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Introduction

This book is an introduction to modal logic, more precisely, to classically
based propositional modal logic. There are few books on this subject and even
fewer books worth looking at. None of these give an acceptable mathematically
correct account of the subject. This book is a first attempt to fill that gap.

Apart from its mathematical clarity, some other features of the book are:

The central concept of the book is that of a labelled transition structure,
and polymodal languages are used from the beginning,.

Modal languages are viewed as a tool for analysing the properties of transi-
tion structures, not the other way round.

There is not an overemphasis on syntactic (proof theoretic) matters.

o Nevertheless, a detailed explanation is given of the differences between the
weak completeness and Kripke completeness of formal systems.

Correspondence properties (the expressibility properties of modal languages)
are stressed as an important tool.

Bisimulations are used as a method of comparing transition structures.

Each chapter has a decent selection of exercises and over one sixth of the
book consists of a comprehensive set of solutions to these exercises.

The book is aimed primarily at a computer science readership. However
there is no computer science in the book and very little material which is
directly attributable to a computer science motivation. Thus the reader of
the book may be interested in modal logic in its own right or because of one
or several of its applications in computer science. To read the book it is not
necessary to understand any of these fields of application in any great depth.

The applications and uses of modal logic are many and varied. Aspects of
the subject can be found in

¢ The analysis of tenses

e Concurrency

Belief logic and default logic

Program correctness

Power domain constructions

Situation theory



and several other areas. To emphasize some of these in prefence to others
would only restrict the possible readership. The aim of the book is simply to
give a correct and concise account of the core of the subject with just a hint of
the more advanced topics. The aim is not to describe the possible applications
of the subject.

In order to keep the book to a reasonable size there are some important
topics which the book does not attempt to cover. The book covers only propo-
sitional modal logic on a classical base. It does not consider any predicate
logic versions of modal logic, nor does it consider any base logic other than
classical 2-valued logic. The book does not give a detailed discussion of the
various proof theoretic ramifications of modal logic. Only the simplest and
most routine proof system is discussed. Nor is it concerned with the execution
or implementation problems of model systems. Almost nothing is said about
decision procedures for modal logic.

No doubt there are also other topics which you would have liked included,
however these are for a more advanced or specialized book.

For convenience the book is divided into six reasonably sized parts. Each
of these is devoted to one aspect of the subject as follows.

PART |, which covers Chapters 1 and 2, gives a survey of the required ma-
terial concerning propositional logic and then introduces the family of (propo-
sitional) modal languages.

PART Il, which covers Chapters 3, 4, 5, and 6, is concerned with various se-
mantic matters. Chapter 3 introduces the structures which support the Kripke
style semantics for modal languages, and Chapter 4 discusses these various se-
mantics. The two Chapters 5 and 6 give various results which illustrate how
properties of the supporting structures can be captured by modal formulas.

PART I}, which covers Chapters 7, 8, 9, and 10, is concerned with proof the-
oretic matters. Firstly, in Chapter 7 various motivating semantic consequence
relations are discussed. Then in Chapter 8, the standard proof theoretic ma-
chinery (as used in this book) is introduced and developed as far as is needed.
Finally, in Chapters 9 and 10, two completeness results are proved. These
show how the semantics and the proof theory interact in a nice way.

These three parts, |, Il, and Ili, form (what should be) the basis of a first
course in modal logic.

PART IV, which covers Chapters 11, 12, and 13, deals with more advanced,
but still fairly basic, material. In particular, the notion of a bisimulation,
the construction of models using filtrations, and the finite model property of
certain formal systems are discussed.

PART V, which covers Chapters 14, 15, 16, and 17, gives four examples of
more advanced, but interesting, topics. The first two examples (in Chapters
14 and 15) illustrate some of the power of modal logic, and the second two
examples (in Chapters 16 and 17) illustrate some of the problems which come
with this power.

xii



PART VI consists of two Appendices. The first of these, Appendix A,
contains both the first and last things you should read in the book. It is a
general discussion of modal logic, from the various other introductory texts,
what you can expect from this text, what you should read next, and a survey
of some of the uses of modal logic. As soon as you finish this Introduction, i.e.
at the end of the next sentence, you should go immediately to this Appendix.
Finally, Appendix B is a fairly comprehensive set of solutions to the exercises
given at the end of each chapter.
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Part |

Preliminaries

This part, which consists of two chapters, gives the basic material.

Chapter 1 is a brief discussion of the required background from
(modal-free) propositional logic. There should be nothing in this
chapter which you don’t know already, although perhaps the style of
presentation will be new to you. The variety of modal languages are
described in Chapter 2. The polymodal versions are introduced right
from the beginning and this brings a greater cohesion to the subject.






Chapter 1

Survey of propositional logic

1.1 Introduction
Propositional logic is an analysis of the natural language connectives

not
if ... then...
and
or
if ... and only if ...

as used in a certain restricted context. Thus the analysis is not intended to
cover all possible uses of these words in natural language, but only those uses
in ‘logical arguments’ where the meanings of the words are determined in a
truth-functional way.

In order to make this context clear the analysis is undertaken via the
medium of an abstract, but precisely defined, formal language, the proposi-
tional language.

The first part of the analysis, the semantics, shows how a truth value can
be ascribed to sentences of this language, and then makes precise the notion of
the ‘logical consequences’ of a set of such sentences. This part of the analysis
makes use of a standard semantics, i.e. it makes reference to the intended
meanings of the connecting symbols of the language (which, of course, are the
connectives not, if...then..., and, ...).

The second part of the analysis, propositional calculus, shows how the no-
tion of ‘logical consequence’ can be simulated by certain combinatorial manip-
ulations within the language. This is done entirely abstractly without reference
to any intended meaning. This simulation can be done in several different ways
each making use of a different style of formal system. (For classical proposi-
tional logic, which is what we are concerned with here, the differences between
these styles are more a matter of taste than content.)

3



4 CHAPTER 1. SURVEY OF PROPOSITIONAL LOGIC

The culmination of the analysis is a proof of completeness. The chosen
formal system is first shown to be sound in that anything which is simulated
as a logical consequence is one; and then it is shown to be adequate in that
every logical consequence can be simulated within it.

I assume that, to some extent, you are already familiar with this material.
If you are not then you shouldn’t be reading this book; there is no point in
trying to learn modal logic unless you have a firm grasp of the underlying
propositional logic. If you do not have this background I suggest you first
acquire it from one (or several) of the many available textbooks covering the
subject (some of which are quite good).

In this chapter I will give a brief survey of classical, 2-valued, propositional
logic in a form suitable for extension to the modal case. There are many
different styles of systems of propositional calculus (Hilbert, Natural, Sequence,
...) all having their good and their bad points. We are not concerned with these
pros and cons here; in particular we are not concerned with proof theoretic
efficiency (even though this is an important topic which must be addressed
eventually). This book is an introduction to modal logic, and as such it will
present an overview of the basics of the subject rather than the intricacies of
the more detailed analysis of certain of its aspects or fields of application.

1.2 The language

So let us begin the refresher course.

The first thing we do is define the abstract, but precisely constructed,
propositional language. This is built up from certain primitive symbols com-
prising the wariables, the connectives, and the punctuation symbols. These
are combined in certain ways to produce the formulas. The connectives are
intended to represent the English language connectives not, if...then..., etc.
Since connectives need something to connect, the variables provide a starting
point for the process. The punctuation symbols are precisely that; they are
used to ensure that the formulas are uniquely readable.

The primitive symbols of the language are:

e The elements P,Q, R, ... of a fixed countable set Var of variables;
o The propositional connectives
T,L,2,—=,A,V
of 0,0, 1, 2, 2, and 2 argument places, respectively;
e The punctuation symbols ( and ).

The formulas of the language are constructed in the usual way.
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1.1 DEFINITION. The formulas of the language are obtained recursively using
the following clauses.

(atomic) Each variable P € Var and each constant T and 1 is a formula.
(propositional) For all formulas 4, 9, ¢ each of
¢, (0—-9) , (BAY) , (0V)

is a formula.

Let Form be the set of all formulas. B

The countability of Var is a restriction on the size of the set. If you know
what this means then you will recognize where it is used later. If you do not
know what it means then, for the purposes of this book, you may regard Var
as a given by a list

Py, P,,P;,Ps,---,P,,---
However, sometime in the future you should find out what the word means,
and how it effects some of the arguments later on.

Note that formulas are defined by a recursion procedure. This means that
some facts about formulas can be proved by structural induction, i.e. by an
induction on the structure of formulas.

For instance, suppose ® is some set of finite strings of primitive symbols
and suppose we know the following.

{0) @ contains all variables and the two constants T and L.

(=) For all formulas §
fcd® = -Hed.

(*) For all formulas 6 and v
ved® = (@xyY)ed
(for each binary connective *).

We may then conclude that ® contains all formulas. For suppose not, i.e.
suppose there is at least one formula with ¢ ¢ ®. Consider an example of such
a ¢ containing the least number of symbols. This ¢ can not be a variable or
constant, by (0). It must, therefore, have the shape

-0 or (6xv)

for some formulas # and % and connective *. But both of these lead to con-
tradictions, by (—) or (*). Thus our original assumption is wrong, hence there
is no formula which is not in ®.

When displaying particular formulas we sometimes omit various brackets
and use various other devices to aid readability. However, these displayed
strings are not themselves formulas (but just pictures of formulas).
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‘1.3  Two-valued semantics

Let 2 = {0,1} and think of 2 as the ‘truth object’. We regard 0 as FALSE and
1 as TRUE. Each connective has an associated operation on 2. The operation

-:2-2
associated with the connective - is given by
—(z)=1-xz
(for each x € 2). Each binary connective * has an associated operation
¥:2x2—>2

given by the following truth table.

I*xy
T yl— AV
00;j1 0 O
01]1 0 1
1 00 0 1
1111 1 1

Notice how this defines the intended meaning of the symbols

as
not 1if ... then and or.

(Note also that we are using the same symbol for the formal connective and
its operational counterpart on 2. This should not lead to confusion.)

The basic semantic notion is the construction of the truth value of a formula
¢. This can not be done in a vacuum, but only within a context where the
truth values of the variables are known. The whole process is encapsulated as
follows.

1.2 DEFINITION. A valuation is a map
v:Var —> 2.
For each such valuation v the associated map
[l : Form —> 2
is defined by recursion on the structure of formulas using the following clauses.

(Const) For the constants
[Tl1=1 , [i]=0.
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(Var) For each variable P
[P] = v(P).

(=) For each formula 6
[-6] = 1-[4].

() For all formulas 6,
[(6x9)] = [6] * [¥]

(for an arbitrary binary connective ). H

(As in this definition, when using [-],, it is usual to drop the distinguishing
subscript v unless this could lead to confusion.)
We say a valuation v models or is a model of a formula ¢, or that ¢ is true
for v if
81 =1

We can now make precise the notion of ‘logical consequence’. Thus, given
a set @ of formulas and a formula ¢

L

means that ¢ is true for every model of (all members of) ®. When this holds
we say ¢ is a semantic consequence of ®. Formulas ¢ such that

= ¢

(i.e. which are true for all valuations) are called tautologies.

1.4 The proof theory

The objective of propositional calculus is to give a syntactic description of the
semantic consequence relation = by setting up an appropriate formal system.
This can be done in many different ways; here we describe a system that is the
most convenient for later generalization to the modal situation. We describe
a system in the Hilbert style.

Thus we first set down the set of logical axioms. These will be tautologies
and typically will contain all formulas of the shapes

(k) ¢—(0—9¢)

(s) 0= —¢).—.(6—-9)—(0—9¢)
together with enough axioms to control the other connectives. We also use
just one rule of inference, modus ponens.

0 6 — ¢
mp) L=
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These are used to generate the proof theoretic consequence relation .

(It is important to notice that we are dealing with the connectives via the
use of axioms and not extra rules of inference. In the propositional case there
is a relatively easy way to trade off the use of axioms against the use of rules of
inference, however in the modal case this is not so easy, so we base our system
on just the one rule.)

1.3 DEFINITION. Let ® be an arbitrary set of formulas.
(a) A witnessing deduction from & is a sequence

¢07¢1a"'7¢n

of formulas such that for each formula ¢; of the sequence, at least one of
the following holds.

(hyp) ¢: € @.
(ax) ¢ is a logical axiom.
(mp) There are formulas ¢;, ¢ occurring earlier in the sequence (i.e.

with 7,k < i) such that ¢, = (¢] — ¢;).

(b) For each formula ¢, the relation
O

holds precisely when there is a witnessing deduction from & with ¢ as
the last term of this deuction. #

This relation
®F ¢

is the simulation of the notion of logical consequence.
Recall that this formal system has the Deduction Property, that is for each
set of formulas ® and pair of formulas 6, ¢ the implication

®0Fd = OF (60— 9)

holds. This is an important property which fails to hold for most modal sys-
tems.
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1.5 Completeness
It is straight forward to show that the formal system is sound, i.e. that
drF¢ = k¢

This is proved by a routine induction on the length of the witnessing formal
deduction.

