must be true there. And note that the use of the nomimgktrucial: if we
substituted the ordinary propositional variabléor i, the resulting formula could
be falsified.

Actually, what we call thébasic hybrid languag®ffers more than this: it also
enables us to build formulas of the form ¢, wherei is a nominal. The composite
symbol@; is called asatisfaction operatgrand it has the following interpretation:
@;¢ is true at any state in a model if and onlyifis satisfied at the (unique) state
named byi (so @;¢ is analogous tddolds(i, ¢)). Satisfaction operators play an
important role in hybrid proof theory.

Our discussion of basic hybrid logic is largely confined tarake topic: the
link between frame definability and completeness. We witlvglthat whenpure
formulas are used as axioms they always yield systems wieckanplete with
respect to the class of frames they define. Now, a pure forimgianply a formula
whose only atoms are nominals, so in effect this result tellhat frame complete-
ness is automatic for axioms constructed solely out of nai®@es discussion will
center on a proof rule calleeasTe which is related to therR rule discussed in
Section 4.7 and the D-rule of Section 7.1.
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The basic hybrid language

Given a basic modal language built over propositional Wesd = {p, ¢, r, ...},

let 2 = {i,j,k,...} be a nonempty set disjoint frod. The elements of? are
callednominals they are a second sort of atomic formula which will be used to
name states. We callU (2 the set oltomsand definéasic hybrid languagéover

& U () as follows:

pu=ilp|lL]=g[oAY]|Oo]| Qg

For any nominal, the symbolQ; is called a satisfaction operator. Note that, syn-
tactically speaking, the basic hybrid language is simplyudtimodal language (the
modalities being®> and all the@;), whose atomic symbols are subdivided into two
sorts. If a formula contains no propositional variablesftis, if its only atoms
are nominals) we call it @ure formula. In what follows we assume that we are
working with a fixed basic hybrid languadgin which both® and(? are countably
infinite.

The basic hybrid language is interpreted on models. As usuaiodelt is
atriple (W, R, V'), where(W, R) is a frame, and/ is a valuation. But although
the definition of a frame is unchanged, we want nominals taagtames, so we
will insist that a valuatiori” on a frame(W, R) is a function with domair® U (2
and rangeP (W) such that for al € 2, V (i) is asingletonsubset ofit". That
is, as usual we place no restrictions on the interpretatimrdinary propositional
variables, but we insist that a valuation makes each norrinalat auniquestate.
We call the unique state that belongs td/ (i) the denotationof ¢ underV’. We
interpret the basic hybrid language by adding the followling clauses to the sat-
isfaction definition for the basic modal language:

Mw ki iff we V(i)
M, w Ik Q¢ iff 9, dIF o whered is the denotation of underV’.

As usual I IF ¢ means that is true at all states i, § I- ¢ means thap is
valid on the frame§, andiF ¢ means thap is valid on all frames.

Note that a formula of the form;j expresses thelentity of the states named
byi andj. Further, note that a formula of the form < j says that the state named
by i has as arR-successor the state named;by

Although it allows us to refer to states, and talk about stapeality, the basic
hybrid language is very much a modal language. Nominals naantehey are sim-
ply a second sort of atomic formula. Moreover, satisfactperators areormal
modal operators: note that for every nomindk @Q;(¢ — ¢) — (Q;¢p — Q;9)),
is valid; and ifl- ¢, thenl- @;¢.

Moreover, the basic hybrid language is quite a simple moaladuage. For
example, its satisfiability problem is known to be no more ptax than the satis-
fiability problem for the basic modal language:
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Theorem 7.21 The satisfiability problem for the basic hybrid logic is P&FA
complete.

But in spite of its simplicity the basic hybrid language ispisingly strong when
it comes to frame definability. For a start, many propertieBndble in the basic
modal language can be defined using pure formulas:

(reflexivity) ¢ — <4
(symmetry i — OO
(transitivity) OCi — O
(density Qi — OO
(determinism i — Oi

Moreover, pure formulas also enable us to define many piepexit definable in
the basic modal language, as the reader can easily verify:

(irreflexivity) i — 20
(asymmetry 1= OO
(antisymmetry i — 0O(C1 — 1)
(intransitivity) OO1 — =01
(universality O

(trichotomy) @;0i VvV @i v @O

(at most 2 statgs  @;(—j A —k) — Q;k

All the frame properties defined above are first-order. Téisa coincidence: all
pure formulas define first-order frame conditions. This syda prove: there is a
natural way of extending the Standard Translation to cogeminals and satisfac-
tion operators which explains why (see Exercise 7.3.1).

But not only do pure formulas define first-order propertieBemwused as axioms
they are automaticallgompletewith respect to the class of frames they define.
More precisely, there is a proof system call€g + RULES such that for any set of
pure formulad!:

If P is the normal hybrid logic (which we will shortly define) obtad by
adding the formulas i/ as axioms td<; + RULES, thenP is complete with
respect to the class of frames definedy

The rest of the section is devoted to proving this, but beftivang into the tech-
nicalities it is worth noting that the result hinges on a eathimple observation.
Let us say that a modélV, R, V') is namedif every state in the model is the de-
notation of some nominal (that is, for all € W there is some nominalsuch that
V(i) = {w}). Furthermore, i is a pure formula, we say thatis apure instance
of ¢ if ¢ is obtained fromp by uniformly substituting nominals for nominals. Then
we have:
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Lemma 7.22 Let9 = (§, V') be a named model antla pure formula. Suppose
that for all pure instances of ¢, 91 |- ¢. Theng I+ ¢.

Proof. Exercise 7.3.3. -

That is, for named models and pure formulas the gap betwatmitra model and
validity in a frame is non-existent. So if we had a way of bimgghamed models,
we wouldn’t need to appeal to relatively complex syntactiteda (such as being a
Sahlqvist formula) to obtain general completeness resattgpure formula would
give rise to strongly complete logic for the class of frantedeifined. In essence,
the work that follows can be summed as follows: we are goingdlate the logic
K +RULEsand show that we can build named models fronvitss and prove an
Existence Lemma. Once this is done, a wide range of frame letemess results
will be immediate by appeal to Lemma 7.22.

Pure extensions of;, + RULES
Let’s first say what a normal hybrid logic is:

Definition 7.23 A set of formulasA in the basic hybrid language isn@rmal hy-
brid logic if it contains all tautologiesd(p — ¢) — (Op — Ogq), Op <> —O-p,
the axioms listed below, and it is closed under the followinigs of proof: modus
ponens, generalizatior®;-generalization(if ¢ is provable then so ig;¢, for any
nominal:) andsorted substitutior{if ¢ € A, andé results from¢ by uniformly
replacingpropositional letters by arbitrary formulasandnominals by nominals
thenf € A). We call the smallest normal hybrid logi€;,.

The motivation for the sorted substitution rule should t&acl while propositional
variables are placeholder for arbitrary information, noafs are names, and sub-
stitution must respect the distinction.

The axioms needed to complete our definitiorof fall into three groups. The
first identifies the basic logic of satisfaction operators:

(Ka) Qi(p — q) = (Qp — Q;q)
(self-dua)  @;p <> =@;—p
(introductior) i A p — @;p

As satisfaction operators are normal modal operatorsnitiesion of/<q should
come as no surprise. As feelf-dua) note that self-dual modalities are those whose
transition relation is &unction given the jump-to-the-named-state interpretation of
satisfaction operators, this is exactly the axiom we wowfzket. Introductiontells

us how to place information under the scope of satisfactioerators. Actually,

it also tells us how to get hold of such information, for if weptacep by —p,
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contrapose, and make uses#if-dual we obtain(i A @;p) — p; we call this the
eliminationformula.

The second group is a modal theory of naming (or to put it arotlay, a modal
theory of state equality):

(ref) @y

(sym @ ¢ Qi

(non’) @;7 A @jp — Q;p
(agreg @;Q;p <+ Q;p

Note that the transitivity of naming follows from theom axiom; for example,
substituting the nominal for the propositional variablgyields@;j AQ;k — Q;k.
The final axiom pins down the interaction between @ @nd

(back) Q@ip — @l'p

Note thatCi A @;p — Op is another valid @® interaction principle; it is called
bridgeand we will use it when we prove the Existence Lemma. Howbvidgeis
provable inK,, as the reader is asked to show in Exercise 7.3.4.

The soundness of these axioms is clear — but what about cempks? Let
us say that &,,-mcs is namedif and only if it contains a nominal, and call any
nominal belonging to & ;-mcs anamefor thatmcs. Now, K, is strong enough to
prove a lemma which is fundamental to our later work: hiddeside anyK;-MCsS
are a collection of namewcss with a number of desirable properties:

Lemma 7.24 LetI" be aKj-mcs. For every nominal, let A; be{¢ | @;¢ € I'}.
Then:

(i) For every nominat, 4A; is aK;-mcs that contains.
(i) Forall nominalsi andj, ifi € A; thenA; = A,.
(i) For all nominalsi andj, @;¢ € A; iff @;¢ € I'.

(iv) If kisaname forl’, thenl’' = Ay.

Proof. (i) First, for every nominal we have theef axiom @;i, hencei € A;.
Next, 4A; is consistent. For assume for the sake of a contradictionittiig not.
Then there aréy, ..., 6, € 4A; such that- =(d; A --- A J,,). By @;-necessitation,
F @;=(d1 A -+ A dy), hence@;—(01 A --- A dy) is in I, and thus byself-dual
—@;(d; A--- A dy) isin I" too. On the other hand, as,...,d, € 4;, we have
@;01, ..., Q;0,, € I'. As@; is a normal modality@;(d; A --- A J,,) € I" as well,
contradicting the consistency 6f. So4; is consistent.

Is A; maximal? Assume it is not. Then there is a formylauch that neither
x hor =y is in 4;. But then both—@;\y and -@;—y belong tol", and this is
impossible: if-@,;y € I', then by self-dualityd;,—y € I" as well. We conclude
thatA; is aKj-mcs named byi.
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(i) Supposei € A;; we will show thatd; = A;. Asi € Aj, Qi € I
Hence, bysym @;j € I" too. But now the result is more-or-less immediate. First,
A; C A;. Forifg € Aj,then@;¢ € I'. Hence, asy;j € I, it follows by nom
that@;¢ € I', and hence that € A; as required. A similanombased argument
shows that); C A;.

(i) By definition @;¢ € A; iff @;Q;¢ € I'. By agreg Q;@Q;¢p ¢ I iff
@;¢ € I'. (We call this the@-agreement propertyit plays an important role
in the completeness proof.)

(iv) Supposel” is named byk. Let¢ € I'. Then ask € I', by Introduction
Qo € I', and henceb € A,. Conversely, ifp € Ay, then@,¢ € I'. Hence, as
k € I, by eliminationwe havey € I'. -

In what follows, ifI" is aK,-MCs andi is a nominal, then we will calf ¢ | @;¢ €
I'} anamed set yielded hy.

We have reached an important crossroad. It is now reasoathlghtforward to
prove that<;, is the minimal hybrid logic. We would do so as follows. GiveKg-
consistent set of sentencés use the ordinary Lindenbaum’s Lemma to expand
it to a K;,-mcs YT, and build a model by taking the submodel of the ordinary
canonical model generated Byt U {A; | 4; is anamed set yielded h{/ " }.

The reader is asked to do this in Exercise 7.3.5.

But we have a more ambitious goal in mind: we don’'t want todililst any
model, we want a named model. This will enable us to apply Lanini22 and
prove the completeness of pure axiomatic extensions. Hewwee face two prob-
lems. The first is this. Given K;-consistent set of formula, we can certainly
expand it to armcs using Lindenbaum’s Lemma — but nothing guarantees that
this Mmcs will be named. The second problem is much deeper. Supposeave o
came the first problem and learned how to expand any consienf sentences
¥ to anamedics X *. Now, as we want to build a named model, this pretty much
dictates that only the namedtss yielded by~ + should be used in the model con-
struction. And now for the tough part: nothing we have seefasguarantees that
there are enougcss here to support an Existence Lemma. Incidentally, note
that the completeness-via-generation method sketchdukiprevious paragraph
doesn't face this problem: generation automatically givesll successawcCss,
so we can make use of the ordinary modal Existence Lemma.rtuntdely, not
all these successorcss need be named, so the generation method won't help with
the stronger result we have in mind.

But these difficulties are similar to those we faced whenudismg rules for the
undefinable, and this suggests a solution. In Section 7.2&8wwalated names us-
ing tense operators, and used the forward-and-backwateipliay of 7' and P to
create a coherent network of namedss which supported a suitable Existence
Lemma. Moreover, simulated names were used to define théeDyrentioned in
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Section 7. But nominals are genuine names, and satisfagperators are an excel-
lent way of enforcing coherence — surely it must be possibléefine analogous
proof rules for the basic hybrid language? Indeed it is:

Fj—40
o

@Ol ANQip — 0
@00 — 0

(NAME) (PASTE)

In both rules,j is a nominal distinct from that does not occur i or . The
NAME rule is going to solve our first problem, tlrasTE rule our second. These
rules are clearly close cousins of tir rule and the D-rule, but let’s defer further
discussion till the end of the section, and put them to wayktraway.

Let K;, + RULES be the logic obtained by adding thk@ME andPASTE rules to
K. We say that ailk;, + RULES-MCS [ is pastediff @;<>¢ € 1M implies that for
some nominal, @;&j5 A @06 € I'. And now for the key observation: our new
rules guarantee we can extend dfy + RULES-consistent set of sentences to a
named and pasteK; + RULES-mcCS, provided we enrich the language with new
nominals:

Lemma 7.25 (Extended Lindenbaum Lemma) Let 2’ be a (countably) infinite
collection of nominals disjoint frond?, and let£’ be the language obtained by
adding these new nominals b Then everyK;, + RULES-consistent set of formu-
las in languagel can be extended to a named and pased+ RULES-MCS in
language”’.

Proof. Enumeratef?’. Given a consistent set df-formulas ¥, define X, to be
Y U {k}, wherek is the first new nominal in our enumeratiol;, is consistent.
For suppose not. Then for some conjunction of forméldsom X', - £ — —6.
But ask is a new nominal, it does not occur énhence, by thevAME rule, - —6.
But this contradicts the consistency Bf so ¥, must be consistent after all.

We now paste. Enumerate all the formulasZof defineX° to be ¥y, and sup-
pose we have defined™, wherem > 0. Let¢,, 1 be them + 1-th formula in our
enumeration of’’. We defineX™*! as follows. If X1 U{¢,, .1} isinconsistent,
thenX™+! = ¥ Otherwise:

(i) Tt = XM U {1} if dmo is not of the forma@; O ¢. (Herei can be
any nominal.)

(i) T = X" U {ppmi1} U{Q;Of AQ;ol, if gy is of the form@; O
(Herej is the first nominal in the new nominal enumeration that dags n
occur inX™ or @;<$ o)

Let ¥t = (J,»o X" Clearly this set is named (by), maximal, and pasted.
Furthermore, it is consistent, for the only non-trivial es{s of the expansion is
that defined by the second item, and the consistency of #isistprecisely what
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the PASTE rule guarantees. Note the similarity of this argument tostamdard
completeness proof for first-order logic: in essemesTE gives us the deductive
power required to use nominals as Henkin constants.

And now we can define the models we need. In fact, we're bégigalng to use
the named sets examined in Lemma 7.24, but with one smallrbaiat change:
instead of starting with an arbitraig,-mMcs, we’ll insist on using the named sets
yielded by anhamed and pasteK; + RULES-MCS.

Definition 7.26 Let I" be a named and pastdd; + RULES-mCcS. The named
model yielded by, is!" = (W', R, V). HereW ! is the set of all named sets
yielded byI’, R is the restriction tdV'!" of the usual canonical relation between
Mcss (soR! uv iff for all formulas ¢, ¢ € v implies<©¢ € u) andV'! is the usual
canonical valuation (so for any atamV’ (a) = {w € W! | a € w}). -

Note thatt! really is amodel by items (i) and (ii) of Lemma 7.24;"" assigns
every nominal asingletonsubset ofi¥’!". And, because we insisted that be
named and pasted, we can prove the Existence Lemma we require

Lemma 7.27 (Existence Lemma)Let I be a named and pastdd,, + RULES-
Mmcs, and let9t = (W, R, V') be the named model yielded by Suppose. € W
and<¢ € u. Then there is @ € W such thatRuv and¢ € v.

Proof. As u € W, for some nominal we have that: = A;. Hence as>¢ € u,
@;CG¢ € I'. ButI'is pasted so for some nominal @; &5 A @0 € I', and so
Oj e A;jandg € A;. If we could show thatfrA; A, thenA; would be a suitable
choice ofv. So suppose) € A;. This means that;») € I'. By @-agreement
(item (iii) of Lemma 7.24)a;¢ € A;. Butoj € A;. Hence, byBridge, Oy € A;
as required.

In short, we have successfully blended the first-order idéteakin constants with
the modal idea of canonical models, and it’s plain sailinghe way to the desired
completeness result.

Lemma 7.28 (Truth Lemma) Let9t = (W, R, V') be the named model yielded
by a named and pastddl;, + RULES-MCS I, and letu € . Then, for all formulas
o, ¢ € wiff M, u - .

Proof. Induction on the structure @f. The atomic, boolean, and modal cases are
obvious (we use the Existence Lemma just proved for the niteddl What about
the satisfaction operators? Supp@8eu |- @Q;¢. This happens i, A; I+ ¢ (for

by items (i) and (ii) of Lemma 7.244\; is the onlymcs containingi, and hence,

by the the atomic case of the present lemma, the only staiéwhere; is true) iff

¥ € A; (inductive hypothesis) iffd;y) € A; (using the fact that € A; together
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with Introductionfor the left-to-right direction anéliminationfor the right-to-left
direction) iff @;1) € u (@-agreement). H

Theorem 7.29 (CompletenessfveryK;, + RULES-consistent set of formulas in
language” is satisfiable in a countable named model. Moreovei/ifs a set
of pure formulas (inf), and P is the normal hybrid logic obtained by adding all
the formulas inll as extra axioms td; + RULES, then everyP-consistent set
of sentences is satisfiable in a countable named model basedflame which
validates every formula i/ .

Proof. For the first claim, given &, + RULES-consistent set of formulas’, use

the Extended Lindenbaum Lemma to expand it to a named anddpasty* in

a countable languagé’. Let M = (W, R,V) be the named model yielded by
Y+, By item (iv) of Lemma 7.24, becauset is named, X+ € W. By the Truth
Lemma,M, ¥ I X. The model is countable because each state is named by
some,£’ nominal, and there are only countably many of these.

For the ‘moreover’ claim, given B-consistent set of formulas, use the Ex-
tended Lindenbaum Lemma to expand it to a named p&steds =+. The named
model 9= that =+ gives rise to will satisfy= at =+; but in addition, as ev-
ery formula inII belongs to every-mcs, we have thadit= I II. Hence, by
Lemma 7.22, the frame underlyifg= validatesl/. -

Example 7.30 We know thati — —<i defines irreflexivity and><i — <1 de-
fines transitivity, hence adding these formulas as axionis o+ RULES yields a
logic (let’s call it14) which is complete with respect to the class of strict precsd
Hence&Op — <Op, the ordinary modal transitivity axiom, must Ibé-provable.
Furthermore, as — =< <1 is valid on any asymmetric frame, ang» O(<$i — 1)

is valid on any antisymmetric frame, these mustdbgrovable too. The reader is
asked to supply4-proofs in Exercise 7.3.6. -

The PASTE rule has played an pivotal role in our work; is there anythiveycan
say about it apart from ‘Hey, it works!'? There is. As we wilbwm see PASTEis
actually a lightly-disguised sequent rule.

A sequents an expression of the forfi — ©, wherel” and® are multisets of
formulas (that is/” and® may contain multiple occurrences of the same formula).
Note that the sequent arrow— is longer than the material implication arrew.
Sequents can be read as follows: whenever all the formul&sare true at some
state in a model, at least one formula@nis true at that state too. sequent rule
takes a sequent as input, and returns another sequent as. outp

Now, here’sPASTE as we stated it above:

F@;05 A @ — 0
@00 — 0
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Let’s get rid of the- symbols and replace the implications by sequent arrows:

Q;CjNQjp — 0
@i<>¢ — 0

Splitting the formula in the top line into two simpler fornasl yields:

@i<>j, @qu — 0
Q00 — 0

This rule works in arbitrary deductive contexts, so let'd adeft-hand multisef”,
and turnd into a right-hand multise®, thus obtaining:
@i<>j, @j¢, I — 6
Q;Cp, I — O

But this is just a sequent rule, and a useful one at that. ke#d it from bottom
to top: to prove® given the informatiornia,>¢ andI” (that’s the bottom line) in-
troduce a brand new nomingland try to prove® from @;<$j5, @;¢ andI” (that's
the top line). That is, we should search for a proof by decaimgothe formula
@;<C¢ into a near-atomic formul&; <5 and simpler formula@;¢. In fact, this
decomposition is the key idea needed to define sequent icadhieaux, and natu-
ral deduction systems for hybrid logics, and several systetrich work this way
have been developed (see the Notes for details). In efigt, S/stems discad,
from K;, + RULES (after all, why bother keeping the clumsy Hilbert-style tBar
and strengthen thULES component so it can assume full deductive responsibility.

To conclude, a general remark. As should now be clear (eslpetiyou have
already done Exercises 7.3.1, 7.3.2, and 7.3.3), the bgsicdHanguage is a gen-
uine hybrid between first-order and modal logic: it makeslalke a number of
key first-order capabilities (such as names for states ate-sgjuality assertions)
in a decidable (indeed, PSPACE-complete) propositionadlahtogic. But now
that we are used to viewing names as formulas, it is easy toeo farther. For
example, instead of thinking of nominals as names, we cdultktof them as
variables over states and bind them with quantifiers. Fomgka, we could allow
ourselves to form expressions such as

Jz (x AOJy(y A o A Q,O(Cy — 1))).

This expression captures the effect of the until operat@aysU (¢, ¢’). Note that
in this example thel quantifier is only used to bind nominals to tberrent state.
This is such an important operation that a special notatiphas been introduced
for it. Using this notation the definition @f (¢, ) can be written as

de(e A OLly(y Ao A @O(CY — ¥))).
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It turns out that when the basic hybrid language is enrich@yg with | (that is,
not with the full power ofd) then the resulting language picks @xactlythe frag-
ment of the first-order correspondence language that isiamtaunder generated
submodels. See the Notes for more details.

Exercises for Section 7.3

7.3.1 Extend the standard translation to the basic hybrid langiggadding clauses for

nominals and satisfaction operators. Use your translatiehow that all classes of frames
defined by pure formulas are first-order definable. (Hintngfate nominals to free first-

order variables.)

7.3.2For anyn > 1, let R"zy be the first-order formulaz; - - -3z, (Rxz1 A Rz122 A

-+ A Rz,y). Lete be a first-order formula that is a boolean combination of fdas of

the formR™zy, Rxy, andx = y. Show that the class of frames defined by the universal
closure ofy is definable in the basic hybrid language. (Hint: look at tles/we defined
trichotomy.)

7.3.3 Prove Lemma 7.22. Thatis, It = (§, V) is a named model anglis a pure formula
and for all pure instances of ¢ we have thaf)t I ¢, thenF IF ¢.

7.3.4 Show that®i A @;p — Op, theBridgeformula, is provable ifKK,,. (Hint: prove the
contraposed forndi A Op — @;p with the help ofGg A Op — (g A p), Introduction
andBack)

7.3.5 Prove thatK,, is the minimal hybrid logic by fleshing out the completeneiss-
generation argument sketched in the text.

7.3.6 Find 14-proofs of OCOp — Op, i — =<0, andi — O(<i — 1). (The logicl4 was
introduced in Example 7.30.)

7.3.7 ThepAsTErule makes crucial use of @-operators. Prove an analog afréhe7.29
for the @-free sublanguage of the basic hybrid languagent{ifbu need to simulate the
satisfaction operators using the modalities. So foralk > 0, add the axion®™(iAp) —
0™(: — p). Furthermore, le®>;¢ be shorthand fo®> (i A ¢), and add all rules of the form

|_<>k"'<>i<>j¢_>0
FoR 006 =0

Herej is a nominal distinct fronk, - - - , 7 that does not occur ia or 6.)

7.3.8 Let 14D be the normal hybrid logic obtained by adding the axiorfi vV —i) to
14. Clearly 4D lacks the finite frame property. Show that it possesses tlite fimodel
property (and hence that Theorem 3.28 fails for hybrid laggs). Exploit this by proving
the decidability ol4D using a filtration argument.

7.3.9 Add the global diamond E to the basic hybrid language. Usératfdn argument to

show that the satisfiability problem the resulting languaggecidable. What is its com-
plexity? (Note thaty,;¢ can be defined to be(EA ¢), so you don't have to deal explicitly
with the satisfaction operators.) Show that a class of fsimdefinable in this language if
and only if it is definable in the basic modal language endolih the D-operator. (Here
‘definable’ means definable by an arbitrary formula, not guptire formula.)
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7.4 The Guarded Fragment

In Chapter 2 we saw that modal languages can be viewed asdragrof first-
order logic, and in Chapter 6 we discovered that these fraggrigave some nice
computational properties. It thus seems natural to try awdrow far we can
generalize these properties to larger fragments of fidgrdiogic. This will be the
main aim of this section: we will define and discuss two extars of the modal
fragment with reasonably nice computational behavior.

In order to isolate such fragments, what properties of thelah&ragment of
first-order logic should we concentrate on? In particuldratiimakes modal logic
decidable? If we confine ourselves to the basic modal laregguagdt perhaps the
fact that the standard translation can be carried out gntiriéhin the two variable
fragment of first-order logic (which has a decidable satiditg problem)? This
argument immediately breaks down if we consider languagismodal operators
of higher arity: while giving rise to decidable logics as ly#iese languages have
standard translations that really neadrethan two variables. But as soon as we
are considering:-variable fragments of first-order logic with > 2, we face an
undecidablesatisfiability problem.

Rather, it seems to be the fact that the modal fragment ofdidr logic allows
quantification only in a very restricted form, as is obviotsni the modal clause
in the definition of the standard translation function:

ST3(O¢) =y (Rey A STy(9)). (7.3)

It is this restricted form of quantification which ensureattinodal logic is the
bisimulation invariant fragment of first-order logic, anditnulation invariance of
modal truth was critical in the first method of proving the téninodel property for
the basic modal language (see Section 2.3). Recall thatdhing point of this
method was the observation that modal logic hagrdemodel propertymeaning
that every satisfiable modal formula is satisfiable on a tredet), and that bisimu-
lation invariance is pivotal in proving this result. In shahere seems to be a direct
line from the restricted quantifier pattern in (7.3), viaifislation invariance and
the tree model property, to the finite model property anddisality.

This provides our first search direction: look for first-ardegments charac-
terized by restricted quantification. It turns out that oa@ easily relax many
constraints applying to the (basic) modal fragment. Fongde, we do not have
to confine ourselves to formulas using two variables onlyptmulas having pre-
cisely one free variable, or to formulas with predicatesriy @t most two. Relax-
ing these constraints naturally leads to the so-caleatded fragmenof first-order
logic; the idea here is that quantifiers may appear only iridhewing form:

3y (G(T,9) AU (T, 7)) (7.4)
in which G(Z,7) is an atomic formula that we will call thguard of the quantifi-
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cation (or, of the formula). The crucial ingredient that keepfrom (7.3) is that
all free variables of) are also free in the guar@(z,y). And indeed, it can be
shown that the guarded fragment has various nice propesiied as a decidable
satisfiability problem and the finite model property.

However, there are some very natural modal-like languagrealternative but
intuitive interpretations for standard modal languagkat torrespond to a decid-
able fragment of first-order logic as well, but are not couddyg this definition. For
example, consider the language with the since and untilaoge: it is straightfor-
ward to turn the truth definitions for these operators intteadard translation to
first-order logic. The interesting clauses are

ST(U(¢,v)) = 3y (Rey A STy (¢) AVz (Rez A Rzy) = ST=(¢))), (%)

and a similar one for the since operator. We can prove thatkind of clause
takes us outside the guarded fragment of first-order lodie: problem concerns
the ‘betweenness conjunct:z ((Rxz A Rzy) — ST .(v)) which has a ‘compos-

ite’ guard, (Rxz A Rzy). Nevertheless, the language with since and until has a
decidable satisfiability problem; apparenggmecomposite guards are admissible
as well.

Examples such a&«) lead to extensions of the guarded fragment to fragments
in which one is more liberal in the precise conditions immgbea the guard. One
canbe a bit more liberal here because in the ‘direct line’ mem@t earlier there
are some steps that could be skipped on the way. In partidiNee are interested
in decidability rather than the finite model property, we could just as wetlese
for fragments of first-order logic to which we may apply tim®saic methoaf
Section 6.4. Recall that the mosaic method is a way of prodiegjdability by
‘deconstructing’ a model into a finite number of finite piecasd then using such
finite toolboxes for constructing models again, models tisatally hang together
quite loosely (in a sense to be made precise later). Thisgesvhe second di-
rection in our quest: try to find fragments of first-order ¢ which the mosaic
method applies, leading tolaose model property Implementing this idea one
naturally finds quantifier restrictions of the form

Iy (n(@,7) Ao (Z.7)) (7.5)

in which there are constraints on the presence of variahlesriain subformulas
of the guardr. For such fragments one may find a direct line from the reastiic
quantifier pattern in (7.5), via an appropriate notion ofrbidation invariance and
theloosemodel property, to some finitmosaicproperty and decidability.