The proof of adequacy (and hence completeness) takes a little longer and
can be achieved in several different ways. Here I will sketch a proof which later
will form the basis of the corresponding proof for modal systems.

We say a set of formulas ® is consistent if

not[® + L].

Let CON be the set of all such consistent sets ®. The formal system is
designed to achieve the following properties of CON.

(Finite character) For each set of formulas ® we have ® € CON precisely when
¥ € CON for each finite ¥ C .

(Basic consistency) For each variable P we have {P,-P} ¢ CON and, of
course, {L} ¢ CON.

(Conjunctive preservation) For all appropriate 6, ¢ and ® with ® € CON

@rAy)ed® = dU{6,y} € CON
~(0vy)ed = dU{-0,~} € CON
(0 ->¢)ed® = dU{F, )} e CON.

(Disjunctive preservation) For all appropriate 8, ¢ and ® with ® € CON

vy)ed = ®U{} € CON or dU{y}c CON
~(OAY)ed® = dU{-0} € CON or ®U{-9} e CON
@—-v)e® = dU{-0} € CON or dU{y} e CON.

(Negation preserving) For all appropriate 6 and ®
-~ ®€ CON = duU{f} € CON.

Now let S be the set of all the maximally consistent sets of formulas, i.e.
those ® € CON such that for all sets ¥

PCYecCON = V=9

The central pillar which supports the completeness proof is the following
existence result.



10 CHAPTER 1. SURVEY OF PROPOSITIONAL LOGIC

1.4 LEMMA. (Basic Existence Result) For each ® € CON there is some
s € CON with ® C s.

Proof. Let {¢, | 7 < w} be an enumeration of all formulas. Let (A, | r < w)
be the ascending sequence of sets of formulas defined recursively by

Ao = (D
A _ A, U{¢.} if thisisin CON
T+ = A, otherwise.
Clearly A, € CON for all r < w, and hence
s=J{A, |r <w} € CON.

Finally the construction ensures that s S. @

For any s € § let o be the valuation given by
TrRUE if Pes
o(P)= { FaLsE if P¢ s

(for P € Var). A routine induction now shows that & is a model of (all the
formulas in) s. This makes use of the fact that for ® € S the implications of
the preservation properties are equivalences. Thus we have the following.

1.5 THEOREM. Each ® € CON has a model.
Finally we can achieve the desired completeness result.

1.6  THEOREM. (Completeness) For each set of formulas ® and formula ¢ the
equivalence
Py & DEP

holds.

Proof. The implication (=) is soundness, so it suffices to prove (<=). Thus
suppose ® |= ¢. Then & U {—¢} has no model and hence Theorem 1.5 gives

dU{~¢} ¢ CON.

Thus
P, -0+ L
and hence the Deduction Property gives
&k (~¢— 1)

which (with an appropriate axiom) gives
®F (L — ¢).
Finally, since ® + -1, we have ® } ¢, as required. B
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1.6 Exercises
1.1 Constructing formal derivations can be quite tricky.

(a) Using only the logical axioms (k,s), exhibit witnessing deductions for
each of the following.

() F¢—¢

i F@—¢).—(0—-9)—-0—9
(i) FO—> (@ —¢).—. Y- (60— 9)
(iv) F(@—4).—. (v —=¢)—(0—9)
V) F(@—=(0—9)— 06—

What are the lengths of these various deductions?

(b) Use the Deduction Property to verify (i - v).

1.2 A set ® of formulas is said to be finitely satisfiable if each finite subset of
® has a model. Let CON be the set of all finitely satisfiable sets of formulas.
Show that CON has the closure properties of Section 1.5, and hence prove
the compactness theorem, namely that each finitely satisfiable set of formulas
is satisfiable.

1.3 Let P,Q, and R be three finite, pairwise disjoint sets of variables. Let ¢
be a formula built up from P U Q, and let ¢ be a formula built up from QUR.
Suppose that

¢—

is a tautology.
Let IT and ¥ be, respectively, the sets of all assignments

P—s>2 , R—>2

where 2 is the truth object. Note that IT and ¥ are finite. For each 7 € IT and
c€Xlet
", Y
be the result of replacing each P € P by n(P) and each R € R by o(R). Let
A= V{¢"|renl} , p= A |oce}
(so that A and p depend only on Q).

(a) Show that
p—=A , A—=p , poy

are tautologies.
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(b) Show that for each formula @ built up from Q, if both
¢—0 , 09

are tautologies, then

are also tautologies.

These provide an interpolation result for propositional logic.



Chapter 2

The modal language

2.1 Introduction

The propositional modal language is an extension of the pure propositional
language formed by adding a battery of new 1-ary connectives (known infor-
mally as box connectives). Originally there was just one new connective [ ],
however for many purposes it is necessary to add several (possibly infinitely
many) such connectives [i], one for each element ¢ of an index set I. Thus
there are many possible modal languages, one for each index set I. The syntax,
semantics, and proof systems associated with modal languages are designed to
subsume those of the proposition language, in fact, propositional logic can be
regarded as the extreme version of modal logic where I = 0.

The element 7 of I are called labels and I itself is called the signature of
the modal language. Thus two languages are identical precisely when they
have the same signature. (We are never going to consider how one language
may be be translated into another, so we need not worry about comparison of
signatures.)

Unlike the propositional connectives =, —, A, V,T, and L, the box connec-
tives [¢] do not have a fixed interpretation. For each formula ¢ (of the modal
language) we may use [i] to obtain a new formula

¢ (2.1)

This may be read in several ways, and different readings suggest different
semantics and proof systems.

In the original work on modal logic, there was just one box connective (i.e.
I was a singleton), and the compound formula (2.1) was read variously as

¢ is necessary,
¢ is obligatory,
¢ is known,

and later other readings such as

¢ is provable (in some formal system of arithmetic)

13
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were considered. A binary version of modal logic (called tense logic) has just
two labels
+ (for future) and — (for past).

We may then read
[+]¢ (-]¢
¢ is and always will be ¢ is and always was.

In these two readings, it is seen quite clearly that [+] and [-] are intended as
kinds of universal quantifiers over time.

More recently modal languages have been used to analyse the behaviour of
computer programs and the state transitions of (finite) automata. It is in these
applications where many different labels may be required. (In some cases these
applications may also require a further enrichment of this modal language, but
we won’t be dealing with these applications in this book.)

Observe that for each of the above readings there is also a dual complement
reading. Thus in the monomodal cases we have

¢ is possible,

¢ is permissible,
“¢ is unknown,
or
¢ is consistent (with some formal system of arithmetic)

and in the bimodal (tense) case we have

¢ will be ¢ was
(at least once in the future) (at least once in the past)

To handle these readings let
<D abbreviate - [,

We may then check that each reading of [i]¢ produces (via the dual comple-
ment) a reading of <i>¢. All the required properties of <i>¢ (which we read
informally as ‘diamond ¢’) can be deduced from those of [i]¢. It is also pos-
sible to introduce <> as a new atomic primitive. There are various arguments
for and against these two approaches (abbreviation .v. primitive), and the
differences are most acute when dealing with proof systems. However, these
hardly matter in this book, so I have taken the approach which involves the
minimum amount of work, namely to treat <{:> as an abbreviation.
As suggested by the above readings, there is a strong analogy between

the connective [i] and the quantifier V



2.2. THE LANGUAGE DEFINED 15

and between
the connective <{> and the quantifier 3.

The analogy will be made precise in Chapter 4 (when we describe the semantics
of (] and <:>). However, you should always keep the analogy in mind; it will
help you understand many things.

2.2 The language defined

Let I be some fixed signature (i.e. indexing set of labels). The primitive
symbols of the modal language with this signature are:

e The elements P of a fixed countable set Var of variables;
o The propositional connectives
T,1L,2,=,A,V
of arity 0, 0, 1, 2, 2, and 2, respectively;

o The box connectives
(]

one for each label i € I,

together with the punctuation symbols ( and ). The formulas of this language
are then constructed in the expected way.

2.1 DEFINITION. The formulas of the language with signature I are obtained
recursively using the following clauses.

atomic Each variable P € Var and each constant T and L is a formula.

propositional For all formulas 8, v, ¢ each of

¢, (0—-9) , (BAY) , (BVY)
is a formula.
modal For each formula ¢ and label ¢,
Li]¢
is a formula.

Let Form be the set of all formulas. B
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Note that (as with the propositional language) the precise size of Var has
not been specified. The most natural case is to take Var to be countably
infinite, however, for some purposes (such as decidability matters) we may
want Var to be finite. There is even a use for the case Var = @ e.g. in the
analysis of concurrency. (The case where Var is uncountably infinite has some
interest.)

When displaying formulas we will attempt to make them easier to read
by the use of various conventions (such as the judicious omission of brackets).
Also as suggested above we let

i>g abbreviate - [i]g.

2.3 Some particular formulas

Several particular formulas (or rather shapes of formulas) play a prominent
role in modal logic. In this section we gather together the majority of these
shapes.

First some shapes which are concerned with just one label. In such circum-
stances we usually omit the label and write

(¢ for [(]J¢ and <>¢ for <id>g.

This will help prevent displayed formulas from becoming cluttered with un-
necessary symbols.

The first batch of shapes have names most of which are used for historical
reasons (but now have rather limited significance). Thus, for an arbitrary
formula ¢, let D(¢), T(), ..., M{(¢) be as follows:

D(¢) : [¢— ¢
T(¢) : Oo— ¢

B(¢) : ¢— 1 ¢

4¢) : Oe— J0oe
5(9) : O OOe
P(¢) : ¢— ¢

Qe) : Oo— e
R(¢) : O0O¢— o
G(g) : O0e— OO
L) : [T(¢)— [l¢
M(g) : OOe— O0e

If we use two or more labels then we get a greater variety of formulas. For
instance, shapes D, B, 5 and G can be generalized as follows:

lil¢p — [¢
¢ — []<de
G — [l
G — [Kl<we
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Various other shapes will be important at one time or another, especially
when particular applications are under consideration.

2.4 Substitution

Substitution is an important aspect of formal languages which, superficially, is
easy to understand, but which has many pitfalls (down which many an author
has disappeared). Most problems occur when there are both free and bound
variables around (such as in the predicate calculus or the A-calculus) but even
in free variable systems such as the ones considered in this book, it is not
entirely straight forward.

Consider a formula ¢ built up from the variables Py,..., P,, that is, the
only variables occurring in ¢ are amongst the ones listed. Suppose also that
T1,..., Ty 18 a list of formulas matching the list of variables. It is intuitively
clear what we mean by the formula obtained from ¢ by simultaneously replac-
ing Py by m, P, by m2, ..., P, by m,. The resulting formula we may write
as

o|Py:=m, Py =g, ..., Py i=m,).

(There are also several other equally cumbersome and uninformative notations
in common use.) For example, let P and @ be distinct variables and let ¥ be

(P — Q).

Then, for formulas A and p,
YIP=XAQ:=yp] is (A—p).

Even such simple examples can cause trouble. For instance, what happens if
A and p also contain P and @, and how do we handle iterated substitutions?
Before you continue you should make sure you know why the two formulas

Y[P:=(Q — P),Q:=P]
Y[P:=(Q— P),Q:=Q|[P:=PQ:=P
are
(@ »P)—P) and ((P—P)—P)

respectively.

The great majority of textbooks leave the notion of substitutions as an ‘in-
tuitively obvious’ operation (and many don’t consider it at all). Unfortunately
there are one or two places where a more precise knowledge is required, and for
these the only safe way is to give a formal definition. (This, of course, requires
also that the definition is correct.)

There are several slightly different ways of handling substitution. The one
described below is chosen because of its similarity with the application of a
valuation (which we look at in Chapter 4).
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2.2 DEFINITION. A substitution is a function
o:Var —> Form

Let Sub be the set of all such substitutions. 8

Thus a particular substitution o assigns to each variable P a formula o(P).
We may then use ¢ to modify any formula ¢ by replacing each variable P
occurring in ¢ by o(P). This replacement must be done simultaneously for all
variables. Let us write ¢° for the result of applying the substitution o to ¢.
For example, if

oP)=XA , (@ =un
then
P—=Q)Y , (A—u).

This construction produces an operation

Form x Sub —— Form
¢ , or——¢°.

with the following formal definition.

2.3 DEFINITION. Let o € Sub. For each formula ¢ the substitution instance
¢° is defined by recursion on ¢ using the following clauses.

(Const) For the constants

To=T , 1°=1.
(Var) For each variable P
o(P) , oP).
(=) For each formula ¢ = -6
(~9)° = ~¢°.

(A, V,—) For each formula 8,

(OAy)y = (67Ay7)

@vy)y = (67vy7)

0 —4) = (67> y).