The particular extension that we discuss in this sectiornas ¢f thepacked
fragment it fits very nicely in the mosaic approach. On a first readimghe
section the reader may choose to skip the parts referrinigiggacked fragment,
and concentrate on the guarded fragment.
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The guarded and the packed fragment

We need some preliminaries. The first-order language thaivivde working

in is purely relational, with equality; the language consaneither constants nor
function symbols. For a sequence of variabies= x1,...,z,, we frequently
write 3T¢, which, as usual, has the same meaningas. .. Jx,, ¢. However,

in this section we viewaT not as an abbreviation, but as a primitive operator. In
particular this means that the subformulasiof are justdz ¢ itself, together with
the subformulas of. As usual, by writings(z) we indicate that the free variables
of ¢ are amongey, . . ., xy,.

Definition 7.31 We say that a formula packsa set of variable§x, ...,z } if
(i) Free(¢) = {x1,...,x} and (ii) ¢ is a conjunction of formulas of the form
x; =a; 0r R(xy,...,x;,) or 3g R(x;,, ..., x;,) such that (iii) for everyr; # x;,

there is a conjunct ig in which z;; andx; both occur free.

The packed fragmenfPF' is defined as the smallest set of first order formulas
which contains all atomic formulas and is closed under thaldam connectives
and undepacked quantificatianThat is, whenevey is a packed formular packs
Free(w), and Free(y)) C Free(w), then3z (7w A v) is packed as wellr is called
theguard of this formula. Theguarded fragment:F' is the subfragment aPF' in
which we only allowguarded quantificatioras displayed in (7.4); that is, packed
quantification in which the guard is anatomicformula.

PF,, andGF',, denote the restrictions tovariables and at most-ary predicate
symbols of PF" and GF, respectively. -

Examples of guarded formulas are

(i) the standard translation of any modal formula (in anyglaamge),
(i) the standard translation of any formula in the basicgernal language,
(iii) formulas likeVxy (Rxy — Ryx), Jxy (Rxy A Ryx A (Rxx V Ryy)), ...

For an example of a packed formula which is not guarded, denSicyz ((Rxy A
RxzA\Ryz)N—-Cuxyz). For another example, first consider the standard traoslati
Jy (Rey NPyAVz ((RxzARzy) — Qz)) of the formulal/ (p, ¢). This formula is
not packedtself, because the guard of the subformuta((Rxz A Rzy) — Qz))
has no conjunct in which the variablesandy occur together. But of course, the
formula isequivalentto

Jz (Rxy N Py AVz ((Rxz A Rzy A\ Rxy) — Qz))

which is packed. It is not hard to convert this example inta@pshowing that

everyformula in the since and until language is equivalent to &padormula.
Second, note that the notion of packedness only places nufahrestrictions

on pairs ofdistinct variables: since the formula = x packs the set of variables
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{z}, the formuladz(z = = A ¥ (x)), (that is, with asinglequantification over the
variablex) is a packed formula, at least, provided thidt:) is packed. Since the
given formula is equivalent td8x ¢(x) this shows that packedness allows a fairly
mild form of ordinary quantification, namely over formulagone free variable
only. A nice corollary of this is that we may perform the starditranslation of the
global diamoncE within the two variable guarded fragment:

ST.(E¢) = ST,(E¢) = 3u (STo(¢)) = 3z (z = 2 A STo(9)).

Finally, notall formulas are packed, or equivalent to a packed formula. ¥ame
ple, thetransitivity formulaVyz ((Rzy A Ryz) — Rxz) is not packed, and neither
is the standard translation of the difference operaigrix # y A Py).

Nice properties

Having defined the packed and the guarded fragment of fidgrdogic, let us
see now what we caprove about these fragments. To start with, for each of the
two fragments we can find a suitable notion of bisimulatiorichtcharacterizes
the fragment in the same way as the ordinary bisimulatiomechierizes the modal
fragment of first-order logic. Unfortunately we do not hakie space to go into
detail here. Nevertheless, we will show that both fragméatse what we call the
loose model propertyin Theorem 7.33 we will show that every satisfiable packed
formula can be satisfied on a loose model. What, then, is & loaslel?

Definition 7.32 Let2 = (A, I) be a first-order structure. A tuple,...,a,) of

objects inA is calledlive in 2 if eithera; = --- = a, or (a1,...,a,) € I(P)
for some predicate symba@!. A subsetX of A is calledguardedif there is some
live tuple (ai,...,a,) such thatX C {ai,...,a,}. In particular, singleton sets

are always guarded; note also that guarded sets are alwégs finis packedor

pairwise guardedf it is finite and each of its two-element subsets is guarded.
We say thafl is aloose model of degrée € N if there is some acyclic connected

graph® = (G, E) and a functionf mapping nodes of to subsets ofd of size

not exceeding: such that for every live tupleé from 2, the setL(5) = {g € G |

s; € f(g) forall s;}, is a non-empty and connected subsedof

In words, we call a modell = (A, I) loose if we can associate a connected graph
® = (G, E) with it in the following way. Each node of the graph corresponds
to asmall subsetf(¢) of the model; a good way of thinking about this is that
‘describes’f(¢). One then requires that the graph ‘covers’ the entire madtie
sense that any € A belongs to one of these sets (this follows from the fact that
foranya € A, the ‘tuple’a is live). The fact that each sét(@) is connected when-
evera is live, implies that various nodes of the graph will not ga@ntradictory
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descriptions of the model. Finally, tHeosenes®f the model intuitively stems
from the acyclicity of®& and the connectedness of the sk(g); for, this ensures
that in walking through the graph we may describe differeartof the model,
but we never have to worry about returning to the same pareame have left it
Summarizing, we may see the graph as a loose, coherenttamilet descriptions
of local submodels of the model. Loose models are the onesgtfwh we can find
such a graph.

The following result states that the packed fragment of-Girder logic has the
loose model property

Theorem 7.33 Every satisfiable packed formula can be satisfied on a looskeimo
(of degree at most the number=# subformulas of).

But the big question is of course whether following this lBesss principle we
have indeed arrived at a decidable fragment of first-ordgiclol he next theorem
states that we have.

Theorem 7.34 The satisfiability problems for the guarded and the packed-fr
ment are decidable; both problems are DEXPTIME-completenfete for doubly
exponential time). However, for a fixed natural numbethe satisfiability problem
for formulas in the packed fragmeRt', is decidable in EXPTIME.

And finally, what about the finite model property? Will evewtisfiable packed
formula have a finite model? Here as well, the packed fragmiisptays very nice
behavior. Unfortunately, we do not have the space for a pobdtie finite model
property for the packed fragment — suffice it to say that iblmes some quite
advanced techniques from finite model theory. For some duiitiformation the
reader is referred to the Notes at the end of the section.

Mosaics

The remainder of the section is devoted to proving the Theeré.34 and 7.33.
The main idea behind the proof is to use thesaic methothat we met in Chap-
ter 6. Roughly speaking, this method is based on the ideacoind¢ructing mod-
els into a finite collection of finite submodels, and convigrsef building up new,
‘loose’, models from such parts. We will see that the packagrhent is in a sense
tailored towards making this idea work.

The proof is structured as follows. We start by formally diefghmosaics and
some related concepts. After that we state the main resntiecning the mosaic
method, namely th&losaic Theorenstating that a packed formula is satisfiable if
and only if there is a so-calleléthked set of mosaics for it, of bounded size. This
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equivalence enables us to define our decision algorithm atablesh the com-
plexity upper bounds mentioned in Theorem 7.34. We thenimaatto prove the
Mosaic Theorem. In doing so we obtain the loose model prggdertthe packed
fragment as a spin-off.

For a formal definition of the concept of a mosaic we first neethes syntactic
preliminaries. Given a first-order formufg we let Var(¢) and Free(¢) denote
the sets of variables and free variables occurring,imespectively. Lef” be a
set of variables. A/-substitutionis any partial mapr : V' — V. The result of
performing the substitution on the formulay’ is denoted by)?. (We can and
may assume that such substitutions can be carried out withcneasing the total
number of variables involved; more precisely, we assumigftiér () C V' then
Var(y?) C V)

As usual, we will employ a notion of closure to delineate adisiet ofrelevant
formulas, that is formulas that for some reason criticatiffuience the truth of a
given formula&. Let thesingle negation~¢ of a formula¢ denote the formula
if ¢ is of the form—); otherwise,~¢ is the formula—¢; we say that a set’ of
formulas is closed under single negations-if € X whenever € X.

Definition 7.35 Let X' be a set of packed formulas in the détof variables.
We call &' V-closedif it is closed under subformulas, single negations &nhd
substitutions (that is, if) belongs toY, then so doeg? for everyV -substitution
o). With Cl1,(¢) we denote the smallestar (¢)-closed set of formulas containing

& A

For the remainder of this section, we fix a packed formuta- all definitions to
come should be understood as being relativizegl the number of variables oc-
curring in¢ (free or bound) is denoted by, that is, & is the size ofVar(¢). It
can easily be verified that the sets of guarded and packedifasmare both closed
under taking subformulas; hence, the 6&§(¢) consists of guarded (packed, re-
spectively) formulas. An easy calculation shows that thelinality of C7,(&) is
bounded byc* - (2|¢]).

The following notion is the counterpart of the atoms that \eeehmet in earlier
decidability proofs (see Lemma 6.29, for instance). Alethdefining conditions
are fairly obvious.

Definition 7.36 Let X C Var(¢) be a set of variables. AX -typeis a setl” C
Cl, (&) with free variables inX satisfying, for all formulag) A+, ~¢, ¢ in CI,(&)
with free variables inX, the conditions (iyp A ¢ € I'iff ¢ € ['andy € I,
(i) o & I'iff ~¢ € I"and (iii) if p,x; = x; € I'theng? € I" for any substitution
o mappingz; to x; and/orz; to x;, while leaving all other variables fixed.

The next definition introduces our key tool in proving theidability of the packed
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fragment: mosaics and linked sets of them. Basically, a mn@smsists of a subset
X of Var(¢) together with a sef” encoding the relevant information on some
small part of a model. Here ‘small’ means that its size is loeaby the number of
objects that can be named using variable¥ jrand ‘relevant’ refers to all formulas
in Cl,(¢) whose free variables are . It turns out that a finite set of such mosaics
contains sufficient information to construct a modelf@rovided that the set links
the mosaics together in a nice way. Here is a more formal tiefini

Definition 7.37 A mosaids a pair(.X, I") such thatX C Var(§)andl” C Cl,4(§).
A mosaic iscoherentif it satisfies the following conditions:

(C1) I'isanX-type,
(C2) ify(z,z)andn(z,z) areinl’, then so iy (7(Z,9) A (T, 7)),
(provided that the latter formula belongs b, (¢)).

A link between two mosaicsX, I') and (X', I'") is a renaming (that is, an injec-
tive substitution)o with domo C X andrangecs C X’ which satisfies, for all
formulas¢g € Cl,(¢): ¢ € Iiff ¢7 € I".

A requirementof a mosaic is a formula of the fordy (7(z,7) A ¥ (7,7)) be-
longing toI". A mosaic(X', ') fulfills the requirementdy (7 (Z,7) A ¥(T,7))
of a mosaic(X, I') via the link ¢ if for some variables:, v in X’ we have that
o(T) = uw andn(u,v) andv(u,v) belong tol”. A setS of mosaics idinked if
every requirement of a mosaic inis fulfilled via a link to some mosaic i§. S is
a linked set of mosaics f@rif it is linked and¢ € I" for some(X, ") in S. A

Note that a mosai€X, I') may fulfill its own requirements, either via the identity
map or via some other map froii to X.
The key result concerning mosaics is the following Mosaiedrem.

Theorem 7.38 (Mosaic Theorem)Let ¢ be a packed formula. Thehis satisfi-
able if and only if there is a linked set of mosaics §or

Proof. The hard, right to left, direction of the theorem is treated.emma 7.39
below; here we only prove the other direction.

Suppose thaf is satisfied in the modéll = (A, I). In a straightforward way
we can ‘cut out’ from2( a linked set of mosaics fa. Consider the set of partial
assignments of elements.hto variables inVar(¢). For each such, let (X, I,)
be the mosaic given by, = dom a and

o ={¢ € Cly(&) | A = la]}

We leave it to the reader to verify that this collection forannked set of mosaics
fore. A
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When establishing the hard direction of this propositionwilein fact prove some-
thing stronger: starting from a linked set of mosaics forranfala& we will show,
via a step by step argument, that there i®@seor tree-like model foré. First
however, we want to show that the Mosaic Theorem is the kewrasvproving
the decidability of the packed fragment, and also for findingupper bound for its
complexity.

The decision algorithm and its complexity

The mosaic theorem tells us that any packed fornjutasatisfiable if and only if
there is a linked set of mosaics fér Thus an algorithm answering the question
whether a linked set of mosaics exists foralso decides whethgris satisfiable.
By providing such an algorithm we establish the upper corityldound for the
satisfiability problem of the packed fragment.

Recall thatk denotes the number of variables occurringsin The following
observations are fairly straightforward consequencesintiefinitions:

(i) up to isomorphism there are at maét- 22¢** mosaics. Using the bi@
notation, this is at most@(I€)-2* 1%
(i) given setsX, " with | X| < kandI' C Cl,(¢) it is decidable in time
polynomial ink* and|¢| whether(X, I') is a coherent mosaic.
(iii) given a setX of coherent mosaics and a requireme(it) it is decidable in
time polynomial in X | and|¢(Z)| whetherX fulfills the requirement)(z).

Using methods similar to the elimination of Hintikka setaitive saw in the de-
cidability proof for propositional dynamic logic (see Seat6.8), we now give an
algorithm which decides the existence of a linked set of nesdar ¢. Let Sy be
the set ofall coherent mosaics. By the observations ab@&gecontains at most
20(1€)-2"*5* elements and can be constructed in time polynomi&fih We now
inductively construct a sequence of sets of moséic S; O S D Sg---. If
every requirement of a mosajicin a setsS; is fulfilled we call » happy If every
mosaic inS; is happy then return ‘there is a linked set of mosaicstfar S; con-
tains a mosai¢X, I") with £ € I', and return ‘there is no linked set of mosaics for
¢ otherwise. If, on the other hand; containsunhappymosaics, letS;;; consist
of all happy mosaics it8; and continue the construction. Since our sets decrease in
size at every step, the construction must halt after at n$gstmany stages. By the
observations above, computing which states$jrare happy can be done in time
polynomial in¢ and|S;|. Thus the entire computation can be performed in time
polynomial in|Sy|. Clearly the algorithm is correct.

Hence, if we consider a formulain a packed fragment with fixed number of
variables |Sy| is exponential in¢|. In general however, the number of variables
occurring in a formula depends on the formula’s length antteen general},Sy|
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is doubly exponential if¢|. Thus, pending the correctness of Lemma 7.39 below,
this establishes the complexity upper bounds in the Thegr8dh

Loose models

Finally, we show the hard direction of the Mosaic Theoreng apin-off we estab-
lish the ‘loose model property’ mentioned in Theorem 7.33.

Lemma 7.39 Let¢ be a packed formula. If there is a linked set of mosaic< for
then( is satisfiable in a loose model of degrigéur ().