(1) For each label i and formula ¢
([e)” = [e°.

where [i] is the appropriate box connective. B



2.5. TWO REMARKS 19

2.5 Two remarks

Every modal language has a modal-free part consisting of all the formulas
which may be constructed without the use of a box (or diamond) symbol.
These formulas are precisely the formulas of the (modal-free) propositional
language of Chapter 1. Amongst these modal-free formulas we find the tau-
tologies (i.e. those formulas which are true under all 2-valuations).

Given a modal-free formula ¢ and a substitution ¢, we may apply ¢ to ¢
to obtain a modal formula ¢? which, of course, may no longer be modal-free.
When ¢ is a tautology we say ¢ is an instance of a tautology or sometimes,
rather loosely, simply a tautology. When we come to deal with the semantics
of modal formulas (in Chapter 4) we will see that such generalized tautologies
hold in all modal semantic situations.

Since formulas are constructed recursively on their complexity, many proofs
about them proceed by induction on this complexity. For some of these proofs
the notion of the set I'(¢) of subformulas of ¢ is useful. This set is defined by:

(Const) For the constants
rmM={T}y , °(L)={1}

(Var) For each variable P
r'(P) = {P}.

() For each formula ¢ = 6
I(¢) = I(6) L {¢}.
(A,V,—) For each formula ¢ = 6 1) where x is a binary connective
[(¢) = L) UT(¥) U {4}
(i) For each label i and formula ¢ = [:]
T(¢) = T(6) u{s}.

In particular, note that ¢ € I'(¢) for all ¢.

2.6 Exercises

2.1 Many properties of formulas ¢ are defined by recursion on the complexity
of ¢, and then proof about these properties are achieved by induction on this
complexity. For instance, with each formula ¢ we may associate three sets

Var(¢) , Pos(¢) , Neg(d)
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of variables using the following clauses.

¢ Var(¢) Pos(¢) Neg(¢)
1,7 0 0 0

P {P} {P} )

-6 Var(6) Neg(6) Pos(8)

OAY jVar(@)uVar(y) Pos(0)U Pos(yp) Neg(6)U Neg(y)

Ovy {Var(@)u Var(y) Pos(6)U Pos(yp) Neg(d)U Neg(y)

0 — | Var(9)uVar(y) Neg(8)U Pos(y)) Pos(8)U Neg(v)
[]6 Var(6) Pos(6) Neg(6)

(a) Show that for each formula ¢ we have

Var(¢) = Pos(¢)U Neg(¢)
and find an example with Pos(¢) N Neg(¢) # 0.
(b) Give recursive definitions of the two set
Post(¢) = Var—Neg(¢) , Neg*(¢) = Var—Pos(¢)
where Var is the set of all variables.
2.2 For a given variable P, consider the four formulas
¢pr:=P , ¢p:=-P , ¢3:=="P—>P , ¢y:=P—-P
Compute ¢;[P :=¢;] forall 1 <i,j < 4.
2.3 For distinct variables P and @ let
b=pP , ¥:=Q , ¢:=P—-Q.
For arbitrary formulas p and ¢ compute
(a) 9P = 4,Q = 6][Q = p, P i= o]
(b) 6[P = ¥[Q = p, P i= 0], @ = 6[Q i= p, P = o]
showing that the resulting formulas are the same.

2.4 Let o and 7 be a pair of substitutions which agree on the variables occur-
ring in a given formula ¢. Show that ¢° = ¢".

2.5 For substitutions ¢ and 7 let 7 e ¢ be the substitution given by
(reo)(P) = (a(P))

for all variables P.
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(a) Show that
( ¢a)‘r — ¢TO¢T
holds for all formulas ¢.

(b) Show that
(rec)ep = Te(sep)

hold for all substitutions p, o, 7.
2.6 Make sure you understand the notion of ‘subformula’.
(a) For a variable P, write out [(L(P)).

(b) Show that
¥ eT(¢) = T(¥) CT(9)

(for arbitrary formulas ¢ and ¢).






Part Il

Transition structures and semantics

This part introduces and develops the Kripke style semantics for
modal languages.

The supporting structures for this semantics, here called labelled
transition systems but sometimes called frames of Kripke structures,
are described in Chapter 3. Then in Chapter 4 these structures are
enriched by waluations which enable us to give the semantics of the
languge (relative to an arbitrary valued structure). The semantics is
given in terms of what is sometimes called a forcing relation. The
concepts introduced in these two chapters are the most important in
the whole book.

This Kripke (or forcing) semantics provides a link between the
structures and the language, and we find that many property of thses
structures can be captured by appropriate modal formulas. This idea,
which is known as correspondence theory, is introduced and exempli-
fied in Chapter 5. Chapter 6 is devoted to the proof of a correspon-
dence result which covers many, but not all, of the cases.

23






Chapter 3

Labelled transition structures

3.1 Introduction

The central concept of this book is that of a labelled transition structure or, for
brevity, simply a structure. These are the relational structures used to support
the standard semantics of polymodal languages. In their monomodal form they
are known as Kripke structures or frames (because of their supporting role).
The introduction of these structures into modal logic around 1960 brought
about a considerable amount of clarification and insight, and stimulated a
rapid development of the subject. The use of these structures is a powerful
tool and elevates the subject above the rather tedious symbol shuffling and
philosophical ramblings that used to be its forte.

However, these structures are not just the tools of modal logic. They occur
naturally in many parts of mathematics and computer science. For instance,
partial orderings, equivalence relations, graphs, automata, and process alge-
bras all give examples of these transition structures. This points to a true
perspective of the relationship between modal languages and their semantic
structures.

The objective of modal logic is not an analysis of modal languages; it is not
the study of certain formal systems and the relationships between these; it is
not the construction of different proof styles and rules of inference, etc: these
are merely techniques developed to help the practitioner towards his central
aim. The main objective of modal logic is, no more and no less, the study of
labelled transition structures. The modal language and all its attachments is
there simply to help out.

3.1 DEFINITION. Let I be a non-empty set. A labelled transition structure of
signature I is a relational structure

A= (AA)

where A is a non-empty set and

A=(->liel)

25
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is an I-indexed family of binary relations —“sonA ®

We will more often than not refer to a labelled transition structure as
simply as a structure; this will save a bit of time and space.

For elements ¢ and b of the structure A (i.e. members of the carrying set
A) we write

a—=b

to indicate that a and b stand in the relation ——. In certain situations this
notation can be rather cumbersome, so we also write

b=<;a

to convey precisely the same information. In particular, you should note how
the position of the two elements have been interchanged; we will later make
good use of this interchange.

In situations where we are concerned with just one of the distinguished
relations, we will drop the affixed label ¢ and write simply

a—b or b<a. (3.1)

In particular we use this streamlined notation in the monomodal case, i.e. the
case where the signature I is a singleton. In this case structures are sometimes
called frames, the elements are called possible worlds, and the distinguish re-
lation is known as the accessibility relation. When (3.1) holds we say world b
is accessible from world a, or that a can see b.

It is often useful to think of a labelled transition structure (of a general
signature) as a description of the possible states, or configurations, of a ma-
chine. Fach element corresponds to a state of the machine, and each label
corresponds to a possible external influence on the machine. We then read

a—b

When the machine is in a state a, a possible result of external
influence i is a change to state b.

Note that the influence 7 need not have a unique effect on state a. There may
be distinct states b and ¢ with

in which case influence 7 will move the machine from state a to state b or state
¢ {or possibly other states) in an indeterminate fashion. When this is not the
case we have a deterministic machine.
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3.2 DEFINITION. The structure A is i-deterministic (for a label 7) if for all
elements a, z,y

a—y

a -z }
. = r=y
The structure is deterministic if it is i-deterministic for all labels 7.

Observe that even when A4 is deterministic, for a given element a and label
1, there need not be an element b with b <; a. There can, however, be no more
than one such element.

3.2 Some examples

Let us look at some simple examples of labelled transition structures.
Consider first the possible structures of signature I on the 1-element set
{*}. For each label { we need to know whether or not
i
* — ¥,
Thus we see that these structures are in bijective correspondence with the
subsets of I.
Next consider the possible structures on a 2-element set. For each ordered
pair a,b of elements and each label ¢ we need to know whether or not
a -5 b
This can generate quite a lot of structures. For instance, with just two la-
bels there are 28 such structures. However, not all of these are isomorphically
distinct, for swapping the two elements may produce a structure that is essen-
tially the same as another. You may like to list all of these structures and pick
out the ones that are essentially different up to isomorphism, (then again, you
may not).
Suppose there is just one label and consider the 5-element structure

where no element is a reflexive point. Notice that there are infinite paths going
through this structure, all of these pass through the bottom right element
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infinitely often, may begin at the top left element otherwise will not pass
through that element, and will not pass through the bottom left element.
The set N of natural numbers carries many different transition relations.
For instance, we may let
T —y

mean any of
r<y,z<y,T>Y,T2Y

y=z+1,y<z+1,[z-y|<2

to obtain seven such relations. All of these will be used later to illustrate
various facets of modal logic.

In the next section we will see how a labelled transition structure can be
converted into a different, but equivalent, kind of structure called a modal
algebra. For many purposes these algebras are easier to deal with but are not
absolutely necessary. Modal algebras are introduced now because, logically,
this is where they should be. However, the benefits of them are not needed
until quite a bit later so, for pedagogical purposes you may want to skip the
rest of this chapter and go straight to Chapter 4 . Of course, this will mean
you have to return to this chapter at a later time.

3.3 Modal algebras

There is a different way of looking at structures (transition structures) which
is sometimes more convenient. We will give a construction which converts
each structure into an enriched boolean algebra which for many applications
is easier to work with.

Thus, fix a structure A (of signature I') and consider the power set PA of
the carrying set A of A. The elements of PA are all the subsets of A (including
the empty set @ and A itself). These subsets X,Y, Z, ... are partially ordered
by inclusion

XCY

and can be combined by union, intersection, and complementation
XuY |, XnY , -X=A4A-X

to form new subsets. Thus we may view PA as a boolean algebra.

We enrich this algebra P A by a family of operations [i], one for each label
i. The operation [:] is obtained in a predetermined fashion from the relation
——. The resulting algebra

(PA,(C1lie D)
is called the modal algebra induced by .A.
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For each subset X C A, the set [{]X consists precisely of those elements

a € A such that every elements z of A with ¢ — = is automatically in X. If
we use the alternative notation ‘<;’ the definition can be given succinctly as

a€ [[(X & (Vz <; a)[z € X] (3.2)
Here the right hand side is an abbreviated form of
(Vo)[z <i a = z € X]

where the quantified variable x ranges over A. Let us look at some simple
properties of this operation.

3.3 PROPOSITION. The operation [:] satisfies
(JA=4,
is monotone, and satisfies
L)X nY)= []Xn []Y
for all XY € PA.

Proof. The first identity is trivial. For the monotone property, if X C Y
then, for each a € A we have

a€ [JX = (¥Vz=<;a)zeX]
=> (Vr<;a)[reY] = ae []Y
so that [{JX C []Y.
For the second identity observe that, for arbitrary X,Y € PA, monotonic-
ity gives
I XnY)C X n [K]Y.

Conversely, for arbitrary a € A,

ec [(JXN[E})Y = e€e[(JXandaec [JY
(Vz <; a)[z € X]
= and
{ (Vz <; a)[z € Y]
= (Vz<;a)[r€ X and z € Y]

= (Vz<;a)fre XNY] = a€ [J(XNY)



30 CHAPTER 3. LABELLED TRANSITION STRUCTURES
as required. B
In general the operation [:] has no other properties beyond those suggested

by Proposition 3.3 unless the parent relation — is restricted in some way. For
instance consider the 2-element set

A = {u,v}
furnished with the relation < where
U<v=<v

but no other pairs satisfy <. Then P A has boolean structure
A
U | %
0

U={u} , V=A{u}

where

and we easily check that

Oe=0Ou=0v=U

In particular we see that
o0
and

Owuv)# 0Ovu Ov.

3.4 Various correspondences

For an arbitrary structure A, some properties of the operation [] correspond
precisely to those of the parent relation <. We will describe some of these, but
to do this we need some terminology.

We assume known the properties of reflexivity and transitivity of a relation.
Also, we say the relation < is pathetic if

r<a = r=a

(for all z,a € A); and we say < is dense if for each a,b € A with b < q, there
is some x € A with b < z < a. Note that every reflexive relation is dense, and
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every pathetic relation is transitive. We say the operation [] is deflationary
or inflationary if, for each X € PA we have, respectively,

Oxcx , xc[Ox

We say [] is nearly deflationary or nearly inflationary if, for each X C A we
have, respectively

oOoxcOx , OxcOox

Clearly, every deflationary operation is nearly deflationary and every inflation-
ary operation is nearly inflationary.