Proof. Assume thatS is a linked set of mosaics f@. Using a step-by-step con-
struction, we will build a loose model fat, together with an acyclic graph asso-
ciated with the model. At each stage of the construction webeidealing with
some kind of approximation of the final model and tree; thggeaimations will
be called networks and are slightly involved structures.

A networkis a quintuple(2(, &, u, o, o) such thatl = (A, I) is a model for
the first-order language® = (G, E) is a connected, directed and acyclic graph;
u: G — Sis a map associating a mosai¢ = (X, I;) in S with each node of
the graphyx is a map associating an assignmept X; — A with each node of
the graph; and finallyy is a map associating with each edget’) of the graph a
link oy from g, to iy (we will usually simplify our notation by writing instead
of Utt’)'

The idea is that each mosaig is meant to give a complete description of the
relevant requirements that we impose on a small part of théefrto-be. Which
part? This is given by the assignment And the word ‘relevant’ refers to the
fact that we are only interested in the formulas influencimg truth of¢; that is,
the formulas inCl,(¢). The links between neighboring mosaics are there to ensure
that distinct mosaics agree on the part of the model thatlbéy have access to.

Now obviously, if we want all of this to work properly we haweitnpose some
conditions on networks. In order to formulate these, we remde auxiliary no-
tation. For a subsef) C A, let L(Q) denote the set of nodes i that have
‘access’ toQ); formally, we defineL(Q) = {t € G | A C range(a;)}. For a
tuplea = (ay,...,ay) of elements indA we setL(a) = L({a1,...,a,}). Now
a network is calleccoherentif it satisfies the following conditions (all to be read
universally quantified):

(Cl) Pz el;iff A |: Pf[at],

(C2) xj =w; € [ iff ay(a;) = aylwy),

(C3) L(Q) is non-empty for every guarded sgtC A,
(C4) L(Q) is connected for every guarded $21C A,
(C5) if Ett’ thenoyy (x) = 2’ iff ay(x) = ap (2).



7.4 The Guarded Fragment 457

A few words of explanation about these conditions: (C1) &@) (ensure that ev-
ery mosaic is a complete description of the atomic formutadihg in the part of
the model it refers to. Condition (C3) states that no livddugd the model remains
unseen from the graph, while the conditions (C4) and (C5)tlaecrucial ones
making that remote parts of the graph cannot contain caotoag information
about the model — how this works precisely will become cleathier on. Note
that condition (C5) has two directions: the left-to-rigltedtion states that neigh-
boring mosaics have common access to part of the model, theilether direction
ensures that they agree on their requirements concerrisigadimmon part.

The motivation for using these networks is that in the end watvany formula
#(T) € Cly(¢) to hold in2 under the assignment; if and only ¢(Z) belongs
to I;. Coherence on its own is not sufficient to make this happerdef&ctof
a network consists of a formuldy (7 (Z,7) A ¢ (Z,y)) which is a requirement of
the mosaiq.; for some node while there is no neighboring nodésuch that.,
fulfills 3y (7(Z,7) A ©(Z,y)) via the linkoy . A coherent networkt is perfectif
it has no defects. We say tHatis a networkfor ¢ if for somet € G, i, = (X¢, I})
is such that € I;.

Clam1 If 1 = (A, &, u, o, 0) is a perfect network, then

(i) 2is aloose model of degreéé’ar(¢)|, and
(ii) forallformulas¢(z) € Cl,(¢) and all nodeg of &: ¢ € I} iff A = P[ay].

Proof of Claim. For part (i) of the claim, leDt = (2, &, 1, «, o) be the perfect
network for¢. Let2l = (A, I). As the functionf mapping nodes ob to subsets
of A, simply take the map that assigns ttamge of «; to the nodet. Since the
domain of each map; is always a subset ofar(¢), it follows immediately that
f(t) will always be a set of size at mostar(£)|. Now take an arbitrary live tuple
5in 2, it follows from (C3) and (C4) thaL(s) is a non-empty and connected part
of the graph®. Thus2( is a loose model of degré&ar(¢)|.

We prove part (i) of the claim by induction on the complexitiy¢. For atomic
formulas the claim follows by conditions (C1) and (C2), ahd boolean case of
the induction step is straightforward (sinfeis an X—type) and left to the reader.
We concentrate on the case th&r) is of the form3y (7 (Z,7) A ¢¥(T,7)).

First assume thab(z) € I;. SinceMN is perfect there is a nod€ in G and
variablesu, 7 in X such thatF'tt’, =(u,v) and+(u,v) belong tol}, while the
link o from y; to ;i mapsz to w. By the induction hypothesis we find that

™A | m(T,v) A (@, v)[ay]. (7.6)
But from condition (C5) it follows thatv. (T) = (@), whence (7.6) implies that

A= 3y (n(7,7) A, 7)ol
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which is what we were after.

Now suppose, in order to prove the converse directionAhat ¢(T)[ay]. Leta
denoten (), then there argin A such tha®l = 7 (7, 7)[ab] and |= (T, 7)[ab).
Our first aims are to prove that

L(ab) # @, (7.7)
and
L(Q) is connected for everg) C {a,b}. (7.8)

Note that if we are working in the guarded fragment, thém,y) is an atomic
formula, whence it follows fron® |= = (Z,7)[ab] thatab is live. Thus{a,b} is
guarded, and hence (7.7) is immediate by condition (C3)adtéveryQ C {a, b}
is guarded in this case, so (7.8) is immediate by conditiot).(C

In the more general case of the packed fragment we have to avbitkharder.
First, observe that itloesfollow from 20 |= =(Z,7)[ab] and the conditions on
7(Z,7y) in the definition of packed quantification, thiat d} is guarded, and thus,
L(c,d) # @, for everypair (c, d) of points taken fromab. It follows from (C4) that
{L(c,d) | ¢, dtaken fromab} is a collection of non-empty, connected, pairwise
overlapping subgraphs of the acyclic graphlt is fairly straightforward to prove,
for instance, by induction on the size of the graphthat any such collection must
have a non-empty intersection. From this, (7.7) and (7 8pmost immediate.

Thus, we may assume the existence of a nbde® such that(a, b} C range ay.
Letw and@ in Xy be the variables such that, (7) = @ anday (v) = b. The
induction hypothesis implies thatw, ©) and (u, v) belong tol -, whencep(u) €
I'y by coherence ofi. Since botht andt’ belong toL(a), it follows from (7.8)
that there is a path fromto ¢’ within L(@), sayt’ = syEs E ... Es, =t. Leto;
be the link between the mosaicsgfands; 1, and defing to be the composition
of these maps. It follows by an easy inductive argument orehgth of the path
thatp is a link betweenu, andy; such thato(w) = =. Hence, by definition of a
link we have thaty(z) € I'y. -

By Claim 1, in order to prove the Lemma it suffices to constauperfect network
for £. This construction uses a step-by-step argument; to satdnstruction we
needsomecoherent network fof.

Claim 2 There is a coherent network for

Proof of Claim. By our assumption og there is a coherent mosgic= (X, I")
such thatf € I'. Without loss of generality we may assume thatis the set
{z1,...,x,} (otherwise, take an isomorphic copyoin which X does have this
form). Letaq,...,a, be a list of objects such that for alland ; we have that
a; = a; if and only if the formulaz; = x; belongs tal". DefineA = {a1,...,a,}
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and put the tupléa;,, ..., a;, ) in the interpretation/ () of the k-ary predicate
symbol P precisely if Pz;, ...x;, € I'. Let2 be the resulting modé€lA, /) and
define® as the trivial graph with one nodeand no edges. Let(0) be the mosaic
w; o = X — Alis given bya(x;) = a;; and finally,oq is the identity map from
XtoX.

We leave it to the reader to verify that the quintufe &, 11, «, o) is a coherent
network foré.

The crucial step of this construction will be to show that aeyect of a coherent
network can be repaired.

Claim 3 For any coherent networlt = (2, &, 11, v, o) and any defect dft there
is a coherent networRt ™ extending)t and lacking this defect.

Proof of Claim. Suppose thab(7) is a defect obt because it is a requirement of
the mosaiq:; and not fulfilled by any neighboring mosaig:. We will define an
extensiorDlt of N in which this defect is repaired.

SinceS is a linked set of mosaics and belongs taS, x; is linked to a mosaic
(X', I"") € S in which the requirement is fulfilled via some link LetY be
the set of variables ik’ that do not belong to the range pf suppose that” =
{y1,-..,yx} (with all y; being distinct). For the sake of a smooth presentation,
assume that” contains the formulasz’ = y for all variablest’ € X' andy € Y
(this is not without loss of generality — we leave the geneeale as an exercise
to the reader). Take a séti, ..., ¢} of fresh objects (that is, ng is an element
of the domainA of 2(), and lety be the assignment with domai¥’ defined as
follows:

N oag(z) if 2 = p(x),
@) = { Ci if 2/ =y;,
and lett’ be an object not belonging 6. Now define the networRl* = (AT,
&*, ut, at, o) as follows:

AT = Au{e,...,al},

I(P) = I(P)u{d| forsomez,d = ~(z) andPz € "'},
Gt = Gul{t},
BY = BU{t!)}

while T, ot ando™ are given as the obvious extensions.ofr ando, namely
by putting;, = (X', I"), oif =~ andoy = p.

Since the interpretation™ agrees with/ on ‘old’ tuples it is a straightforward
exercise to verify that the new netwodk™ satisfies the conditions (C1)—(C3) and
(C5).

In order to check that condition (C4) holds, take some guhsidset) from
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AT; we will show thatZL*(Q) is a connected subgraph &f*. It is rather easy
to see thatL *(Q) is identical to either.(Q) or L(Q) U {¢'}; hence by the con-
nectedness of (Q) it suffices to prove, on the assumptions tHat L*(Q) and
L(Q) # @, thatt € L(Q). Hence, suppose thdte L*(Q); that is, eachu € Q
is in the range ofy. But if L(Q) # @, each such point must be old; hence, by
definition ofy, eacha € @ must belong taange «;. This gives that € L(Q), as
required. -

As in our earlier step-by-step proofs, the previous twaetashow that using some
standard combinatorics we can construct a chain of netwsarkhl that theitimit
is a perfect network. This completes the proof of the lemma.

Exercises for Section 7.4

7.4.1 In the loosely guarded fragmerthe following quantification patterns are allowed:
I3z(#(Z,y) A (Z,7)) is a loosely guarded formulaif(z,y) is loosely guardeds (7, 7)
is a conjunction as in the packed fragment, and anyqait of distinct variables fronty
occurs free in some conjunct of the guardinless: andz’ are both frony. For example,
3z ((Ryx A Rxy") A—Cuayy') is loosely guarded, but not packed since there is no conjunct
having bothy andy’ free.

Show that for every loosely guardsdntence there exists an equivalent packed sen-
tenceg’ in the same language.

7.4.2 Define theuniversal packed fragmeas the fragment of first-order logic that is gen-
erated from atoms, negated atoms, conjunction, disjumcticdinary existential quantifi-
cation, and packed universal quantification. (With theelatte mean thatz(r — ) is
in the fragment ify is universally packedr packs its own free variables, atttee () C
Free(r).)

Show thatsatisfiabilityis decidable for the universal packed fragment.

7.4.3 Fix a natural numbet, and suppose that we are working immatbvoundedirst-order
signature; that is, all predicate symbols have arity at moBtrove that in such a signature,
every guarded sentence is equivalent to a guarded sentsingeati most: variables. Does
this hold for packed sentences as well? What are the conseesiéor the complexity of
the respective satisfiability problems?

7.4.4 Let¢ be a packed formula, and suppose thastsatisfiable. Prove thatis satisfiable

in a loose model with an associated graplof which theout-degreas bounded by some
recursive function or§. In particular, this out-degree should fieite. (The out-degree of

a nodek of a graph(G, E) is defined as the number of its neighbors, or, formally, as the
size of the se{k’ € G | kEE'}; the out-degree of a graph is defined as the supremum of
the out-degrees of the individual nodes.)

7.5 Multi-Dimensional Modal Logic

In Chapter 2 we backed up our claim that logical formalismsdblive in isola-
tion by developing the correspondence theory of modal logie studied modal
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languages as fragments of first-order languages. In thisoeewe will turn the
looking glass around and examine first-order logic as if itexsemodal formalism.
The basic observations enabling this perspective are thatay viewassignments
(the functions that give first-order variables their valuaifirst-order structure) as
statesof a modal model, and that this makes standard first-aydentifiersbehave
just like modal diamonds and boxes. First-order logic thrarsnk an example of
amulti-dimensionalmodal system. Multi-dimensional modal logic is a branch of
modal logic dealing with special relational structures ihiet the states, rather
than being abstract entities, have some inner structurete Idpecifically, these
states are tuples or sequences over some base set, in outheademain of the
first-order structure. Furthermore, the accessibilitatiens between these states
are (partly) determined by this inner structure of the state

Reverse correspondence theory

To simplify our presentation, in this section we will notatenodal versions of
first-order logic in general, but restrict our attention &stain finite variable frag-
ments. A precise definition of these fragments will be giveer on (see Defini-
tion 7.40). For the time being, we fix a natural numher 2 and invite the reader
to think of a first-order language with equality, but withaainstants or function
symbols, in which all predicates areadic. Consider the basic declarative state-
ment in first-order logic concerning the truth of a formulaanrmodel under an
assignmens:

M= ¢ [s], (7.9)

The basic observation underlying our approach, is that weread (7.9) from a
modal perspective as: ‘the formudais true in9J1 at states’. But since we have
only n variables at our disposal, say, ..., v, 1, we can identify assignments
with maps:n (= {0,...,n — 1}) — U, or equivalently, withn-tuples over the
domainU of the structuret — we will denote the set of such-tuples byU™.
But then we find ourselves in the setting of multi-dimensiomadal logic: the
universe of our modal models will be of the forifi* for some base séf. Now
recall that the truth definition of the quantifiers reads ds\is:

M |= Jv; ¢[s] iff there is anu € U such thabnt |= ¢ [s!],

wheres’, is the assignment defined ki/(k) = u if k = i ands’ (k) = s(k) other-
wise. We can replace the above truth definition with the moredal’ equivalent,

M = Ju;¢[s] iff there is an assignment with s =; s’ andM = ¢ ],
where=; is given by
s=; s iff forall j #1i,s; = 8. (7.10)
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In other words: existential quantification behaves like alaiddiamond having=;
as itsaccessibility relation

Since the semantics of the boolean connectives in the @tedt@lculus is the
same as in modal logic, this shows that the inductive claimstige truth definition
of first-order logic neatly fit a modal mould. So let us now cemicate on the
atomic formulas. To start with, we observe tegualityformulas do not cause any
problem: the formula; = v;, with truth definition

om |: v; = ’Uj[S] iff s¢ ]dij,
can be seen as a modainstant Hereld;; is defined by
ENS Idij iff s;= S5 (7.11)

The case of the other atomic formulas is more involved, hewe8ince we con-
fined ourselves to the calculuswfadic relations and do not have constants or func-
tion symbols, our atomic predicate formulas are of the fdfmy ) ... vy(,—1)-
Hereo is ann-transformation that is, a mapn — n. In the model theory of first-
order logic the predicate symb&i will be interpreted as a subset@f*; but this is
precisely how modal valuations treat propositional vdgabin models where the
universe is of the forni/™! Therefore, we can identify the set of propositional vari-
ables of the modal formalism with the set of predicate sysloblour first-order
language. In this way, we obtain a modal reading of (7.9)Herdase where is the
atomic formulaPuvy . .. v,—1: M = Puy ... v,1]s] iff s belongs to the interpreta-
tion of P. However, as a consequence of this approach our set-upatidmoy a
one-to-one correspondence between atomic first-ordemdasrand atomic modal
ones: the atomic formul&v, ) . .. v,(,—1) Will correspond to the modal atom
only if o is the identity function om. For the cases whereis not the identity map
we still have to find some kind of solution. There are manyasihere.

Since we are working in a first-order language with equaétgmic formulas
with a multiple occurrence of a variable can be rewritten as formulas witly on
‘unproblematic’ atomic subformulas, for instance

Puvivgvg ~ oo (UQ =y A P’Ulvgvg)
~ duy (UQ =wvp N dug (Uo =v1 A P’U()UQUQ))
~ duy (UQ =wvo N dug (Uo =uvy A dg (1)1 =2 A\ onvlvg))).

This leaves the case what to do with atoms of the fétm g, . . . v (,,—1), Whereo

is a permutation ok, or in other words, atomic formulas where variables havabee
substitutedsimultaneouslyThe previous trick does not work here: for example, to
write an equivalent of the formul&v,vyvo, one needextra variables as buffers,
for instance, when replacinguv, vgv, by

303304(03 =vg ANvg =v1 A 300301(00 =g ANv1 =v3 A\ onvlvz)).
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One might consider a solution where a predidatis translated intsvariousmodal
propositional variableg,, one for every permutation of n, but this is not very
elegant. One might also forget about simultaneous substigiand confine one-
self to afragmentof n-variable logic where all atomic predicate formulas arehef t
form Puy ... v,_1 — this fragment ofestrictedfirst-order logic is defined below.
A third solution is to take substitution seriously, so to @peby adding special
‘substitution operators’ to the language. The crucial olzen is that for any
transformatiorr € n"*, we have that

M = Pug(o) - - Vom-1)[s] iff M= Poy...vp 1 [s00], (7.12)

wheres o ¢ is the composition of ands (recall thats is a map:n — U). So, if
we define the relatio, C U™ x U™ by

sM,t iff t=s00, (7.13)
we have rephrased (7.12) in terms of an accessibility celgin fact, a function):

M = Pug) - - Vo(n_nls] iff
M |= Pug...v,—1 [t] fOr somet with s X, ¢.

So if we add an operatan, to the modal language for evernytransformations
in n™, with X, as its intended accessibility relation, we have found therelé
modal equivalent for any atomic formuldv, g . . . v(,,—1), Namely in the form
Osp- (As a special case, for the formulay . .. v, ; one can take the identity
map onn.)

Definition 7.40 Let n be an arbitrary but fixed natural number. The alphabet of
L,, and of L], consists of a set of variablds; | ¢ < n}, a countable set of-adic
relation symbols £y, P, ...), equality (=), the boolean connectivesVv and the
quantifiersdv;. The collection of formulas is defined as usual in first-orideic,
with the restriction that the atomic formulas 6f, are of the formv; = v; or
P(vg...v,1); for L,, we allow all atomic formulas (but note that all predicates
are of arityn).

A first-order structure forL,, (L]) is a pairdt = (U, V') such thatU is a set
called the domain of the structure amdis an interpretation function mapping
every P to a subset ot/". The notion of a formulap beingtrue in a first-order
structure?t under an assignmentis defined as usual. For instance, given our
notation we have, for any atomic formula:

M E= Plog...op1) [s] If s e V(P),
m |: P(UU(O) . ’Ug(n_l)) [S] if soo (: (80(0) . Sg(n_l))) € V(P)

An L,-formula ¢ is true in Mt (notation: M = ¢), if M = ¢ [s] forall s € U™;
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it is valid (notation: |=4, ¢), if it is true in every first-order structure df,,. The
same definition applies tb),. -

From now on, we will concentrate on theodalversions ofL;, andL,,, which are
given in the following definition:

Definition 7.41 Letn be an arbitrary but fixed natural numbéd.LR,, (short for:
modal language of relationss the modal similarity type having constants; and
diamonds®;, o, (foralli,j < n,o € n™). CML,, the similarity type otylindric
modal logic is the fragment of\/L R,,-formulas in which no substitution operator
Oy OCCurs.

A first-order structurét = (U, V') can be seen as a modal model based on the
universe*lU, and formulas of these modal similarity types are integuéh such a
structure in the obvious way; for instance, we have

97(, sk L(Sij iff S =S4
M sl-Opp iff Msool-o
(iff there is at with s X, t and9, ¢ IF ¢)
M, s -0 iff thereis at with s =; t and, ¢ IF ¢.

If an MLR, -formula¢ holds throughout any first-order structure, we say that it is
first-order valid notation:C,, I+ ¢ (this notation will be clarified further on). -

The modal disguise ak,, in MLR,, and ofL] in C’MLis so thin, that we give the
translations mapping first-order formulas to modal onebavit further comments.

Definition 7.42 Let (-)! be the following translation frond,, to MLR,,:

(PUO'(O) !

) = Ogp
(Uz = Uy)t = 10
(mo) = —¢
(V) = o' vyl
(Fvig)t = 00",

This translation allows us to séé and CML,, as syntactic variantg:)! is easily
seen to be arsomorphismbetween the formula algebras bf, and CML,,. Note
that in the case of,, versusMLR,,, we face a different situation: where MLR
the simultaneous substitution of two variables for eackiothaprimitive operator,
in first-order logic it can only be defined by induction. Nebetess, we could
easily define a translation mappifdgLR,,-formulas to equivalent; -formulas. In
any case, the following proposition shows that we reallyeh@eveloped a reverse
correspondence theory; we leave the proof as an exercike teader.

Proposition 7.43 Let ¢ be a formula inZ,,, then
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(i) for any first-order structurét, and anyn-tuple/assignment, we have that
M = ¢[s] if and only ifON, s IF ¢';
(i) asacorollary, we have thaty, ¢ < C, I ¢'.

Let us now put the modal machinery to work and see whether wefind out
something new about first-order logic.

Degrees of validity

Perhaps the most interesting aspect of this modal perspeamtifirst-order logic is
that it allows us to generalize the semantics of first-ordgicl, and thus offers a
wider perspective on the standard Tarskian semantics. asie lwea is fairly ob-
vious: now that we are talking abontodallanguages, it is clear that the first-order
structures of Definition 7.41 aneery specifionodal models for these languages.
We may abstract from the first-order background of these mmpded consider
modal models in which the universe is arbitrary set and the accessibility rela-
tions arearbitrary relations (of the appropriate arity).

Definition 7.44 A MLR,-frameis a tuple(W, T;, E;j, F5); j<n,cenn SUCh that ev-
ery E;; is a subset of the univers&’, and such that every; and everyF;, is a bi-
nary relation ori¥. A MLR,-modelis a pairdt = (F, V) with § a MLR,,-frame
andV avaluation that is, a map assigning subsetd16fto propositional variables.
CML,-models and frames are defined likewise]

For such modeldruth of a formula at a state is defined via the usual modal induc-
tion, for instance:

M, w Ik Oy iff thereis av with F,wv and 901, v I+ ¢.

In this very general semantics, states (that is, elementheouiniverse) are no
longer real assignments, but rather, abstractions theFeast-order logic now re-
ally has become a poly-modal logic, with quantification ambissitution diamonds.
It is interesting and instructive to see how familiar lawstoé predicate calculus
behave in this new set-up. For example, the axiom schemadv;¢ will be valid
only in n-frames wherd’; is a reflexive relation (this follows from the fact that the
modal formulap — <;p corresponds to the frame conditiva7T;zx). Likewise,
the axiom schemesv;Jv;¢p — Jv;¢ and¢p — Yv;Jv;¢ will be valid only in frames
where the relatiofT; is transitive and symmetric, respectively.

Later on we will see more of such correspondences; the poibetmade here
is that the abstract perspective on the semantics of fidgrdogic imposes a cer-
tain ‘degree of validity’ on well-known theorems of the pieate calculus. Some
theorems are valid iall abstract assignment frames, like distribution:

Yoi(¢ — ) = (Yvip — Vo),
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which is nothing but the modak-axiom. Other theorems of the predicate cal-
culus, like the ones mentioned above, are only validameclasses of frames.
Narrowing down the class of frames means increasing the fsedlio formu-
las, and vice versa. In particular, we now have the optioroti lat classes of
frames that are only slightly more general than the stanfilestdorder structures,
but have much nicer computational properties. This newpeets/e on first-order
logic, which was inspired by the literature on algebraicidpgprovides us with
enormous freedom to play with the semantics for first-ordgicl In particu-
lar, consider the fact that first-order structures can ba ssdrames of the form
(U™, =i,1d;ij, X5 )i j<n,cenn Whereall assignments € U™ are available. But why
not study a semantics where states are still real assigsarihe base sét, but
not all such assignments are available?

There are at least two good reasons to make such a move.itRishs out that
the logic of such generalized assignment frames has mueh meta-properties
than the logic of the cubes such as decidability, see foamtst Theorem 7.46
below. These logics will provide less laws than the usuatligege calculus, but
their supply of theorems may be sufficient for particular legggions. Note for
instance, that the schem@s— Jv;¢, Jv;3v;¢0 — Jv;¢ andp — Yv;Jv; ¢ are still
valid in every generalized assignment frame, sixgly is always an equivalence
relation.

In some situations it may even bisefulnot to have all familiar validities. Con-
sider for instance the schema

;v ¢ — Fv;Tv; 6. (7.14)

It follows from correspondence theory that (7.14) is vatidai frameg iff (7.15)
below holds ing.

Vaz (Jy (Tixy A Tjyz) — Ju(Tjzu A Tiuz)). (7.15)

The point is that the schema (7.14) disables us to make thendepcy of vari-
ables explicit in the language (that is, whetheris dependent of; or the other
way around), while these dependencies play an importast irolsome proof-
theoretical approaches. So, the second motivation forrgérnieg the semantics
of first-order logic is that it gives us a finer sieve on the owtdf equivalence
between first-order formulas. Note for instance that (7i44jot valid in frames
with assignment ‘holes’. take = 2. In a square (that is, 2-cubic) frame we have
(a,b) =p (d’,b) = (d’,1), butif (a,’) is not an available tuple, then there is no
s such thatla,b) =1 s = (d/,b') — hence this frame will not satisfy (7.15). So,
the schema (7.14) will not be valid in this frame.

In this new paradigm, a whole landscape of frame classes amdsponding
logics arises. In the most general approautysubset of/" may serve as the uni-
verse of a multi-dimensional frame, but it seems naturafripase restrictions on
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the set of available assignments. Unfortunately, for neasd space limitations we
cannot go into further detail here, confining ourselves &ftilowing definition.

Definition 7.45 Let U be some set, and’ a set ofn-tuples ovetUU, that is,IW C
U™. Thecube overlJ or full assignment frame ovér is defined as the frame

Q:n(U) = (Un, =i Idija Ma)i,j<n,a€n"—

The W -relativized cube ovet/ or W-assignment frame oy is defined as the
frame

&V (U) = (W, =ilw, Idij N W, Mg [w)ij<noenn
C, andR,, are the classes of cubes and relativized cubes, respgctivel

Observe that this definition clarifies our earlier notati@p 1+ ¢’ for the fact that
the modal formulap is first-order valid’.

Decidability

As we already mentioned, one of the reasons for developm@listract and gen-
eralized assignment semantics is to ‘tame’ first-ordercldmyi looking for core
versions with nicer computational behavior. This idea isstantiated by the fol-
lowing theorem.

Theorem 7.46 It is decidable in exponential time whether a giviii R,,-formula

is satisfiable in a given relativized cube. As a corollarye ftroblem whether a
given first-order formula in’,, can be satisfied in a general assignment frame is
also decidable in exponential time.

Proof. This theorem can be proved directly by using thesaic methodhat we
encountered in Section 6.4 — in fact, the mosaic method weslalged for this
particular proof! However, space limitations prevent u@rirgiving the mosaic
argument here. Therefore, we prove the theorem by a reductithe R,, satisfi-
ability problem to the satisfiability problem of thevariableguarded fragmenof
Section 7.4.

This reduction is quite interesting in itself: the key idsdhat we find a syntactic
counterpart to the semantic notion of restricting the setwaiilable assignments.
There is in fact a very simple way of doing so, namely by intrcdg a special
n-adic predicate that will be interpreted as the collection of available gssi
ments. One can then translate modal formulasi(gifformulas) into first-order
ones, with the proviso that this translationsintactically relativizedo G. The
formula Guy . .. v,_1 SO to speak acts asguard of the translated formula, and
indeed, it will be easily seen that the range of this trarmtatormally falls inside
the guarded fragment.
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Now for the technical details. Given a collectidnof propositional variables,
assume that with eagh € ¢ we have an associatedadic predicate symbaP.
Also, fix anewn-adic predicate symbdk; let ™ denote the expanded signature
{P | p € &} U {G}. Consider the following translatioft)®* mapping MLR,,-
formulas to first-order formulas:

p* = Puy...v, 1
Wy = v =
(=) = Guy...vp-1 A—9°
(bAY) = ¢ Ayt
(008)" = (Gto...va 1 AG")
(©ig)®* = Fui(Guy...vp—1A9¢°)

Here, for a given transformatiom, (-)” denotes the corresponding syntactic sub-
stitution operation on first-order formulas.
We want to show the following claim.

Claim 1 For any MLR, -formula¢ we have thaR,, I- ¢ if and only if the formula
Guvg ... v, 1 — ¢°is afirst order validity.

Proof of Claim. In order to prove this claim, we need a correspondence batwee
modal models and first-order models for the new language erGavrelativized
assignment modelt = (¢! (U), V), define the corresponding first-order model
9M* as the structurel, I') wherel(P) = V (p) for every propositional variablg,
andI(G) = W. Conversely, given a first-order structille= (A, I) for the ex-
panded first-order signatuge let2(, be the relativized cube mod@iﬁ(G)(A), V),
where the valuatiof’ is given byV (p) = I(P).