At several places we will need to consider iterated applications of opera-
tions, and for this some abbreviations are useful. We write

O*x for QJOX
so the two nearly properties become
OxcOx , Oxc @O«

How do these various properties relate to each other? They come in equiv-
alence pairs.

3.4 PROPOSITION. In the list

=< O
Reflexive Deflationary
Transitive Nearly inflationary
Pathetic Inflationary
Dense Nearly deflationary

the horizontal pairs of properties correspond, that is, < has a property precisely
when [] has the paired property.

Proof. Suppose first that < is reflexive and consider any situation
ae X
(where a € A and X C A). Then, for all z € A,
r<a => e X

But (since < is reflexive) x = a satisfies the hypothesis of this implication, so
x = a satisfies the conclusion. Thus a € X. This shows that [JX C X, ie.
that [] is deflationary.

Conversely, suppose that [] is deflationary and, for a given a € A, set

X={reA|z=<a}
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Then, by construction, a € []X, so that (since [JX C X) we have a € X
and hence a < a. Thus < is reflexive.

The other three equivalences are verified in a similar fashion.

For instance, suppose that < is dense and consider any

a€ O?X

(fora € A and X C A). To show that a € [JX (and hence that [] is nearly
deflationary) consider any z < a. We require x € X. But < is dense, so there
is some y € A with £ < y < a. Then, with Y = [JX, we have a € [JY, so
that y € Y = [(JX, and hence z € X, as required.

Conversely, suppose that [] is nearly dense and, for a given a € A, let Y
be the subset of A given by

yeY o (Jr)y<z<a4].

Then, by construction @ € [J?Y and hence (since [ is nearly deflationary)
a € [JY, so that (by construction of [7])

b<a = beY = (Ix)b=<z<aq

which verifies the required density property. B

It is worth remembering here that a topological interior operation on PA
is an operation [] which is deflationary and idempotent and satisfies the
two properties of Proposition 3.3. In the presence of the deflationary property,
idempotency is equivalent to being nearly inflationary. Thus topological spaces
arise from monomodal structures

A= (A —)

where — is a reflexive and transitive relation (i.e. a pre-order). This obser-
vation indicates how modal logic has a much greater depth than modal-free
propositional logic.

3.5 The diamond operation

Take another look at the equivalence (3.2) defining [i] from <;. Notice there is
a universal quantifier on the right hand side. What would happen if we changed
this to an existential quantifier? Thus suppose we define the operation <> by

a€ DX & (Fr<a)lr e X]

(for a € A and X C A). How are <> and [:] related? The answer should be
obvious to you.



3.5. THE DIAMOND OPERATION 33

Recall that PA carries a complementation operation. Let us denote this
by ‘=’ so that, for a € A and X C A,

ae~X & ag¢X

This operation is an involution, i.e.

—X=X
(for all X € PA).
3.5 PROPOSITION. The two operations

[, <&
are dual complements, that is

S[)X = GO>-X

holds for all X C A.

Proof. We may omit the label ¢ (since there is no other one involved). It
suffices to recall how negation and quantifiers interact. In particular the three
expressions

a(Vz)[z < a = z € X]
(Fz)-[z < a =z € X]
(Az)z <a Az ¢ X]

are logically equivalent. Thus, for ¢ € A and X C A, we have

a€-~[JX & -(Vr<a)zeX]
& Br<afre-X] & ae OX

which is the required result. B

Notice how the symbol ‘=’ has been used in two different ways in this
proof. On the one hand it has been used for the complementation operation
on PA and, on the other, for the informal logical connective ‘not’. It is precisely
because these two notions match exactly that enables us to overload the symbol
‘=’ and so expose the reason behind Proposition 3.5.

Some properties of the relation < are best expressed using the operation
> rather than [, and some properties require both. For instance, let us
look at determinism (as introduced in Definition 3.2).

3.6 PROPOSITION. The relation < is deterministic precisely when

OX ¢ Ox
holds for all X C A.
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Proof. Suppose first that < is deterministic and situation consider any

ae OX
(for some @ € A and X C A). Then, by definition of , there is some b € A
with
b<a , beX.

But then, for each z € A, since < is deterministic,
z<a =>1x=b=>z2z€X

so that a € [[]X, as required.
Conversely, consider any pair of elements a, b with

b~ a.
Then, with X = {b}, we have
ace OXCOX
(where here the local hypothesis has been invoked). This gives
z<a =>c€EX =>z=0>

(for x € A), and hence < is deterministic. B

In due course we will see many other pairs of corresponding properties.

3.6 The structure regained

We have seen how every transition structure produces a modal algebra (of the
same signature). This passage from structure to algebra does not lose any
information, as the following result shows.

3.7 LEMMA. Foralla,be A
b<a < (VX)ee [JX = be X]

(where X ranges over PA). Thus the operation < can be retrieved from the
operation [] on PA.

Proof. The implication = follows from the definition of [[]J. Conversely,
suppose the right hand condition holds and consider the set

X={zxecA|z<a}
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Then, by construction, we have a € [ JX, and hence b € X, to give b < a, as
required. W

As a final remark, observe how the introduction of these modal algebras
opens up the possibility of a more general approach. The power set PA is a
particular kind of boolean algebra, so we could, if required, consider general
boolean algebras enriched by suitable operations. These more general modal
algebras become necessary in later, more delicate, parts of modal logic; but
they are barely required in this book.

3.7 Exercises

3.1 Let A = {u,v} where u and v are distinct elements and consider the
power set algebra PA.

:/\

{u} =U V = {v}

N,

The set A carries 16 different transition relations corresponding to 16 different
operations on PA. These are listed in the following table. In the list of
transition structures we use the convention

o = non-reflexive element , e = reflexive element.

The list of modal algebras gives the value of []X below each set X € {0,U, V}.
Verify that this list is correct.
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Structure Algebra

u v 0 UV

(1) o o A A A
(2) 0 o UU A
(3) . o V AV
(4) ) . 0 UV
(5) oge— o0 U AU
(6) 6o ——>o0 VvV A
(7) oo UUvU
(8) o—> o 0 0 A
(9) e<— o B A
(10) o — o V VYV
(11) e » b U 0
(12) *—————>e 0 0V
(13) 0o &L—> o0 0 Vv U
(14) oe—> 9 U
(15) se<— >0 0 Vv o
(16) e<— > 0 0 0

Note that the pairs (2,3), (5,6), (7,10), (8,9), (11,12), and (14,15) are isomor-
phic (via a swap of v and v). Thus the list contains only 10 essentially different
transition structures.

3.2 Consider the set A = {u,v,w} of three distinct elements. Show that
A carries 256 different transition relations, although some of the resulting
structures are isomorphic (via a permutation of A).

3.3 Let A be a monomodal transition structure with associated diamond op-
eration O on PA. Show that > is monotone and satisfies

Oh=0 , OXUY)=OXxu oY

for all X,Y € PA.

3.4 Let A be a monomodal structure whose associated transition relation is
reflexive and symmetric.

(a) Show that

() OxcoOXxcxcOoxcOx
i) OOCOx=0x
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for each X € PA.

(b) Show also that [] need not be idempotent.

3.5 For an arbitrary set A let [*] be an operation on A which is monotone

and satisfies
(JA=4 , [)XnY)=[]Xn[]Y

for all X, Y € PA. Let — be the transition relation on A given by
a—b e (VX € PA)ae [F]JX =>be X]
and let [J be the modal operation on PA induced by —.
(i) Show that [sJX C [JX holds for all X € PA.
(ii) Show that the two operations are the same precisely when
CINX = N{[IX | X € x)}
holds for all X C PA.

(iii) Give an example where [] and [¢] are not the same.






Chapter 4

Valuation and satisfaction

4.1 Introduction

For each signature I we have now defined two quite different entities; the poly-
modal language of signature I, and the class of structures (labelled transition
structures) of signature I. These two entities must now be made to interact.
Thus the structures will be made to support a semantics for the language, or,
equivalently, the language will be used to describe properties of structures.

The polymodal language has the usual propositional facilities together with
a family of new l-ary connectives [:], one for each label . We now wish to
evaluate each formula of this language, i.e. determine whether or not a formula
¢ is TRUE or FALSE. Of course, this can not be done in isolation, we need to
work in an appropriate context. To determine the truth value of ¢ we need
three pieces of information together with an agreed procedure for using the
information.

1. We need to know the truth values of the variables appearing in ¢. As in the
propositional case this information will be conveyed by a valuation, how-
ever, these modal valuations are more complicated than the propositional
versions.

2. We need to know how to handle the propositional connectives. This will be
done in exactly the same way as the propositional language (i.e. using
the defining truth tables of the connectives). In this sense, modal logic
subsumes propositional logic.

3. We need to know how to handle the modal connectives [:]. This will be

done by working relative to a given structure .A. The relation — of this
structure will control the connective [i]. The precise way this is done
will be described in due course.

Thus, we are going to define a relation

(A, a,a) Ik @ (4.1)

39
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between
structures 4 , valuations « , elementsaof. A , and formulas ¢.
This relation may be read as:

Under the circumstances determined by (A, &, a), the formula ¢ is
forced to be true.

As can be expected, this relation (4.1) is defined by recursion on the complexity
of ¢. In this recursion, the two parameters .4 and « are held fixed throughout,
but the parameter a must be allowed to vary through all elements of A.

In the majority of places where we use this satisfaction relation, we may
suppress the parameters .4 and « and abbreviate (4.1) to

a - ¢.

We may also read this as
a forces ¢

this saves quite a bit of space (and mental breath) and allows us to concentrate
on the important point, namely how the element a regards the truth status of
¢. In circumstances where it seems helpful or will avoid misunderstandings,
we will use the expanded form (4.1).

What is the appropriate notion of a model valuation of @? The information
that o must provide is, for each variable P, at which elements of the supporting
structure A is P regarded as TRUE, and at which elements is P regarded as
FALSE. This information is supplied in the following fashion.

4.1 DEFINITION. A valuation o on a structure is an assignment

a:Var —> PA

from variables P to subsets a(P) of A. The pair (A4, ) is then a valued
structure. B

The idea here is that the variable P is regarded as TRUE at the element
a precisely when a € «(P). This provides the base case in the definition of
(4.1), namely
alF P & ae€alP).

The recursion steps across the propositional connectives are the obvious ones,
so all that remains (to complete the definition of (4.1)) is to describe how to
handle

al- [:¢

for a label ¢ and formula ¢. Before we do this (in the next section) it is
worthwhile looking at the nature of the structures involved.
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For each signature I we have introduced three different kinds of associated
structures. Firstly, we have the unadorned structures A4, i.e. the labelled tran-
sition structures described in Chapter 3. Each such structure can be enriched
by a valuation « to form a valued structure (A, a); and then we may distin-
guish a particular element a to form a pointed valued structure (A, o, a). It is
important not to confuse these three different kinds. We can not say that one
kind is more important than the others; all three kinds have a role to play.

4.2 The basic satisfaction relation

So how do we handle the passage across a box [i]? To determine whether or
not

al+ [i]¢

holds we must survey all the elements = with a — z and for each such z
determine whether or not
zl- ¢

holds. Thus, the full and precise definition of I+ is as follows.
4.2 DEFINITION. Let (A, o) be a given valued structure. The relation
al ¢

between elements a of A and formulas ¢ is defined by recursion on ¢ (with
variations of the parameter a) using the following clauses.

(Const) For the constants

alk T , notla I+ L]

(Var) For each variable P
alk P < a€alP).

(=) For each formula ¢
a lF ~¢ < notfa IF ¢].

(A, V,—) For all formulas 6, v

alk (AY) & al-fandalr ¢
alF (6vy) & alkforalr ¢
alF (8 ->v) & alF 3 whenever a IF 6.

(7) For each label ¢ and formula ¢
alr []o & (Vz <;a)z IF ¢]

where the quantified variable x ranges over A (the carrying set of .A). B
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The right hand side of the equivalence in clause (i) is an abbreviated version
of
(Vz)[r <:a = z I+ ¢}

The condensed version will prove to be very convenient in many computations.
In Section 4.1 we gave the formal reading of (4.1) together with a suggested
shortening ‘a forces ¢’. For variety we will also read (4.1) as

¢ is valid at «a,
¢ holdsat a,
(A,a,a) satisfies ¢,
(A,a,a) models ¢,

or in various other similar ways.
Observe that each pointed valued structure (A, o, @) gives us a 2-valuation
v, where, for a variable P,

_ [ TrRUE ifa€ a(P)
va(P) = { FALSE if a ¢ a(P).

We then see that for each propositional (i.e. box-free) formula ¢,
alk¢ & [#]..=TRUE

where, of course, [-],, is the assignment induced by the 2-valuation v, as
constructed in Chapter 1. In particular we obtain the following.

4.3 PROPOSITION. If ¢ is a propositional tautology then ¢ is satisfied by
every pointed valued structure.

4.3 Some examples

The relation I+ is probably the single most important notion in the whole
of this book (and, in fact, the whole of modal logic). It is therefore worth
spending some time looking at particular examples to help us develop a feel
for the relation.

Consider the 4-element monomodal structure

a —b

N

d ——c

where no element is reflexive. Consider also any valuation o with

afP) = A{ac}
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for some variable P. Thus
alFP , blF-P |, ¢clFP , dIF-P
We also see that
alt (=P , b JP , cl+ P

for the only element z with, respectively

is

Next we see that
el 2P , b [?P , ¢k =P
For instance, to verify the first we must show that for all pairs x,y with
a—xT—Yy

we have y I P. But the only such pair is z = b and y = ¢, so we are done. A
similar argument verifies the other two cases.

The element d is slightly more interesting. If we develop all the paths
starting from d then we get

/!

d

N

from which we find that

c a b c

dir (OOP , dWF [P , dIr =[PP , dI [J*P

etc.
Notice that the only path of length 3 starting from « is

a—b—c—a.

Thus, for any formula ¢,

alk o ES bl ¢
alk (%6 & clIFé
alF [ % & alk¢
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so that
a b ([J% < ¢).
For similar reasons we see that [ ]3¢ < ¢ also holds at b and c. Furthermore
this argument is valid no matter which valuation is involved.
A similar, but slightly more complicated argument shows that

dI- (%« Do)

and again this is independent of the valuation involved. This shows that the
formula [ ]*¢ < []¢ holds at every element of .4 no matter which valuation
is carried. In the notation introduced later (in the next section), this shows
that
A Yo o e
As explained in Chapter 2, the diamond <:> may be introduced into the
polymodal language as an abbreviation in the sense that, for each formula ¢

&G>¢ abbreviates - [i]-¢.

It is instructive to see how the forcing relation I+ handles this. The result
shouldn’t be a surprise.

4.4 PROPOSITION. Let (A, o) be a valued structure. Then the equivalence
alk D¢ & (Iz<;a)lz Ik ¢
holds for all labels i, elements a, and formulas ¢.

Proof. We use the standard manipulation of quantifiers. Using ‘-’ for both
the formal and the informal negation we have, applying the appropriate clauses
of Definition 4.2

alk D¢ & alk - [i]-¢

Sla I+ [i]-9]

-(Vz <; a)[z IF —~¢)

(Fz <ia)-[z Ik =¢] & 3z <;a)z Ik ¢

tee

as required. W

It is worth comparing the equivalence of Proposition 4.4 with clause (z) of
Definition 4.2. There are many similarities between the box connective [ | and
the universal quantifier ¥, and between the diamond connective > and the
existential quantifier 3. Once this has been grasped, many of the computations
of modal logic become almost routine. For instance, it is easy to check that

alk [0 & (Vo <ia)(Vy<; )y IF ¢
alF [(J<e & (Vz<ia)Fy <, 2)ly Ik @)
alk &HE]e © Az <;a)(Vy <; )y Ik )]
alk H>GHe & (3 <ia)Ty <; )y F @)
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There are several particular valuations which ensure that some simple for-
mulas are valid. For instance, for a given element a of the structure .4 and for
a given variable P, consider any valuation « such that «(P) = {a}. Then, for
each T € A,

zIFP & z=a

and, trivially,
al- P

Similarly, with a valuation a such that
a(Py={z € Alz <a}

we have, for z € A,
zIFP & zx<a

and
al- (P

In the same way, with a valuation such that
s P o (Fyz<y=<qd

we have

alF [J2P.

A similar, but slightly more complicated, example deserves a little more
formality. In this example we use the x-closure (i.e. reflexive, transitive closure)
<* of a relation <. If you are not familiar with this notion, a full discussion is
given later in Chapter 14, Section 14.2.

4.5 PROPOSITION. For a given element a of a structure A and a given vari-
able P, consider any valuation on A such that

zIF P & (Vyly=<xz=>y<d

(for x € A). Then
el CJ(JP - P)
holds.

Proof. Consider b < a with
bI- [P
We require that b I+ P. To this end consider any y <xb. Then, either
y=b or (Az)[y <xz <)

so that either
y=<a or (Jz)ly=<*xz I+ P]

and hence, in both cases, y < a. Thus b |- P, as required. B
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4.4 The three satisfaction relations
So far we have defined only the basic satisfaction relation
(A, a,a) IF ¢

for a pointed valued structure. We now allow this to ramify into three related
satisfaction relations
[N | S

all of which are useful at one place or another. It is extremely important that
you learn to distinguish between these three satisfaction relations; the second
and third are both derived from the first, but none can be said to be more
fundamental than the other two.

The relation IF? is just the relation I, and so it is used with pointed
valued structures (hence the decoration p).

The relation IF is used with valued structures and is formed from IF? by
quantifying out the point. Thus, by definition,

(A,a) i ¢ &  (Va)[(A,a,a) IF? ¢

where the quantified variable a ranges over all elements of A.
Finally the relation IF* is used with unadorned structures and is formed
from IF* by quantifying out the valuation. Thus

Al ¢ o (Va)[(Aa) IF ¢

where the quantified variable o ranges over all valuations on .A.

All three give explications of the modelling process. Thus when we speak
of ‘a model’ of a formula ¢ we could mean an unadorned structure, a valued
structure, or a pointed valued structure. In all cases we should make sure we
understand exactly which notion is intended.

Let us look at some examples of the differing properties of IF?, IF¥, and
[

Consider the 4-element example (A, o) described at the beginning of Sec-
tion 4.3. There we have

(A,@,a) IF? P but not{(A,a) IF* P]
(for consider the element b). Notice also that
not[(A, @) IF* - P]

5o that negations can not be transferred across +* (as they can with IH°).
Next observe that
(A,@) F° P— 3P
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for the only elements x with z |- P are x = a and £ = ¢, and each path
of length three from one of these elements returns to its starting element.
However, it is easy to construct a different valuation g8 or A for which

not((A, 3) IF° -P — []*P]
(for instance, let 8(P) = {d}.) Thus
not[A I+* =P — []*P].
Finally, as we noted before, we have
Ak [J*P - P

Sometimes simple properties of a structure .4 ensure that it models certain
formulas. For example, consider the four properties reflexivity, transitivity,
being pathetic, and denseness of a relation used in Chapter 3, Section 3.4.
The following result should be compared to Proposition 3.4.

4.6 LEMMA. For a given structure A, suppose a distinguished relation < is,
respectively,

(i) Reflerive
(i) Transitive
(iii) Pathetic

(iv) Dense.

Then, in each case, for each formula ¢, the corresponding compound formula

G Ue—¢

(1) e — 1%

(i) ¢ — [ o

(w) [J*¢— [J¢
is modelled by A.

Proof. For instance, suppose that < is transitive and, for an arbitrary
valuation on A and element a, suppose that

alk [Jo.

To show that a IF [ ]2¢, consider elements ¢ < b < a. Then, since < is
transitive, we have ¢ < a, so that ¢ I ¢, which is enough to verify case (ii) .
The other three cases are verified in a similar way. B

There are two properties of the satisfaction relations which are particularly
important. These will be used later to form the basis of a proof system for
modal logic. The first property provides the basic axioms.
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47 LEMMA. For each structure A
A [0 — ) — ([0 — [9)
holds for all labels i and formulas 6 and 9.
Proof. Consider any valuation on .4 and element a of A such that
alk @ —v) , alk [E]6.
Then, for each element z <; a, we have
zlF8—-y , x40

so that x IF ¢, and hence a I+ []1), which gives the required result. B

The final result of this section will eventually provide the rules of inference
for modal proof systems.

4.8 LEMMA. For each valued structure (A, ) the implication
(A,a) I ¢ = (A,a) IF* [i]¢
holds for all labels i and formulas ¢.

Proof. Suppose that (A, a) I+’ ¢ and consider any pair of elements x <; a.
Then z I+ ¢ so that a I [:]¢, and hence (A4, «) IF* [:]¢, as required. B

You may be tempted to think that Lemma 4.8 could be improved to
(Aa) - ¢ — [i]o

or perhaps to
alk¢ = al [i]¢.

Neither of these hold in general, and you should look for appropriate counter-
examples.

4.5 Semantics for modal algebras

As explained in Chapter 3, each structure A is equivalent to a modal algebra
based on PA. Any semantics supported by A can be transferred to this modal
algebra, as we now describe.

By definition, a valuation on A is a mapping

a:Var —> PA.
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The forcing relation IF induced by « extends « to a mapping
Form —> PA

where, for each formula ¢, the assigned subset of A is written

I[¢]|a-

This set is a measure of how true ¢ is in (A, a).
In the definition of [}, we use the boolean operations

n,u, -

of union, intersection, and complementation on P A, together with the modal
operations induced by the relations <;. It is worth comparing this definition
with Definitions 1.2, 2.3, and 4.2.

4.9 DEFINITION. Let (A, ) be a given valued structure. For each formula ¢
the subset

[¢]I o

of A is defined by recursion on ¢ using the following clauses.

(Const) For the constants

HT]Ia =4 , H-L]Ia =0.

(Var) For each variable P
[P} = a(P).

(—) For each formula ¢

["QS]a = _'[(b]a-
(A, V,—) For all formulas 6,

[6 A Y)a [l N [¥]a
[0V Y)a [« L [¥]«
|[0 - w]a = —'[eﬁa U [w]a

(¢) For each label ¢ and formula ¢

[C1¢le = C)(H4la)

where [¢] is the modal operation on PA induced by <;. B
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It is clear from this definition that for the most part the distinguishing
subscript on

[4)a

is playing no useful purpose. We will therefore omit it in future unless this
could lead to confusion (e.g. when there are two valuations around).

The two notions I+ and [-] are connected in an obvious way. The proof of
this is entirely routine and will be left as an exercise.

4.10 PROPOSITION. For each valued structure (A, c) the equivalence
alF¢ & ac€ld]
holds for all elements a of A and formula ¢.

Note how this shows that

Aoyl ¢ < [o]=4

which can be useful in certain situations.

This rephrasing of the semantics provides a convenient way of evaluating
substitution instances.

Recall that a substitution is a map

o:Var —> Form

which extends to a map
Form — Form

¢ — ¢°.
These should be compared with the maps a and ¢ — [¢]«; the only difference
between the two cases is that Form is the target set for substitutions whereas

PA is the target set for valuations.
The question to consider is how can we determine the value

[47]a

without first performing the substitution and then applying [-},. The method
is reminiscent of the way we dealt with iterated substitutions.

4.11 DEFINITION. For each substitution ¢ and valuation «, let & % ¢ be the
valuation given by
(axo)(P) = [Pla

for each variable P. B

The following result is the analogue of Exercise 2.5(a) of Chapter 2.
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4.12 THEOREM. For each substitution o, valuation o (on a structure), and
formula ¢ we have

I[¢a]|a = |[¢ﬂﬂ

where f = a*o0.

Proof. This follows by recursion on ¢. The various steps are entirely
routine. For instance, for the step across a box we know that

(Lo = [l¢”
so that

[(E19))a = [[6°)e = C(I¢°)e) = [ldls = [ L:1d)s

where the third equality follows by the induction hypothesis and the others by
Definition 4.9 (for both « and 3). B

This result has a consequence for the satisfaction relation I which, at
times, can be very useful.

4.13 PROPOSITION. Suppose ¢ is a substitution instance of the formula ¢.
Then the implication

AlFt ¢ = A 9y
holds for all structures A.

Proof. Let o be a substitution such that ¥ = ¢°, and suppose A i+ ¢.
Consider any valuation a on A. We require [¢), = A. Let 3 = axo. Then

[l =[¢la =[¢ls = 4
where the last equality holds since A4 IF* ¢. B

As a simple application of this result we may combine it with Proposi-
tion 4.3 to obtain the following.

4.14 COROLLARY. Suppose ¢ 1is an instance of a propositional tautology.
Then v holds in all structures.

4.6 Exercises

4.1 Consider the 10 essentially different transition structures on two elements
listed in Exercise 3.1 of Chapter 3. You are invited to determine which of the
standard shapes D,T,B4,... are modelled by these various structures. The
table below gives a partial list of this information. You should check these
result and fill in the other details.
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DTB4 5 P QRGLM
1N [x x . v ¢ v v VvV .o x
@Q. . v v . v . vV x .
w|. v v . vV X v
B [x x . v x x X X
Mix . x v L% X X X
8. x x . v x . VvV x X
atv v . v vV x x ¥ . x ¥
wyyv . v . . x Y X .
14)]. x v x x . x . . X x
16)|v v v v . X x . X X X

4.2 Consider the three element monomodal transition structures of Exercise
3.2. Show that there are at least two non-isomorphic such structures which
model none of the shapes D,T,... M.