For any relativized assignment mod#gt, and any available assignmentwe
have

M, s |- ¢ iff M* |= ¢°[s]. (7.16)

This suffices to prove Claim 1, because of the following. tFstgopose that the
modal formulag is satisfiable in some relativized cube modg| say at state.
Sinces is an available tuple, it follows from (7.16) that is satisfiable in the first-
order structureéNt® under the assignment but also, since is available we have
M* &= Gug ... v,-1]s]. This shows that® A Guy ... v, is satisfiable.
Conversely, if the latter formula is satisfiable, there isedirst-order structure
2 for the languag@™, and some assignmensuch tha®l = ¢*AGug ... v, 1[s].
It is not difficult to see thaf2(,)* = A. Since2l = Guvy ... v,_1[s], it follows by
definition thats is an available assignment 2. But then we may apply (7.16)
which yields thal., s I ¢; in particular,¢ is satisfiable irR,,. The proof of (7.16)
proceeds by a standard induction, which we leave to the reade
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Finally, we leave it to the reader to verify that the rangé-of indeed falls entirely
inside then-variable guarded fragmegt,. From Claim 1 and this observation the
theorem is immediate. -

Axiomatization

To finish off the section we will sketch how to prove completes for the class of
cube models. For simplicity we confine ourselves to the sirityl type of cylindric
modal logic — but observe that this completeness resultimithediately transfer
to the restricted:-variable fragmentL;, .

Multi-dimensional modal logic is an area with a very inteirgg completeness
theory. For instance, if one only admits the standard moela@akion rules (modus
ponens, necessitation and uniform substitution), firéte axiomatizations are few
and far between. For instance, concerning th&L,,-theory of the clas<,,
Andréka proved that iV is a set of CML,,-formulas axiomatizingC,,, then for
each natural number,, X' contains infinitely many formulas that contain all di-
amonds<;, at least one diagonal constasf; and at leasin propositional vari-
ables. .. However, if we allow special derivation rules,hia style of Section 4.7,
then a nice finite axiomatization can be obtained, as we w#l rsow. A key role
in our axiomatization and in our proof will be played by a defiroperator Rp
which acts as thdifference operatoon the class of cube frames, see Section 7.1.
For its definition we need some auxiliary operators:

Qi = <Ci(tdiy N ¢) (i #7)
Elo = $0...0i10i41... 010
Dno = Vz 05i®i(medi NE'9).
The definition of D, may look fairly complex, but it is directly based on the obser

vation that twon-tupless andt aredistinctif and only for some coordinatg s; is
distinct fromt¢;.

Proposition 7.47 D,, acts as the difference operator on the class of cubes.
Proof. LetM = (&, (U), V) be a cube model. We will show that
M, s |- D,piff M, ¢ = p for somet such thats # t. (7.17)

For the sake of a clear exposition we assume that 3, so that we may write
s = (80,81, 52).

For the left to right direction of (7.17), suppose th&t s |- D,,p. Without loss
of generality we may assume that- 010 (—edp1 A Efjp). By definition of Oy
it follows that (sg, so, s2) IF $o(—edor A Efp). This in its turn implies that there is
somes;, such that(s, so, s2) IF —wdp1 and(sg, so, s2) I- Efjp. Itis easily seen that
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the meaning of [ is given by
M, u - B iff M, v |= 1 for somev such thatu; = v;,

SO (sg, s0,s2) IF Ejp means that there is sometuple ¢ such thatt I- p and
sq = to. But it follows from (s, so, s2) IF —wdp; thatsy # i, so that we find that
to # sp. But then, indeed; is distinct froms. We leave it to the reader to prove
the right to left direction of (7.17). 4

However, the connection between, Bnd the class of cubes is far tighter than this
Proposition suggests. In fact, the cubes areatfiyg frames on which ) acts as
the difference operator, at least, against the right backat of the classiCF,, of
hypercylindric frames

Definition 7.48 A CML,-frame is callechypercylindricif the following formulas
are valid on it:

( ) p— Op

(CM2;) p— 0;0m

(CM3;) Oi0ip = Oip

(CM4;)  ©iOp = OO

(CM5Z) L(Sii

(CM6i;)  ©i(eoij Ap) — Oi(edij — p)) (i # )

(CM7l]k) L5ij — <>k(55ik A L5kj) (k € {Z,]})

(CM8i5) (0 A Oi(mp A Cyp)) = Cj(mediy AOwp) (i #j)

All these axioms are Sahlqvist formulas and thus expredsdiicer properties of
frames. Clearly, the axiom&M1—3 together say that eachi is an equivalence
relation. CM6;; then means that in eveilj-equivalence class thereas most one
element on the diagondl;; (: # j). One can combine this fact with the (first-
order translations of’M5; and CM7;;; to show that every;-equivalence class
containsexactlyone representative on thi;;-diagonal. Apart from this effect,
the contribution ofCM7 is rather technical. Finally, the meaning 6f//; and
CMS$ is best made clear by Figure 7.2 below, where the straigbs Inepresent
the antecedent of the first-order correspondents, and titeddnes, the relations
holding of the ‘old’ states and the ‘new’ ones given by thecgatent.

The key theorem in our completeness proof is the following.

Theorem 7.49 For any frameg in HCF,,, D,, acts as the difference operator gn
if and only if§ is a cube.

Proof. We have already proved the left to right direction of this iegience in
Proposition 7.47. The proof of the other direction is techtly rather involved
and falls outside the scope of this book
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Fig. 7.2. The meaning of'M/;; (left) and CM§;; (right)

In fact, with Theorem 7.49 we have all the material in our tsata prove the
desired completeness result.

Definition 7.50 Consider the following modal derivation systei,. Its axioms

are (besides the ones of the minimal modal logic for the aintyl type CML,,),

the formulasCM1-8; as its derivation rules we take, besides the standard ones,
also the D,-rule:

F(pA-D,p)—0
Fo

As usual,f2,, will also denote théogic generated by this derivation system-

Theorem 7.51 (2, is sound and strongly complete with respect to the dlgss

Proof. It follows immediately from Theorem 7.6 and Theorem 7.49 )@ obtain
a complete axiomatization fat,, if we extend(2, with the D,-versions of the
axiomsSymmetryPseudo-transitivityand DInclusion However, as its turns out,
these axioms are valid on the class of hypercylindric framseghey are already
derivable in(2, (even without the use of the,Prule). From this, the theorem is
immediate. -

Exercises for Section 7.5

7.5.1 Letn andm be natural numbers such thak m, and consider &ML, -formula.
First, observe thap is also aCML,,-formula. Prove tha€,, IF ¢ iff C,, IF ¢. Conclude
that our definition of anlV/LR,,-formula beindfirst order valid is unambiguous.

7.5.2 Prove that the formul&, - -- <,,_1p acts as the global modality on the class of
hypercylindric frames. That s, show that for any mofliébased on such a frame we have
that

M, slkE g - Oy _qpiff M, ¢t IF p for somet in M.
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Which of the axioms CM1-8 are actually needed for this?

7.5.3 Let L, denote the equality-free fragment b ; that is, all atomic formulas are of
the formPuy ... v, 1. In an obvious way we can define relativized assignment fsfore
this language. Prove that the satisfiability problem gy in this class of frames can be
solved in PSPACE.

7.5.4 Prove that every hypercylindri€ML»-frame is the bounded morphic image of a
square frame (that is, a 2-cube). Use this fact to find a campieiomatization for the
classC, that only uses the standard modal derivation rules.

7.5.5 Let CF,, be the class of cylindric frames, that is, thaS&/L,, -frames that satisfy
the axioms CM1-7. The class afdimensional cylindric algebras defined a<A,, =
SPCmCF,,. The classe$iCF,, andHCA,, are defined similarly, now using all axioms
CM1-8.

(a) Prove thatCA,, andHCA,, are canonical, that is, closed under taking canonical
embedding algebras.
(b) ProvethatCA, andHCA, are varieties.

7.5.6 A full n-dimensional cylindric set algebiia an algebra of the form
(P(U™),U, —,2,Cs,Idij); j<n.
Here thei-th cylindrificationis defined as the ma@; : P(U™) — P(U™) given by
Ci(X)={seU"|te X forsometin X withs =; ¢ }.

If we close the class of these algebras under products aralgalisas, we arrive at the
varietyRCA,, of representable:.-dimensional cylindric algebras

(a) Prove that every representahlelimensional cylindric algebra is a boolean algebra
with operators.

(b) Prove thaRCA,, is contained in the class€s\,, andHCA,, of the previous exer-
cise.

(c) Prove thaRCA,, is canonical. (Hint: use Theorem 7.49 to show that the dlass
of n-dimensional cubes is first-order definable in the frameuang ofCML,,.)

7.6 A Lindstrodm Theorem for Modal Logic

Throughout this book we have seen many examples of modalidayes, espe-
cially in the present chapter. To get a clear picture of therging spectrum, these
languages may be classified according to their expressiverpar their semantic
properties. But what — if any — is the special status of theiliammodal lan-
guages defined in Chapter 1. If we focus on characteristi@sgaproperties, then
clearly their invariance under bisimulations must be a leatdre. But what else is
needed to single the out (standard) modal languages?

The answer to this question is a modal analogue of a classidt fie first-order
model theory: Lindstrom’s Theorem. It states that, givesuaable explication
of what ‘classical logic’ is, first-order logic is the straggj logic to possess the
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Compactness and Lowenheim-Skolem properties. To proanalogous charac-
terization result for modal logic we need to agree on a nurob#rings:

e What will be the distinguishing property of the logic that want to characterize
(on top of its invariance for bisimulations)? To answer thigestion we will
exploit the notion of degree introduced in Definition 2.28.

e What is a suitable notion of an abstract modal logic? To angi®question we
will introduce some bookkeeping properties from the foraioh of the original
Lindstrom Theorem for first-order logic, and add a furtheaggerty having to do
with invariance under bisimulations.

Our plan for this section is to discuss each of the above items after the other,
and to conclude with a Lindstrom Theorem for modal logic.

Background material

Throughout this section models for modal languagespaiated modelf the
form (M1, w), wheret is a relational structure and is an element ob)t (its
distinguished pointat which evaluation takes place.

Our main reasons for adopting this convention are the faligwkirst, the basic
semantic unit in modal logic simplis a structure together with a distinguished
node at which evaluation takes place. Second, some of thidsdmlow admit
smoother formulations when we adopt theal perspective of pointed models.

Bisimulations between pointed modébt, w) and (0N, v) are required to link
the distinguished points andv.

Definition 7.52 (In-degree) Let r be a modal similarity type, and 181t be ar-
model. Thein-degreeof a stateu in M is the number of times occurs as an
non-first argument in a relatiorRw . . . w. . .. More formally, it is defined as

[{w € M= | forsomeR andi > 1, u = w; andR™w; ... w;...wy,) }|.

In addition to the in-degree of an element of a model, we Vsibaneed to use the
notion ofheightas defined in Definition 2.32.

Below we will want to get models that have nice propertieghsas a low in-
degree or finite height for each of its elements. To obtaiin snodels, the notion
of forcing comes in handy. Fix a similarity type A property P of models is
< --enforceable or enforceable iff for every pointedr-model (90t, w), there is a
pointed7-model (N, v) with (M, w) <, (N, v) and(N, v) has P.

For example, the property ‘every element has finite heighgnforceable. To
see this, let9, w) be a pointed--model; we may assume th@t is generated by
w. Let (M, w) be the submodel dbt whose domain consists of all elements of
finite height. Ther(M, w) €, (9, w).
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Proposition 7.53 below generalizes theraveling constructiorfrom the stan-
dard modal language to arbitrary vocabularies.

Proposition 7.53 The following properties of models are enforceable:

(i) tree-likeness, and
(i) the conjunction of ‘having a root with in-degree 0’ and ‘ey&lement (ex-
cept the root) has in-degree at most 1.

Proof. Item (ii) follows from item (i). A proof of item (i) for similaity types
only involving diamonds is given in Proposition 2.15; foetheneral case, consult
Exercise 2.1.7.

We will characterize modal logic (in the sense of Definitidn$2 and 1.23) by
showing that it is the only modal logic satisfying a modalctupart of the original
Lindstrom conditions: having a notion fihite degreewhich gives a fixed upper
bound on the height of the elements that need to be consitiexedlify a formula;
recall Definition 2.28 for the definition.

To wrap up our discussion of background material needed dorLondstrom
Theorem, let us briefly recall some basic facts related tosgesgand height. Here’s
the first of these facts; recall thg®)t, w) [ n,w) denotes the submodel Bt that
is generated fronw and that only has states of height at mest

Proposition 7.54 Let ¢ be a modal formula witkleg(¢) < n. Then(9, w) I+ ¢
iff (M, w) [ n,w) Ik ¢.

Next, recall from Proposition 2.29 that, up to logical e@lénce, there are only
finitely many non-equivalent modal formulas with a fixed #nilegree over a finite
similarity type.

We say that(91, w) and (91, v) are n-equivalentif w and v satisfy the same
modal formulas of degree at most

Proposition 7.55 Let 7 be a finite similarity type. Let9t, w), (M, v) be two
rooted models such that the roots have in-degree 0, evemyegledifferent from
the root has in-degree at most 1, all nodes have and heighbatm

If (9, w) and (M, v) aren + 1-equivalent, thert, w) < (N, v).

Proof. DefineZ C A x B by xZy iff:
height(x) = height(y) = m and(9, z) and(N, y) are(n — m)-equivalent.

We claim thatZ : (0, w) < (M,v). To prove this, we only show the forth

condition. AssumerZy and R™xx1 ...z, whereheight(z) = height(y) = m.

Thenn —m > 1. Let A be the modal operator whose semantics is basefl.on
As 7 is finite, there are only finitely many non-equivalent foramibf degree at
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mostn — m — 1. Let; be the conjunction of all non-equivalent modal formu-
las of at most this degree that are satisfiedafl < i < k). Then(9,z) I+
A1, ..., 1), and A2y, ..., 1) has degree — m. Hence, as:Zy, (N, y) I+
A1, ..., 0. Sothere argy, ...,y in M such thatR™yy; ...y, and (M, y;) IF
Y (1 <i < k).

Now, as all states have in-degree at modielght(x;) = height(y;) = m + 1,
and (O, x;) and (N, y;) (1 < @ < k) are(n — (m + 1))-equivalent. Hence,
(M, x;) <+ (N, y;). This proves the forth condition. -

Abstract modal logic

The original Lindstrom Theorem for first-order logic s&afttom a definition of an
abstract classical logic as a pait,(=,) consisting of a set of formulag and a
satisfaction relatior=, betweenl-structures and’-formulas that satisfies three
bookkeeping conditions, an Isomorphism property, and atRe&ation property
which allows one to consider definable submodels. Then, sineadd logic extend-
ing first-order logic coincides with first-order logic if, @ronly if, it satisfies the
Compactness and Lowenheim-Skolem properties. We will setwup our modal
analogue of Lindstrom’s Theorem along similar lines.

The definition runs along the same lines as the definition @festract classical
logic. An abstract modal logic is characterized by thregprbtes: two book keep-
ing properties, and a Bisimilarity property to replace thenhorphism property.

Definition 7.56 (Abstract Modal Logic) By anabstract modal logiove mean
a pair (£,1-2) with the following properties (heré€ is the set of formulas, and
I is its satisfaction relation, that is, a relation betweenir{fed) models and’-
formulas):

(i) Occurrence property.For eache in L there is an associated finite language
L(74). The relation(d, w) I-. ¢ is a relation betweer-formulas¢ and struc-
tures (9, w) for languagesC containingL(7,). That is, if ¢ is in £, and Mt is

an £-model, then the stateme(t, w) |-, ¢ is either true or false ifC contains
L(14), and undefined otherwise.

(i) Expansion property.The relation(9t, w) |- ¢ depends only on the reduct of
M to L(7y). Thatis, if (M, w) Ik, ¢ and (N, w) is an expansion ofNt, w) to a
larger language, thef¥1, v) Ik, ¢.

(iii) Bisimilarity property. The relation(9t, w) I, ¢ is preserved under bisimu-
lations: if (M, w) <, (N, v) and(M, w) Ik ¢, then(N,v) k. ¢
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If we compare the above definition to the list of propertiefiriieg an abstract
classical logic, we see that it's the Bisimilarity propettiyat determines theodal
character of an abstract modal logic.

Obviously, ordinary modal formulas provide an example ofaéstract modal
logic, but so does propositional dynamic logic. In contrés¢ language of basic
temporal logic provides an example of a logic thand an abstract modal logic,
as formulas from basic temporal logic are not preservedmundanulations.

Next, we need to say what we mean ¥, |- ) extends basic modal logic’ and
by closure under negation.

Definition 7.57 We say that L, IF-) extends modal logiif for every basic modal
formula there exists an equivalefitformula, that is, if for each basic modal for-
mula ¢ there exists anC-formula ¢ such that for any modelt, w) we have
(M, w) Ik ¢ iff (M, w) kg .

Also, (L,IF.) is closed under negatioif for all £-formulas¢ there exists an
L-formula—¢ such that for all model&0t, w), (9N, w) IF ¢ iff (M, w) If —=¢p. A

Of course, propositional dynamic logic is an example of astralst modal logic
that extends (basic) modal logic.

Logics in the sense of Definition 7.56 deal with the same ad@g®inted mod-
els as (basic) modal logic, and only the formulas and satisfa relation may be
different. This implies, for example, that intuitionistiogic or the hybrid logics
considered in Section 7.3 are not abstract modal logics: thedels need to sat-
isfy special constraints. The original Lindstrom chagaiztation of first-order logic
suffers from similar limitations (by not allowing-logic as a logic, for example).

As a final step in our preparations, we need to say what themaii degree
means in the setting of an abstract modal logic.

Definition 7.58 (Notion of Finite Degree) An abstract modal logic hasreotion
of finite degresf there is a functiondeg, : £ — w such that for al(90, w), all ¢
in L,

(M, w) Ik ¢ iff (M, w) [ dege(9)), w ke o.

If £ extends (basic) modal logic, we assume thas,. behaves regularly with
respect to standard modal operators and propositiondefiéiat is, ifA is a modal
operator (see Definition 1.12), thekg,(p) = 0 anddeg,(A(¢1,...,0,)) =
1 + max{deg,(¢;) | 1 <i < n}.

Finally, two modelg9t, w) and (91, v) for the same language ateequivalent
if for every ¢ in £, (M, w) IF ¢ iff (M, v) IF¢. A

Having a finite degree is a very restrictive property, whismot implied by the
finite model property (FMP). To see this recall that proposdl dynamic logic
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has the FMP: it has the property that every satisfiable fearus satisfiable on a
model of size at mogt|, where¢ is the length ofs. However, it does not have a
notion of finite degree. To see this, consider the modeR,, V'), whereR,, is the
successor relation arld is an arbitrary valuation, and let = [a*|(a)T; clearly
(w, Rg, V'),0 IF ¢. But for non € w does the restrictiofw, R,, V') | n satisfy¢
at0. It follows thatPDL does not have a notion of finite degree.

Characterizing modal logic

We are almost ready now to prove our characterization reshé following lemma
is instrumental.

Lemma 7.59 Let (L, I.) be an abstract modal logic which is closed under nega-
tion. AssumeC has a notion of finite degreéeg,.. Let¢ be anL-formula with
deg,(¢) = n. Then, for any two model@, w), (M, v) such that("M1, w) and
(M, v) are n-equivalent, we have th&®t, w) I, ¢ implies(9,v) k2 .

Proof. Assume that the conclusion of the lemma does not hold(&tw), (N, v)
be such thatdt, w) and (N, v) aren-equivalent, butd, w) I-. ¢ and(MN, v) I,
—.

By the Occurrence and Expansion properties we may assurng thal(7,),
whereL(7,) is the finite language in which lives.

By Proposition 7.53 we can assume tftat, w) and(91, v) are rooted such that
the roots have in-degree 0, while all other nodes have imegegt most 1. Then
(M, w) | n,w) and((N,v) | n,v) aren-equivalent, and(M, w) [ n,w) Ik, ¢
but (M,v) [ n,v) IFz =¢. In addition (M, w) | n,w) and ((MN,v) | n,v)
both have in-degree 1 and roots of in-degree 0. By Propositid5 it follows
that (M, w) | n,w) and ((M,v) | n,v) are bisimilar — but now we have a
contradiction with the Bisimilarity property 691, w) | n,w) and((M,v) | n,v)
are bisimilar but don’'t agree ah.

Theorem 7.60 Let (L, IF.) extend modal logic. If£,I-.) has a notion of finite
degree, then it is equivalent to the modal language as definBefinition 1.12.

Proof. We must show that everg-formula ¢ is L-equivalent to a basic modal
formula ¢, that is, for all(9, w), (M, w) I, ¢ iff (M, w) Ik . As before,
by the Occurrence and Expansion properties we may restrisetves to a finite
language. Moreover) has a basic modal equivalent iff it has such an equivalent
with the same degree; so we have to locate the equivalentevafi@r among the
basic modal formulas whose degree equalstiuegree ofp.

Assumen = deg,(¢). By Proposition 2.29 there are only finitely many (non-
equivalent) basic modal formulas whose degree equassume that they are all
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contained inl;,. It suffices to show the following
if (9, w) and (N, v) agree on all formulas i, then they agree on. (7.18)

For then,¢ will be equivalent to a Boolean combination of formuladin To see
this, reason as follows. The relation ‘satisfies the sanmatitas inl",’ is an equiv-
alence relation on the class of all models;/gss finite, there can only be finitely
many equivalence classes. Choose representdtigsw, ), ..., (9M,,, w,,), and
for eachi, with 1 < i < m, let; be the conjunction of all formulas ify, that are
satisfied by(91;, w;). Theng is equivalent to/{«; | (M, w;) k2 ¢}

Now to conclude the proof of the theorem we need only obséraedondition
(7.18) is exactly the content of Lemma 7.59-

To conclude this section a few remarks are in order. Firstptioperty of having a
notion of finite degree can be characterized algebraicallgtims of preservation
under ultraproducts over the natural numbers; Theoremcafi@hen be reformu-
lated accordingly.

Second, in the proof of the Lindstrom Theorem the basic rifodaula ) that is
found as the equivalent of the abstract modal formula in the same vocabulary
as¢. This means, for example, that the only abstract modal loger a binary
relation that has a notion of finite degree is the standardatiodic with a single
modal operato>.

Here, we have only covered the modal logics as defined in Diefinl.12; in
some cases extensions beyond this pattern can easily beaubtéAs a first exam-
ple, consider the basic temporal language with operdtoasd P, wherex |- Fp
(z I+ Pp) iff for somey, Rxy andy I+ ¢ (Ryx andy |- ¢). Considertemporal
bisimulationsin which one not only looks forward along the binary relatitt
also backward, and adopt the notion of height accordingiyeiGthe obvious def-
inition of anabstract temporal logicstandard temporal logic is the only temporal
logic over a single binary relation that has a notion of fikiégree.

7.7 Summary of Chapter 7

» Logical Modalities Logical modalities receive a fixed interpretation in every
model. Simple examples are the past tense operatdne global diamond E,
and the difference operator D. As well a enhancing exprigssome of them
(notably P and D) make it possible to prove general completeness timsore
using additional rules of proof.

» Algebra of Diamonds Some modal languages offer not just a single logical
modality but an entire algebra of diamonds. Good exampkeB@r andBML .

» Since and Until The since and until operators are interesting in appligiclo
because they enable us to specify guarantee propertieg afdmathematically
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interesting because they are expressively complete oveelied complete to-
tal orders.

» Completeness-via-Completened¥hile deductive completeness of since and
until logic can be proved using standard modal techniqued)édekind com-
plete total order there is an interesting alternative:ngla detour via expressive
completeness.

» Hybrid Logic The basic hybrid language lets us refer to states usingmais)i
atomic symbols true at exactly one state in every model. Ssiroager hybrid
languages allow us to bind nominals.

» Hybrid Proof Theory We can define a rule of proof callethsTE in the basic
hybrid language. This rule is essentially a sequent rulgliigdisguised. With
its help, a frame completeness result covering all pure ditasncan be proved
fairly straightforwardly.

» Guarded fragmentAs the standard translation shows, modalities are esdignti
macros which permit restricted forms of quantification. #asting from this
insight leads to the guarded fragment, a decidable fragwidirst-order logic
with the final model property.

» Packed FragmentBy taking this observation even further, and noting that th
mosaic method suffices to prove decidability, it is posstblésolate an even
larger decidable fragment of first-order logic: the packedjient. This frag-
ment also has the finite model property.

» Multi-Dimensional Modal Logic Multi-dimensional modal logic is essentially
modal logic in which evaluation is performed at a sequencstates, rather
than at a single state. By viewing variable assignments@sesee of states, it
is possible to view first-order logic itself as a multi-dinsegnal modal logic.

» Lindstrtom’s Theorem Given a suitable (bisimulation centered) explication of
what an abstract modal logic is, our Lindstrom Theorem fodat logic says
that the general modal languages defined in Definition 1.&2ts strongest
ones to have a notion of finite degree.

» Extended Modal Logicln many ways, this chapter is badly named. Among
other things, we've just seen that not only it is possiblenivoduce global-
ity, more complex quantifier alternations in satisfacti@fiitions, names for
states, and evaluation at sequences of states, but we canwithsut losing
the properties that made modal logic attractive in the filstg So forget the
‘extended’. As we said in the Prefadés all just modal logid

Notes

A really serious guide to extended modal logic would have deec the (vast)
literature on temporal logics, fixed point logics, and vatsaof PDL discussed in
the theoretical computer science literature, plus forsnadi such as feature and



480 7 Extended Modal Logic

description logic, and much else besides. We don’t haveesfado all that, and

the following Notes stick to the six topics discussed in .t Nonetheless, with
the help of the following remarks (coupled with a little jogtius reference chasing)
the reader should be able to form a coherent map of territory.

Logical Modalities. It's hard to precise about when the idea of adding fixed in-
terpretation operators to modal languages came to be sesaratard. Certainly
the writings of Johan van Benthem (for example, his book amptal logic, his
‘manual’ on intensional logic, and his influential surveycofrespondence theory)
played an important role. So did the new applications of rhtmdgc, particularly
in computer science (once you've se&uL it's hard to believe that the basic modal
language is the be-all and end-all of modal logic). At ang rély the end of the
1980s the idea that modal languages are abstract toolskorgabout relational
structures — tools that it was not only legitimate, but altyumterestingto extend
— was well established in both Amsterdam and Bulgaria. Nayadhis view is
taken for granted by many (perhaps most) modal logiciarggaren this perspec-
tive the use of logical modalities is as natural as breathing

Of course, many of the operators we now call ‘logical’ haverbaround a lot
longer than that. In a way, the global modality has alwaystieere (after all its
just a plain oldS5operator). But when did it first emerge asaditional operator?
We’re not sure. Prior used it on a number of occasions (seexample, [369,
Appendix B4]), though sometimes Prior’'s global modalityatually the master
modality & discussed in Section 6.5 (that is, sometimes Prior viewsality as
the reflexive transitive closure of the underlying relation

But it seems fair to say that it was the Bulgarian-school whst gxploited it
systematically: it's the Swiss Army knife underlying th@iwestigation of BML,
and their work on hybrid logic. Goranko and Passy [198] issteyatic study of
the global modality as an additional operator, and is thecsoof Theorem 7.1, the
Goldblatt-Thomason theorem fML(<,E). The operator has also been studied
from an algebraic angle, being closely connected to thenaif a discriminator
variety; these classes display nice algebraic behaviorhand been intensively
investigated in universal algebra. For, in the context afléan algebra with oper-
ators, having the global modality is equivalent to having-a&alled discriminator
term; this is why in algebraic circles this modality is sommets dubbed a 'unary
discriminator term’; see Jipsen [253] for some informatidihe basic complexity
results for the global modality were proved in Hemaspadsdingsis [412]. Inci-
dentally, the global modality is usually referred to as theiversal’ modality in the
literature. However the word ‘universal’ suggests that weevaorking with a box,
so we prefer the term ‘global’, which is appropriate for bbtxes and diamonds.

The history of the difference operator is harder to untangflés probably due
to von Wright [457] (who viewed it as a ‘logic of elsewherei)daSegerberg gave
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an axiomatization in &estschriftfor von Wright (see [399]). Segerberg’s axioma-
tization, together with a more detailed completeness prwa$ later published in
[401]. But Segerberg treats D as an isolated modality. TReti® as an additional
modality seems to have been proposed independently by Kuy[2&6, 277] and
Sain [389]. The difference operator is also discussed ira@ar [195]. For a sys-
tematic investigation of D as an additional, logical motyalsee de Rijke [104].
The D-Sahlqvist theorem in the text is due to Venema [439]ecfém 7.8 is an
unpublished result due to Szabolcs Mikulas.

BML is a Bulgarian school invention. The system is first desdriimeGargov,
Passy and Tinchev [173] (as part of a wide ranging discussi@xtended modal
logic) and Gargov and Passy [172] concentrateBnn and gives proofs of the key
completeness and decidability results. See also the semultnodal definability in
Goranko [195]. All these papers view modal languages asrgeta®ls for talking
about structures, very much in the spirit of the present bdble window operator
has an interesting independent history: van Benthem [3( itsas part of a logic
of permissions and obligations, Goldblatt [182] used itéfirte negation in quan-
tum logic, Humberstone [242] used it in a discussion of ieasible worlds, while
Gargov, Passy and Tinchev [173] view it as a ‘logic of sufficig that balances
the usual ‘logic of necessity’ provided hy. Complexity-theoretic aspects BiML
have been studied and surveyed by Lutz and Sattler [310]ewdsolution-based
decision procedures for extensionsenfiL and related languages are explored by
Hustadt and Schmidt [244].

As we pointed out in the text, bottML and PDL are examples of modal lan-
guages equipped with highly structured collections of nhagerators. The dy-
namic modal logic of De Rijke [112] is a further example, andny description
logics allow for the construction of complex roles (thatascessibility relations)
by means of some or all of the booleans, converse, and sopgguen transitive
closure and least fixed point constructors; see Daetimi. [123].