4.3 We may use the various order relations on N to define four different tran-
sition structures
N = (N, —)

where

(a) z—y & z<y

() z—y © z<y

(¢) z—y & z>y

d) z—y & 2>y
for z,y € N. The following table indicates whether or not some of the standard
formulas hold in A. You are invited to check this information and fill in the
rest of the table.

|ID T B45PQRGLM
(a) | v X v X X x . ¥ x .
®]. v x v x . x v X
)| x x x . x x x . x . .
(d)|v v v x . v . x VY
4.4 Each of the sets
A = NZQ,R

gives us a monomodal structure A4 = (A, —) where
a—b & a<h

for each a,b € A. Let us write N, Z, Q, R for these structures.
For each formula ¢ consider the compound formulas

T(¢) == He¢—¢ U(g) = [lle— [¢)—¢
L(¢) == [IT(¢) - ¢ Vig) = U@ — ¢
8(¢) = OO¢—L(9) W(g) = O0O¢— V(e)



4.6. EXERCISES 53

Show the following

() N I S(¢) (i) N I W(g)
(i) Z I S(g) (iv) Z Ik W(g)
(v) —[QIFPS(P)]  (vi) -[Q I W(g)]
(vii) -[R IF* S(¢)]  (viii) =[R IF* W(g)]

where ¢ is an arbitrary formula and P is an arbitrary variable. For (v - viii)
consider any D C A where both D and A—D are dense in A, and let P be
true on D U (1, 00).

4.5 Show that for each transitive (monomodal) structure A both

AR OO« OO0 , A (OO s« OO¢
hold for all formulas ¢.

4.6 Since our modal language contains the constants L and T, it is possible
to construct formulas which contain no variables. Such a formula is called a
sentence. For instance, in the monomodal case, the sentences are

N
OT aT
OOT  OJoT oOor OarT

OOoL OOoL oOr OOt
OL L
1

together with all the boolean and modal combinations of these. Sentences do
not need a valuation in order to acquire a truth value. Thus, given a sentence
¢, a structure .4, and an element a, if

alF ¢

holds for some valuation on A then it holds for all valuations on A.
Sentences can be used to capture some information about chains in a struc-
ture.
Let us restrict ourselves to the monomodal case, and let A be a given
structure. For each n € N and elements a,b € A let

a—5b (4.2)
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mean there is a chain
a=aq —a — - -—a,=b
of length n between a and 4. In particular, a -2, a holds vacuously. Let
a5V , a1 x
mean, respectively,
there is some b , thereis nob

for which (4.2) holds. It is also useful to say

acanseeb & a-—b
aisblind & a— x.

(The confusion between the use of ‘—’ as an iterated transition and a labelled
transition is quite deliberate.)

(a) Show that

et O'T & a> Vv
(i) ek ("L & a = x.

Under what conditions do
ol "7 , alk ML
hold?
(b) Show that

(i) att (1L & aisblind

(ii) a I+ <O [JL & acan see a blind element
(iii) a I (J<OT <« a can see no blind elements
(iv) a I <O OT < ais not blind

hold.
(c) Find sentences which express the following.

(i) Every element seen by a is blind.
(ii) The element a can see a non-blind element.

(iii) Every element seen by a is either blind or can see a non-blind ele-
ment.
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(iv) The element a can see a non-blind element which can see only blind
elements.

47 We say a set P of sentences is independent if for each ¢ € ® there is a
structure .4 and an element a of A such that

e for each ¥ € (2—{4}), alF ¢
o alF —g.

This exercise exhibits an infinite independent set of sentences.
For each m € N let W(m) be the sentence

OmIT - O OT.

Let A,, be the structure with 2m + 4 elements a,...,bd,...,c where
a™3p a8,

b

and where the chains between ¢ and b and @ and ¢ are disjoint apart from the
common source a.

(a) Draw a picture of Ay, A;, A2, and Aj.

{(b) Show that for each ! < m < n both

el OMOT , o OO0

hold in A,,.
(c) Show that in A,,
a b ~W(m)
holds, whereas
a Ik W(k)

holds for all k # m.
(d) Show that the set {W(m) | m € N} is independent.
4.8 Consider the monomodal structure N' = (N, —) where
r—y & r<y+1

for all z,y € N. This is called the recession structure. To determine the truth
values of formulas in A observe that each X C N falls into exactly one of the
following five types.

(1) X =N.
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(2) There is some ¢ € N with [¢ + 1,00] € X C {a} (where (-)’ is the
complement operation.

(3) There is some a € X with X C [0, a].
4) X =0.
(5) X is neither finite nor cofinite.

Note that types (2,3) are complementary, as are types (1,4). Type (5) is self
complementary.

(a) Verify the following tables of values for these five types.

X| O= Ox  Dx O OOX OOX

O] N N N N
(2) | [a+ 2, 00] N la + 3, 00] N
(3) ) [0,a+ 1] 0 [0,a + 1]
(4) 0 0 0 0
(5) ) N ) N

Z2es 22
s 22

(b) Determine which of the standard formulas are modelled by N

(c) Which of the following formulas

@ O(Oe— Ly v DOy — [e)
i) O(O% — [2%) - (Heé — [1%¢)
i) (O — Oe) — %) —» (%
are modelled by 7.

4.9 Consider two structures .4 and B of the same signature. We say B is a
substructure of A and write
BC A (4.3)

if B C A and the transition relations of B are the restrictions of the corre-
sponding relations of A, i.e. for each label ¢ and elements b,y € B

b - y holds in B < b —— y holds in A.

Note that every non-empty subset of A is the carrier of a substructure of .A.
Given (4.3), each valuation « on A restricts to a valuation 3 on B defined
by
be B(P) & be a(P)
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for each variable P and b € B. We then say that the valued structure (B, ()
is a substructure of (A, ) and write

(B,B) C (A, @) (4.4)
We say B or (B, ) is a generated substructure of A or (A, ) and write
BC, A or (B,B)C,(Aa)

if the appropriate one of (4.3) or (4.4) holds and, for each label 7 and elements
be Bandac A,

b—+a = acB
holds.

(a) Show that for a given valued structure (A, @)

(i) each non-empty subset B of A carries a substructure (B, 8) of A,

(ii) for each element a € A there is a smallest generated substructure
B = A(a) of A which contains a.

(b) Hence show that if (B, 3) C, (A, «) then
(B,3,b) IF ¢ & (A,a,b) IF ¢
for all b € B and formulas ¢.

(c) For an arbitrary formula ¢ let {#}* be the set of all formulas [i]¢ for
a compound label i. Show that for each valued structure (A,«) and
element a of A, the equivalence

(A o, a) IFP {¢}" & (B,B) I ¢
holds where B = A(a).

4.10 Let A be any structure of an arbitrary signature, and let A" be the set
of ultrafilters p,q,7,... on A. (Recall that an ultrafilter on A is a set p of
subsets of A with certain appropriate closure properties.) For each a € A let

o' = {XePAlae X}

be the principal ultrafilter on a.
For each label i let — be the relation on AY given by

p—5q e (VXePA[[IXecp=>Xeq

for p,q € a¥, where [i] is the modal operation on PA corresponding to the
label 1.
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This gives us a structure AV based on AY which is called the wultrafilter
extension of the structure 4.
For a given valuation a on A let @ be the valuation on A" given by

pea’(P) & ofP)ep

for each p € AY and variable P. We compare the two valued structures (A, )
and (AY,aY).

(a) Show that

a-b & ad b
for each label 7 and elements a,b € A.

(b) Show that
(A 0",p) Ik ¢ & [¢lep

for each formula ¢ and p € AV.
(c) Show that

(i) (A, a,0)Y IF? ¢ & (A ,a,a) IF? ¢
(i) (A4, a)V IF* ¢ & (A,0) IF ¢
(iii) AY +* ¢ = A IF* ¢ for each formula ¢ and ¢ € A.

[These results form a modal version of Los’s result from first order model
theory.]

411 Let N = (N,—) be the monomodal structure where
a—b & a<h

for all a,b € N and consider the ultrafilter extension NV of A. Show the
following.

(a) For each z C N and p € NV if []JX € p then X is cofinite.

(b) For all p,q € NV,
p—q

holds whenever ¢ is non-principal.
(c) The structure AV has some reflexive pointé.
(d) There are formulas ¢ such that both
NI ¢ , =[NV IF* ¢

hold.
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4.12 In the following chapters we show that many properties of transition
structures can be captured by sets of modal formulas. However, not all such
properties can be captured in this way. For instance let us say a monomodal
structure A is good if it is transitive, serial, and each of its elements can see a
reflexive element.

(a) Show that the structure N of Exercise 4.11 is transitive and serial but
not good, whereas its ultrafilter extension AV is good.

(b) Show that there is no set of formulas I such that a structure models I’
precisely when it is good.






Chapter 5

Correspondence theory

5.1 Introduction

In Chapter 3 I claimed that modal logic should be viewed as a tool for de-
scribing and analysing properties of structures (that is, of labelled transition
structures). How can this be, and how effective is this tool? The kind of simple
things we might want to know about a relation are whether it is reflexive, sym-
metric, transitive, confluent, etc. We may want to know whether one relation
is included in another, or is the converse of another, or whether one relation
can be decomposed as the composite of two others, etc. We may want to know
more complicated things like whether a relation is well-founded, or whether
one relation is the *-closure of another.

Remarkably, these and many other properties are characterized by quite
simple modal formulas. It is this characterizing ability which makes modal
logic such a powerful tool. Once it is understood, it can be seen that modal
logic is a quite extensive part of full second order logic, and it is the ability to
capture second order properties which gives it is power.

5.2 Some examples
As an illustration of the kind of thing we are going to do we begin with a
quite simple example of a correspondence result. In this result we focus on one
particular label with its associated relation < and connective [].
5.1 PROPOSITION. For each structure A the conditions

(i) The distinguished relation < is reflexive.

(i) For each formula ¢, A W* [Jo — ¢.

(i) For some variable P, A +* [JP — P.

are equivalent.

61
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Before we prove this result, we make a few remarks. There are many
correspondence results, and all have the same form as Proposition 5.1. A
structural property (i) is shown to be equivalent to the modelling of a certain
family of formulas (ii). These formulas are all the substitution instances of a
certain set of basic formulas (iii). Thus the implication (ii) = (iii) is trivial,
and (iii) = (ii) is an application of Proposition 4.13. The implication (i) = (ii)
is always proved by direct verification (and is no harder than the implication
(i) = (iii)). The implication (iii) = (i) follows by the use of a particular
valuation chosen in a suitable way. The choice of this valuation is the only
non-routine part of the proof.

Proof of Proposition 5.1. (i) = (ii). This is Lemma 4.6 (i).
(ii) = (iii). This is trivial
(iii) = (i). With the variable P given by (iii), for a fixed element a, consider
any valuation « such that for each z € A,
zIFP & z<a

holds. Then (as in Chapter 4, Section 4.3) we have
alk p

and hence, invoking (iii), we obtain a I+ P. Thus a < a, as required. B

Our second example has a very similar proof.
5.2 PROPOSITION. For each structure A the conditions

(i) The distinguished relation < is transitive.
(ii) For each formula ¢, A IF* [¢ — [1%¢.
(iii) For some variable P, A \W* [JP — [?P.

are equivalent.
Proof. (i) = (ii). This is Lemma 4.6 (ii).
(i) = (iii). This is trivial.
(iii) = (i). With the variable P given by (iii), for a fixed element a, consider
any valuation « such that for each z € A,
zlF P & x<a.

Then @ IF [JP so that, invoking (iii), we have a I+ [J?P. Thus, for all
elements b and ¢,

c<b<a = clFP = c<a
which gives (i). &

It isn’t always the same valuation which is required for the proof of (iii) =
(i). For instance, consider the following.



5.2. SOME EXAMPLES 63

5.3 PROPOSITION. For each structure A the conditions

(i) The distinguished relation < is deterministic.

(ii) For each formula ¢, AW o — o
(i) For some variable P, A I+* <OP — [JP.

are equivalent.
Proof. (i) = (ii). This left as an exercise.
(i) = (iii). This is trivial.
(i) = (i). Consider any elements a, b, ¢ with

a/b

AN

and, with the variable given by (iii), consider any valuation such that for each
T €A,

C

zl-P & x=5b.

Then a I <>P so that (iii) gives a I+ [JP and hence c I+ P, ie. c=b, as
required. W

There is a whole family of results of this kind with virtually the same proof.
For instance all of the following properties of a structure .4 and label { fall into
this class.

(a) A is i-serial, i.e. for each a € A there is some b € A with b <; a.
(b) A is i-reflexive, i.e. the relation <; is reflexive.

(¢) A is i-symmetric.

(d) A is i-transitive.

(e) A is i-euclidean, i.e. for each divergent wedge

we have b <; ¢ (and ¢ <; b).

(f) A is i-pathetic.
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(g) A is i-deterministic.
(h) A is i-dense.

For each of these properties you should attempt to prove the correspondence
result. Of course, the problem is to find the characterizing formula, but once
this has been done the proof is virtually routine.

5.3 The confluence property

There is a single result which covers all the correspondence results of the last
section and many more as well. We begin our discussion of this result here
and will return to it later (in Chapter 6).
We need some terminology.
Fix the labels
i,7,k, 1.

These may be distinct or have repetitions among them. We say a structure 4
has the (3, J, k, 1)-confluence property if for each divergent wedge of elements

b
i/’
a (5.1)
AN
c
there is a convergent wedge
b
N
d (5.2)

This property subsumes all the properties mentioned in Section 5.2, but
before we see how this comes about let us state and prove the correspondence
result for confluence.

5.4 THEOREM. For each structure A the conditions
(i) A has (3,7, k,1)-confluence.
(1) For each formula ¢, A IF* (> [Hd — [&] <o
(i11) For some variable P, A IF* <> [F]P — [k] <OP.

are equivalent.
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Proof. (i) = (ii). Suppose A has the confluence property and that
alr &H>[H])e

for some element a, formula ¢, and valuation on 4. This hypothesis gives
some b <; a with b IF [i]¢. We are required to verify that a I [«]<i>¢, so
consider any element ¢ <; a. We then have a wedge (5.1), so the confluence
property provides an element d with

d-<jb , d=c

From the first of these we get d I+ ¢, and hence the second gives ¢ I+ <{D¢
which is enough to complete the proof.

(ii) = (iii). This is trivial.

(iii) = (i). Consider any given wedge (5.1) and, with the variable given by
(iil), consider any valuation such that

gl P& z<b

(for all x € A). Then b I+ [i]P and hence a I+ <> [5]P so that, invoking
(iil), we have ¢ IF <P and hence there is some d <; ¢ with d I P. This last
condition ensures that d <; b, and so we have the required wedge (5.2). ®

How does this result cover all the correspondence results of the last section,
and how does the confluence property generalize the properties (a)—(h) of that
section? Let us look at some cases.

(a) For a given relation < (of the structure .4), choose the labels j and { so
that <, <, and < agree. Let 7 and k label equality, i.e. for each z,y € A

Y<iT S =Y & Y=<
A divergent wedge (5.1) is then a triple of elements
b=a=c

i.e. an arbitrary element a. A convergent wedge is then given by an
element d such that

d=<b=a , d<c=a

so that confluence reduces to seriality. Note also that the corresponding
formula of Theorem 5.4 becomes

g — s

as expected.
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(b) Let j and k label equality. Then the confluence property asserts that <;
is a subrelation of <;. In particular when <; also labels equality, this
says that <; is reflexive.

(c) Let ¢ and j label equality. Then the confluence property says that <, is
included in the converse of <, i.e.

Y=< = T=<Y.
In particular, when & and ! both label <, this says that < is symmetric.

(d) See if you can work this out for yourself, but be warned, there is a slight
catch here.

(e) Let 7,7, and k label < and let ! label equality. Then the confluence
property says that < is euclidean. The corresponding shape of formula

1S
SOOe— e

which, by taking the contrapositive, is equivalent to the shape

O — OO

Alternatively we could let ¢, k, and [ label < and let j label equality.

You should work out the remaining cases for yourself. Also, for each par-
ticular case, it is instructive to go through the proof of Theorem 5.4 for that
case. After a few of these you will begin to see what is going on.

5.4 Some non-confluence properties

It is not the case that all correspondence results are covered by Theorem 5.4;
some of them are quite a bit more complicated. In this section we look at a
couple of results which illustrate some of these possible extra complications.

For the first one it is convenient to have some terminology. Thus, for want
of a better word, let us say a relation < of a structure A is tree-like if

b<aandc<a = b<corc<b

for all a,b,c € A. The characterization of this property illustrates how more
than one variable may be needed.

5.5 PROPOSITION. For each structure A the conditions

(1) The distinguished relation < is tree-like.
(i1) For dall formulas ¢,%, AW [J([e —¥)Vv (v — ).

(111) For some pair P,Q of distinct variables, A W* [ ()P —-@)v (]
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are equivalent.

Proof. (i) = (ii). Suppose that < is tree-like and that

notfa I [J([Jé — 9)]

for some element a, formulas ¢ and v, and valuation on .A. Then

a b O(Oé A —y)

so there is some b < a with

bi- (¢ , bk -y

Consider also any element ¢ < a with

eIk .

We require that ¢ I+ ¢.
Since < is tree-like we know that either

b<c or e¢=<b.

If the first of these holds then b I+ %, which we know is not so. Thus ¢ < b
and hence ¢ I+ ¢, as required.

(i) = (iii). This is trivial

(iii) = (i). Suppose that b < a and ¢ < @, and, with the variables given by
(iii) consider any valuation for which

zIFP & z<b , z2IFQ & z<c

(for z € A). This is possible since P and @ are distinct. By construction we
have

bk (P , clF [JQ
and we know, by the hypothesis, that either

ek J(OP—Q) or alF [J([JQ— P).

If the first of these holds then b I [ JP — @ so that b I @ and hence b < c.
If the second holds then, by a similar argument ¢ < b. W

So far all the structural properties we have characterized have been ele-
mentary (in the sense that they are first order definable). The power of modal
logic comes from its ability to deal with some non-elementary properties. We
now give an example of such a property.

Before we give the characterization we need a preliminary result.
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5.6 LEMMA. For a structure A and variable P suppose that
A (OP—-P)— [P
Then the corresponding transition relation — s transitive.

Proof. We make use of Proposition 4.5. Thus, consider a valuation such
that for each = € A,

zlF P & (Vyly=<xz = y=<gdq

where a is a fixed element and <x is the *-closure of <. Then e I [J([JP —
P) and hence, invoking the hypothesis, we have a I+ [JP. But then, for all
b,c € A, we have

c<b<a => c<blkP = c<a

which gives the required result. B

A distinguished relation — of a structure A is said to be well-founded if
there is no sequence (a,|r < w) of elements with

QGp — Qg — - - — Gy —> - (r < w).

This property, even when combined with transitivity, is not elementary, hence
the interest of the following result.

5.7 THEOREM. For each structure A the conditions

(i) The distinguished relation — is transitive and well-founded.

(i) For each formula ¢, AW [J(Ho— ¢) — [lo.
(iti) For some variable P, A I+* [J([JP— P)— []P.

are equivalent.

Proof. (i) = (ii). Suppose < is well-founded and consider any element a,
formula ¢, and valuation with

el LI(e — ¢).
Consider also, any element b with

b=<a , bl . (5:3)
Then, from the position of a, we have b I = [ ]¢, which gives some element

c=<b with c¢IF .
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Since < is transitive this gives
c<a and clF ¢

Hence, by iterating this construction, we obtain a sequence of elements (b, |r <
w) with
b=by—b — - — b — - (r < w)

and b, |- —¢ for all 7 < w. Since well-foundedness obstructs such a sequence,
we see there can be no initial element b satisfying (5.3). Thus a I+ - {>-¢,
i.e. a Ik [ ]9, as required.

(ii) = (iii). This is trivial.

(iii) = (i). Suppose (iii) holds. Then, by Lemma 5.6, the relation < is
transitive, so we must show that < is well-founded.

By way of contradiction suppose there is a sequence (a.|r < w) with

Qg —> Q) — = QG — - (r < w).
With the variable P given by (iil) consider any valuation such that, for z € A,
z Ik =P & (3r<w)z=aqa,l
In particular, a; Ik =P so that ag I+ <>-P and hence, invoking (iii), we have
ao I O(CIP A -P).
This gives some x < a with
I [JP and =z IF -P.

The second of these ensures that x = a, for some r < w. But then, by the
first we have
Gy4q IF P

which is the required contradiction. M

5.5 Exercises

5.1 Consider a language with not necessarily distinct labels ¢, 7, k,l. Below
is a list of pairs of a formula shape (s) depending on an arbitrary formula ¢,
and a structural property (p). For each of these pairs, show that a structure
models shape (s) precisely when it has property (p).

(a) (s) <>p—¢
(p) i-pathetic.
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(b) (s) <dp— D¢
(p) The relation — is included in the relation —.

(¢) (s) <>¢— [ilo
(p) All wedges of the form

=1
\s.
o

have ¢ = b.

(d) (s) <Dg— G>[x]é
(p) For each pair @ —— b there is some ¢ with a —Z ¢ such that the
onlyxwithci»zisz=b.
() (s) <>p— []<ke
(p) All wedges of the form

[~
‘s.
<>

o

k
have ¢ — b.

() (s) o — DI

(p) For each pair a —%, b there is some ¢ with a 2> ¢ such that for all
d, if ¢ = d then d — b.

(8) (s) <o — Ll e
(p) For each wedge
1
a —b
J
c

there is some element d with ¢ —— d such that the only x with
d-‘>zisz=b.

5.2 Let 4,j,k,1,m,n be fixed labels. For each of the following pairs, show
that a structure models the shape (s) precisely when it has property (p).
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(@) (s) <>l — [k]<[m)g.

(p) For each wedge of elements

there is some element d with ¢ —— d such that
d™z = b1z
holds for all elements z.
(b) () <>[é— <[] edg.

(p) For each transition a —— b, there is some transition @ —+ ¢ such
that for each transition ¢ —— d, there is a wedge

(© (s) <DL — [ <[ <.
(p) For each wedge

there is a transition ¢ —— d such that for each transition d —=» e
b

|

e—f

n

5.3 Consider a modal language with labels 3, j, k, I, m, n (where these need be
neither distinct nor atomic). Let K(4, 7, k,1,m, n) be the generalized K-shape

[1([]¢ — (k) — [([e — [29)

for arbitrary ¢ and 1. Show that a structure .4 models K(3, 7, k,{, m, n) if and
only if for all elements a, b, ¢ with

! n
a—b—c¢

there is some element d such that
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i k

ea—d—c

o for all elements z, d->1 = b-Ts 1

hold.

5.4 Not all correspondence results need to be proved by chosing a suitable
valuation. For instance let £ and ! be fixed natural numbers with k£ > [. Show
that for each transitive (monomodal) structure A4, the three conditions:

(i) For all formulas ¢, A IF* [ ¥ — PO e
(i) Ak OFOLV OHOT.
(iii) For each a € A one of

e There is some blind b with @ — b.

e There is no blind b with a — b.

holds.

are equivalent.

5.5 Let k and [ be fixed natural numbers. Show that for each transitive
(monomodal) structure A, the four conditions:

(i) For all formulas ¢, A IF* [1* g —» OHO ¢
(i) For all formulas ¢, A IF* [(1*> ¢ —» OH OO
(i) A Ik OF LV OO OT.

(iv) For each a € A, there is some b € A such that one of

e a % b and b is blind
e a —4 b and no element seen by b is blind

holds.

are equivalent.

5.6 The results of Exercise 5.1 can be generalized. To do this let us say
a modal operator M is a sequence of <> and [:] for varying labels . For
instance

0, <o, [, <DL, [ <, <D L <k, ..

are all modal operators. These operators may be defined recursively by:

e () is a modal operator;
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¢ if M is a modal operator then so are
HM o, M
for each label i.

Note that for each modal operator M and formula ¢, the compound Mé¢ is also
a formula. Structural properties corresponding to the shapes

<>¢ — Mo

can be developed, but this requires some preliminary notation.
Fix a structure 4. For each modal operator M a relation

M}
is recursively defined on A using the following clauses.

For each pair a,b € A

a—{0}>b & a=b
a —{<i>M}> b < There is some z with a —» z —{M}> b

a—{[(IM>b & Forallz, a—>z = z—{M}b
(for arbitrary ¢ and M).

(a) Give explicit descriptions of the relations
A<D} H 0
{0 AP
@ U®r AN K
on A.

(b) For a fixed element b and variable P, let § be any valuation such that
B(P) = {b}. Show that

a—{M}>b & (A,8a) IF* MP
holds for all @ € A and modal operators M.

(c) Show that for all modal operators M, and pairs a, b with a {M}— b, the
implication
biF¢ = alF Mo

holds for all valuations and formulas ¢.
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(d) Show that A models the shape
i>¢p — Mg
if and only if the relation — is included in the relation -{M}—.

(e) Show how the results of Exercise (5.1) are particular cases of (d).

5.7 The results of this chapter and the previous exercises show that many
formula shapes are equivalent to structural properties which are describable in
elementary terms. This is not the case for all formula shapes. The simplest
example of a non-elementary shape is given by the McKinsey formula

M(¢) = OO — Ol

on an arbitrary formula ¢. The class of models of this shape is quite weird,
in particular the following result forms a basis of a proof that the class is not
elementary.