The algebraic counterparts of modal languages with stredtaollections of
modal operators can best be phrased in terms of multi-saitgbras, where the
(algebraic counterparts of the) modal operators provideitlks between the sorts.
Kleene algebras [278] and Peirce algebras [108, 111] aréntyortant examples.
The former provide an algebraic semanticsHor and consist of a boolean algebra
and a regular algebra together with systematic links betwkeem that are used
to interpret the diamonds. The latter provide an algebramastics of dynamic
modal logic and consist of a boolean algebra and a relatgebeh together various
links between that are, again, used to interpret the maekliit the language.

Since and Until. The invention of since and until logic was a major breaktlgiou
in the study of modal logic. Hans Kamp tells the story this wiaya semester-long
course Arthur Prior gave on tense logic at UCLA in the fall 86%, when Kamp
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had just started his PhD, Prior stressed that/thend F' operators operators were
strictly topological and asked whether it was possible to develop some notion of
metrictime within the framework of tense logic. Now, a first requm@nt on such
an enterprise is that it can express what it is for some pitpoes; to have been
true since the last time some periodically true proposifionas true. Trying to
find a genuinely topological tense logic in which these kiafieelations could be
expressed lead Kamp to the definitions of since and untilhage¢chnical interest
of the new operators became clear, the original topologiuativation seems to
have been shelved (Kamp, personal communication, remhagksTthe question
of how to embed a logic of metric temporal notions within adiggical tense
logic unfortunately never got properly off the ground.”).aiip first showed that
P and F’ were not capable of expressing since and until, and evéynsaiceeded
in proving Theorem 7.12(i), the expressive completenessnale and until logic
over Dedekind complete total orders (see his thesis [283hat time, deductive
completeness was the dominant interest in modal logic. Karapult showed that
the neglected topic of modal expressivity deserved furdimtion, and can be
regarded as a precursor to the study of correspondencey tthedremerged in the
1970s.

The next step was taken by Dov Gabbay. Kamp’s result waslglgaportant,
but his direct proof was complex, and although Jonathani $4%] succeeded
in providing a direct proof of Theorem 7.12(ii), it was notvadus how proceed
further. Matter were greatly simplified when Gabbay introeftl the notion o$ep-
arability (see [157, 159]). Roughly speaking, a language is sepaoablea class
of models if every formula is equivalent to a boolean comtiximaof atomic for-
mulas, formulas that only talk about the past, and formutas only talk about
the future. This idea drastically simplifies the proofs o€®rem 7.12(i) and Theo-
rem 7.12(ii), and opens the way to more general investigatiblowadays a variety
of techniques are used for proving expressive completeressits for modal (and
other) languages; game-based approaches (see Immerm#ozem [246]) have
proved particularly useful. The best introduction to esgiee completeness is
the encyclopedic Gabbay, Hodkinson, and Reynolds [163h beparability and
game-based proofs are discussed. It also contains manyrethdts on since and
until logic and a useful bibliography.

But what really made the until operator so popular is the &ngiservation
made in the text: it offers precisely the what is needed toesgpguarantee prop-
erties (this was first noted in Gabbay, Pnueli, Shelah, aad §it67]). Nowadays
until may well be the single best known modal operator (astléacomputer sci-
ence) and it occurs in both in its original form, and in a numdfevariant forms
in the study of linear and branching time temporal logice (€4arke and Emer-
son [92], Goldblatt [183]).

Good discussions of step-by-step completeness proofdrfoe &nd until can
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be found in Burgess [76] and Xu [458]. The classification afgarties of flows
of time (in terms of safety, liveness, and guarantees) nedeto in Section 7.2
can be found in Manna and Pnueli's textbook [318] on usingptaal logic for
specifying concurrent and reactive systems. Theorem g.d9e to Venema [438];
the strategy of using expressive completeness to obtaometic completeness
results goes back at least to Gabbay and Hodkinson [164].

One final remark: in spite of the fact that its satisfactiofirdgon makes use of a
more complex patterns of quantification, the since and ap#tators are genuinely
modal. In particular, the notion of bisimulation can be a@ddpo these operators:
the only complication is that, instead of the simple ‘contplthe square’ idea il-
lustrated in Figure 2.3 (65), bisimulations now need to maétational stepplus
intermediate intervalsn suitable ways. Kurtonina and de Rijke [295] contain a
solution to this issue as well as a survey of earlier propgosal

Hybrid Logic. Arthur Prior introduced and made systematic use of hybigcto
see Prior [369] (in particular, Chapter 5 and Appendix Bs&yeral of the papers
in Prior [370], and the posthumously published Prior ancef8v1]. Prior’s sys-
tems typically allowed explicit quantification over statesngV andd, and con-
tained the global modality. Technical aspects of such laggs were explored in
Bull [71], an important paper, which among other things sdtet pure formulas
give rise to easy frame completeness results. In the midsLP&8sy and Tinchev
independently reinvented the idea of ‘names as formulasieirTearliest paper
[360] added nominals and the global modality to a rich versibpDL; in [361]
they considered and3 (again in the setting of PDL); and [362], their beautiful
essay on hybrid languages, remains one of the key papersboid lgnguages.

The subsequent history of hybrid languages revolves aratitednpts to find
well-behaved sublanguages of such strong systems. Theaiaistus way to do
this is one explored in the text: treat nominals as namdsegrahan variables open
to binding, and keep the underlying modal language religtiweak. Early papers
which explore this option include Gargov and Goranko [1#hE (basic modal
language enriched with nominals and the global modalitg) Blackburn [52] (the
basic tense language enriched with nominals alone). Thie bgbrid language
discussed in the text can be viewed as an interesting conigedmetween simply
adding nominals to the basic modal language (which makesdbenatics messier,
as Exercise 7.3.7 shows) and adding both nominals and thalgtwodality (which
raises the complexity to EXPTIME-complete). A proof of Them 7.21 (that the
basic hybrid language has a PSPACE-complete satisfiapiiitylem) can be found
in Areces, Blackburn and Marx [14]. For a more detailed lobkha complexity
of hybrid logic, see [13] by the same authors. Theorem 7.20ri®dification of
results proved in Blackburn and Tzakova [61]. It simplifieritar a result proved
in Gargov and Goranko [171] with the aid of the global mogalit
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But the idea of binding variables to states turns out to beoimtant. Binding
admits a rich expressivity hierarchy. For a start, even rifdbig with vV and 3
is allowed, when there are no satisfaction operators indhguage, the result-
ing language doesot have full first-order expressivity; see Blackburn and Selig
man [57]. Moreover, as we mentioned in the text, hginder simply binds vari-
ables to theurrentstate; in effect, it lets us create a name for the here-amd(see
Goranko [196], Blackburn and Seligman [57, 58], Blackbund &zakova [61]). If
we enrich the basic hybrid language with thinder we obtain a hybrid language
which corresponds to precisely the fragment of the firsepmbrrespondence lan-
guage which is invariant under generated submodels. Tipsoiged in Areces,
Blackburn and Marx [14] by isolating notions of bisimulatisuitable for various
hybrid languages and proving a characterization theoreime pgaper also links
these notions of bisimulation to restricted forms of Ehesicht-Fraissé games.

Hybrid logic provide a natural setting for modal proof theoBeligman [404]
is the pioneering paper here, and Seligman [405] discusgesagtion operator
based natural deduction and sequent systems. Blackbufa¢&&es satisfaction
operator driven tableau and sequent systems and uses Kdirggts to prove an
analog of Theorem 7.29. Tzakova [431] combines the use ofimamwith the
prefix systems of Fitting [145]. Demri [115] defines a sequeadtulus for the
basic tense language enriched with nominals, and Demri anel [&16] introduce
a display calculus for the basic tense language enrichddneininals and D.

Hybrid logics turn up naturally in a number of applicationBhe AVMs used
in computational linguistics (recall Example 1.17) can mmed as modal log-
ics: path re-entrancy tags are treated as nominals (seexdanple, Blackburn and
Spaan [59]). And while it has long been known that descriptagics are nota-
tional variants of modal logics, this relation only holdstla¢ level of concepts.
So-called A-Box (or assertional) reasoning — that is, reampabout how con-
cepts apply to particular individuals — corresponds to &iated use of satisfac-
tion operators, while the ‘one-of’ operators used in somsigas of description
logic are essentially disjunctions of nominals; see Blackband Tzakova [60],
Areces and de Rijke [15], and Areces’s PhD thesis [12]. Natsialso turn up in
the Polish tradition of modal logics for information systeand rough-set theory:
see Konikowska [274, 275]. They also provide a natural moflegdnse and other
forms of temporal reference in natural language (see Blackfb4]).

A final remark. The basic hybrid language shows that sorsnigteresting in
the setting of modal logic — so why not introduce further s@rtin fact, this
step was already taken in Bull [71] who introduced a third sbatomic symbol:
path nominals true at precisely the points belonging to some path thrahgh
model. For more information on hybrid logic, see the Hybrimhlc home page at
www. hyl 0. net . For a recent ‘manifesto’ on hybrid logic that touches on imos
of the themes just mentioned, see Blackburn [56]
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The Guarded Fragment. The guarded fragment was introduced by Andréka, van
Benthem and Németi in 1994. The roots of the decidabilityopidate back to
1986, when Németi [345] showed that the equational thedrh® class of so-
called relativized cylindric set algebras is decidablee Titst-order counterpart of
this result is that a certain subfragment of the guardedrieag is decidable.

The importance of this result for first-order logic was readl in 1994 when
Andréka, van Benthem and Németi introduced the guardsghfent and showed
that many nice properties of the basic modal systemgeneralize to it. In par-
ticular, the authors established a characterization imgeof guarded bisimula-
tions, decidability and a kind of tree model property. Therf@l version of their
paper is [9]. Some time later van Benthem, was able to generabme of the
results, introducing the loosely guarded fragment in [433je slightly more gen-
eral packed fragment was introduced in Marx [323] in ordegitee a semantic
characterization in terms of packed bisimulations. (Annegke of a packed sen-
tence which is not equivalent to a loosely guarded sententeei same signature
is Jzyz (FwCryw A JwCrzw A JwCzyw N ~Czyz).)

The mosaic based decision algorithms of Andréka, van Bemtand Németi
were essentially optimal: a result established by Gra#]. In this paper, Gradel
also defines and establishes the loose model property féodkely guarded frag-
ment. Our definition of a loose model is based on the definitiba tree model
given there. Gradel and Walukiewicz [203] showed that ti@es bounds obtain
when the guarded fragment is expanded with least and gtdaded point oper-
ators. Marx, Mikulas and Schlobach [325] defined a PSPAGEaiete guarded
fragment with the finite tree model property. This fragmeatisfies both locality
principles.

The finite model property for the guarded fragment, and s¢geibfragments of
the packed fragment, was established in an algebraic gdirAndréka, Hodkin-
son and Németi [7]. Gradel [200] provides a direct prooftfe guarded fragment.
The remaining open question for the full packed fragmentsehged affirmatively
by Hodkinson [236]. All these results are based on variahgsresult due to Her-
wig [228]. The use of Herwig's Theorem to establish the fimitedel property
and to eliminate the need of step-by-step constructiorginates with Hirschet
al. [232].

Multi-Dimensional Modal Logic. The idea of evaluating modal languages at se-
quences of points, rather than at the points simpliciteextsemely natural, so it
is no surprise that over the years modal logicians with vérgrde interests have
devised multi-dimensional systems.

It seems that logicians interested in natural language Westeoff the mark.
Natural language utterances are so context dependengviilagting at sequences
of points (each coordinate modelling a different aspectouoitext) proved a useful
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idea. Evaluation at pairs of points is built into Montag&42] general framework
for natural language semantics. Kamp’s [264] classic amlgf the word ‘now’
uses a second coordinate to keep track of utterance timehV4&@5] provided an
analysis of the word ‘then’, and in a series of papdrgyist and co-workers [11]
developed a number of rich multi-dimensional modal logios dnalyzing natu-
ral language temporal phenomena. Before long, such systares subjected to
rigorous logical investigation: see, for example, Segerbeslegant decidability
and completeness result in [398], and Gabbay’s work on egj#eness and other
topics (much of which reappeared in the later work by Galdiay. [163]).

Somewhat later, a rich source of inspiration came from ldgelf. Some work
here, such as the sorted modal logireDBOX of Kuhn [293], fitted in the tradition
of Quine-style first-order logic without variables, but mos$ it was linked, one
way or another, with the algebraic logic framework of theskan school (see the
Notes of Chapter 5). This certainly applies to the multi-eimsional logics that we
presented in Section 7.5. Venema [436], from which our Téeor.51 originates,
made the connection between modal logic and cylindric alggebSubsequent re-
search drew on existing ideas on relativized cylindric bige (see Németi [345])
to use the modal framework to ‘tame’ first-order logic andfiitste variable frag-
ments (see our discussion of the abstract and relativizadrament frames in the
text; more information on this program can be found in vantBem [47] or
Mikulas [335]). This line of work is closely related to awdogic, which is a
multi-dimensional modal logic in its own right (see Magx al. [324] for more
information) and in fact this strand of work ultimately letdthe isolation of the
guarded fragment. All of these (and more) multi-dimendiomadal logics are cov-
ered in the monograph Marx and Venema [326]; readers irigztés complexity
results should consult Marx [322].

Computer scientists have different motivations for stadymulti-dimensional
modal logics. In order to build formal models of an applicatidomain, they
need to take account of various features simultaneouslyth®tvealth of litera-
ture on this topic we’ll just mention Faget al. [133], which concentrates on the
combination of temporal and epistemic logics in the condéxlistributed systems.
Such applications have led logicians to study various wagsstructing complex
logics from relatively simple ones. A particularly intetieg and mathematically
non-trivial branch of multi-dimensional modal logics @ssif one studies a modal
language with various modal operators over a semantics iohwthe frames are
cartesian products of frames for the individual operatdrkis area of so-called
product logics, which has an early predecessor in Shehtd@®i,[ has recently
become very active; a monograph Gableagl.[153] is on its way.

Finally, multi-dimensional modal logic remains one of thesnphilosophically
important branches of modal logic. Important referencedugle Kaplan [269,
270], Stalnaker [414], and Chalmers [88]



7.7 Summary of Chapter 7 487

The Lindstrdm Theorem for Modal Logic. Theorem 7.60, a Lindstrom-type
characterization of the modal languages defined in Defmstin9 and 1.12 is due
to De Rijke [107]; the result was obtained as part of a gen@@ram to come up
with modal counterparts of model-theoretic results in{ingter logic [106]. The
original first-order version of Lindstrom’s Theorem wassfipresented in Lind-
strom [309]. The original result states that, given a sléaxplication of a ‘clas-
sical logic’, first-order logic is the strongest logic to pess the Compactness and
Lowenheim-Skolem properties; it formed an important seunf inspiration for
the area of model-theoretic logics [25]. Definitions of tihst@act notion of a logic
can be found in Chang and Keisler [89] and in Barwise [24]. AnaEcessible pre-
sentation of Lindstrom’s Theorem for first-order logic dafound in Doets [119,
Chapter 4].