Let S be a fixed countably infinite set and, as usual, let 2 = {0,1}. Let
[S — 2] be the set of functions

f:5—>2.
For each such function f let ~f be the complementary function given by

(=f)(z) =1~ f(z)

(for z € S). Let F be any subset of [S —— 2]. We use this to construct a
transition structure A(F).
Thus set
A(F) = {a}USU(SXx2)UF

where a is some new element. Let — be the transition relation on A(F) such
that
a— z — (z,1) — (z,9) a— f— (z, f(z))

for all z € S,i € 2, f € F, with no other transitions holding. Let
A(F) = (A(F),—).
(a) Show that for each u € A(F):

1) u=a < thereisnov € A(F) withv — u

(i) ueSx2 & u—ru
(iii) uw €S < there are precisely two v € A(F) with u — v
(iv) u € F & there are at least three v € A(F) with u — v

(b) Show that
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1) (=9 k¢ o (i) (z,9) IF ¢ = ¢
(iii) = IF M(¢) iv) 2+ O e — %0
(v) fIFM(9) i) fIF OO — [O%

for all appropriate z,4, f and ¢, and valuations on A(F).

(c) For arbitrary g: S — 2 with =g ¢ F consider the valuation v on A(F)
where, for some variable P,

y Ik P & (3zely=(z9()
for each y € A(F).

(i) Show that a IF []<OP.
(i1} Hence show that if A(F) models M(P) then g € F.

(d) Suppose the set is closed under —(-). Show that A(F) models the shape
M if and only if F =[S — 2.

5.8 Consider the following choice principle.
(*) Suppose that — is a transitive relation on the set X such that
Vre X)FyeX)z—y A z#y
Then there are sets Y, Z with
YnzZ=98 , Yuz=X
and such that
(Ve X)yeY,z€Z)x—y ANz — 2]

holds.

This is a version of the Axiom of Choice. In some restricted situations non-
elementary properties can become elementary.

(a) Using (), show that a transitive structure A = (A, —) models McK-
insey’s axiom if and only if: For each a € A there is some b € A with
a — b and such that

b—zx => =0
holds for all z € A.

(b) Can you prove (x)?






Chapter 6

The general confluence result

6.1 Introduction

In Chapter 5 we obtained several particular correspondence results covering
such structural properties as

(a) Seriality

(b) Reflexivity
(¢) Symmetry
(d) Transitivity

(e)

I also indicated how these results are all particular instances of a more general
result using a confluence property. However, you may have noticed that the
confluence result given in Chapter 5 (namely Theorem 5.4) is not quite general
enough. To make that result cover such properties as transitivity and denseness
we need to fudge the distinction between a single label and a sequence of labels.
In this chapter we rework Theorem 5.4 in a generality great enough to do the
job properly.

As usual we fix a signature I. We must concern ourselves with sequences
of labels, for example

This is a sequence of length p (where p € N) consisting of label (1) followed
by label ¢(2) followed by ... and finishing with the label #(p). These atomic
labels need not be distinct. We also allow the case p = 0, in which case ¢ is
the empty sequence and is written 0.

Given such a sequence i and elements a and b of a structure A we let

a—>b

77
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mean there are elements zg, r1, zs,..., 2, with
i(1) i(2 i3 i(p)
a=x0(—>:1:1 —)»xg——)»---——(—mcp:b.

In particular, when p =0,

a2 b means a=b

Similarly, for a formula ¢ we let
(i1
abbreviate
][] [Ple
where the indexes 1,2, - - -, p indicate the appropriate label to use. We also use
a similar convention for
<.
In particular, both
[0]¢ and <o
are just ¢.
To ensure that you understand these conventions you should show that
alt [i]¢
holds precisely when:

For each element b with a — b we have b I+ o.

These notations and conventions allow us to manipulate with i as though
it were a single label.

To deal with the general confluence result we consider four such sequences
of labels. Thus for the remainder of this chapter we fix four natural numbers

p y q y r b S
together with four sequences of labels as follows.
i(1),4(2),...,p)

3(1),3(2), ..., 5(q)
k(1), k(2), . .., k(r)

1(1),02),...,U(s)
We use these as parameters in a structural property

CONF (i; j; k; 1)

Wi

i
J
k
[

and a set of formulas

Conf(i; j; k; 1).
We then show these are the two matching components of a correspondence
result.
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6.2 The structural property
We say a structure A has the property
CONF (i;j; k; 1)

if for each divergent wedge of elements

b
i/’
a (6.1)
AN
c
there is a convergent wedge
b
d (6.2)

N AL

In particular, for the cases where
p=q=r=s5=1

this property CONF (i;}; k; ) reduces to the (3, j, k, {)-confluence property of
Chapter 5. Other particular cases cover the properties (a),(b),(c), ... of that
chapter (and many more).

Let us look at all of the cases where each of p,q,r, and s is either 0 or 1.
There are 16 such cases which we may represent as follows.

(0) 9;0;0;0 (1) 0;0;0;! (2) 0;0;k;90
(3) 0;5;0;0 (4) i;0;0;0 (5) 0;0;k;!
(6) 0;5;0;!1 (7)y i;0;0;1 8) 0;7;k;0
(9) ;0;k;0 (10) 4;7;0;0 (11) 0;5;k;1
(12) 4;0;k;1 (13) i;5;0;1 (14) i;5;k;0
(15) i;7; k;1

Here (0) is the case where p = ¢ = r = s = 0; (1) is the case where p = ¢ =
r =0 and s = 1; (7) is the case where p =1, ¢ =r =0, and s = 1; (12) is the
case where p=1,¢=0, and r = s = 1, etc.

Let’s spell out the details of some of these cases.

CONF(0) This property is vacuous in the sense that it is enjoyed by all
structures. It has, therefore, limited fascination.
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CONF(1) This says that for each element a and elements b and ¢ with
a = b = ¢, there is some element d with

a=b=c-d , a=b=d
In other words it says that the relation 5 is reflexive.
CONF(2) This says that for all elements a, b, and ¢ with
a—sc and a=b
there is an element d with
a=b=c=d.
In other words the relation —» is pathetic.

CONF(5) For all elements a, b, and ¢ with

a=b and a-¢
there is some element d with
b=d and c-d
i.e. for all elements a and ¢
k !

a—¢C = c— a.

In other words the relation —- is included in the converse of ——. In
the particular case where k = [ this says that LI symmetric.

CONF(6) For all elements a,b and ¢ with
a=b=c
there is an element d with
a2d and a-td
in particular both 2 and -5 are serial.
CONF(8) For all elements a, b, and ¢ with
a=b and a ¢
there is an element d with
a-2>d and c=d

. k. . . ]
i.e. — is included in .
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CONF'(11)  For each pair of elements a and ¢ with

k

a——c¢
there is a triangle
N
a4 ——¢
k
(for some d). Even with j = k = this property has not occurred before.

CONF(12) For each wedge
b

o

a

AN

we have ¢ — b. When i = k = [ this says that -1, is euclidean.

c

CONF(15)  This is the confluent property of Chapter 5.

All of these properties are, in fact, instances of the original confluence
property. Let us now look at some of the new properties encompassed by
CONF (i; j; k; 1) (i.e. where at least one of p, ¢, r,0r s is two or more).

CONF (i,i;0; 0; i) For all elements a,z, and b with
PRGN

we have .
a——b
i.e. the relation — is transitive.
CONF(i; 8;0;4,4) For all elements a and b with

a—=b
there is some element d with

a—sd—b

i.e. the relation — is dense.
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CONF (4,15 7; 90;1,1)  For all elements a,z, and d with
a -z b
there are elements y and d with
b2+ d and a—l>y—l>d.
This is not a commonly occurring property.
CONF (i; j; k,k; 1,1) For elements a, b, c, and = with
a—d and a5z ¢
there are elements d and y with
b—2sd and c—l>y—l—>d.
Again this is not a commonly occurring property.

This list of examples should convince you that these generalized confluence
properties cover many {but not all) structural properties you may wish to use.

Finally, for this section, you should observe that the confluence property
CONF (i; j; k; 1) is just the same as the property CONF (k;;i;]).

6.3 The set of formulas

Extending the notation of the previous sections let
Conf(i;J; k; I)
be the set of all formulas
H>lg— [K<e

for arbitrary ¢. For instance, the following shapes correspond to the examples
(0 - 15) given in Section 6.2.

(0) ¢ — ¢ (1) ¢ — ¢

(2) ¢ — [x¢ (3) Gl — ¢

(4) ¢ — ¢ (5) ¢ — [K<Do
(6) lg — ¢ (7) Do — D

(8) ble — [x¢ 9 g — [k¢

(10) lile — ¢ (11) Ll — [<e
(12) o — [ (13) <>[le — <o

(14) bl — [k¢ (15) <D0l — [F<e
Many of these are refined versions of the shapes D, T,B, ... . For instance,

compare
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(2) with P (3) with T (5) with B (6) with D
(9) withQ  (12)with5  (15) with G.

Notice also that, by taking the contrapositive, the shape (4) is equivalent to
the shape

¢— (¢
(which is a version of(2)), shape (7) is equivalent to the shape
(¢ — [é
(which is a version of the shape(8)), shape (10) is equivalent to the shape
¢ — [)<e

(a version of (5)), etc.
The remaining four examples of Section 6.2 correspond to the following
shapes

B — D¢
P — D
O] — D

DUle — @D
the first two of which are contrapositive variants of shapes 4 and R.
Finally, you should observe that, by taking contrapositives, the shape

Conf(i; j; k; 1)
is equivalent to the shape
Conf (k; I;i; ).
However, no instance of Conf(i;j; k; 1) can produce the shape
OO — O Oe

This has a deep significance.

6.4 The result

In this section we prove the appropriate extension of Theorem 5.4. In fact the
proof of the greater result is virtually the same as the lesser result.

6.1 THEOREM. For each structure A the conditions

(i) A has property CONF (i; j; k; I).
(i) A is a model of Conf(i;j; k;1).
(iit) For some variable P, A I+* <> [H]P — [K]<DP.

are equivalent.
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Proof. (i) = (ii). Suppose A has CONF (i;}; k;1) and that
alF <>[]e

for some element a, formula ¢, and valuation on .A4. This hypothesis gives
some element b with )
a——b and bl [i]e.

We are required to verify that
a - [K]<>e.

Consider any element ¢ with
k
a — c.

Property CONF (i; j; k; 1) now produces an element d with

bsd and ¢ d

From the first of these we get d I ¢, and hence the second gives ¢ IF D¢,
which is enough to complete the proof.

(i) = (iii). This is trivial.

(iii) = (i). Consider any given wedge (6.1) and, with the variable P given
by (iii), consider any valuation such that

kP o by

(for alt z € A). Then b I+ [i]P and hence a I+ <> [i]P so that, invoking
(iil), we have ¢ I+ <1>P. This gives us some element d with

c—sd and dI+ P

which is enough to construct the required wedge (6.2). B

6.5 Exercises

6.1 Write down confluence formulas which capture the following structural
properties.

(a) For each configuration a — b there is an element ¢ with b e

(b) For each configuration @ —— b there is an element ¢ with b s cand

k
a — C.

(c) For each element a there is an element b with a “Sbandb - a
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(d) For each configuration

; .
a——b-1ec

k
we have ¢ — a.

(e) For each configuration

i J
a—b——c¢

k
we have a — c.

(f) For each configuration

i J k
a—b-——>c—d

there is an element x with

6.2 Below is a list of pairs of configurations L (given on the left) and R (given
on the right). For each such pair consider the structural property: For each
configuration L there is a configuration R. These are not confluence properties
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but can be captured by modal formulas. Write down appropriate formulas.

L R
(2) c c
j !
AN S
d d
(b) b b
s N
a d—= e
N A
(c) b b

c c
(d) b b
4 N
J m
a———c¢ c——e
AN S
d d
6.3 Let 4,l,m,n be labels and let
3(1),5(2), ...

k(1), k(2),. ..
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be finite sequences of labels of the same length. For corresponding labels

i=3ilp) . k=k()
taken from these sequences, and each formula ¢,, let
P> [Plo, abbreviate <& [klg,.

Find a correspondence result for the shape

AN Fp [ p=1,2,...} = [De(DTANS, [p=1,2,..

for arbitrary formulas ¢y, ¢, . ..

1)






Part |1

Proof theory and completeness

This part includes all the proof theoretic machinery and results
presented in this book. First, in the short motivating Chapter 7, var-
ious semantic consequence relations are introduced. Then, in Chapter
8, the notion of a standard formal system is developed. Such a sys-
tem is given by a set of axioms and has a proof structure based on
modus ponens and necessitation (a rule designed to cope with the box
connectives). Once developed, this proof theoretic machinery has to
be justified (in the sense that it has to be shown to be correct and
powerful enough). This is done by proving a completeness theorem.
Chapter 9 contains a completeness result which is applicable to all
standard systems, and hence can be regarded as rather superficial.
The proof of this result is important for the method used is appli-
cable in many other situations. Chapter 10 contains a more refined
completeness result which is widely, but not generally, applicable.
This kind of completeness was first developed by Kripke and it was
this advancement which brought modal logic out of the dark ages.
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Chapter 7

Some consequence relations

7.1 Introduction

At this point it might be worth your while to re-read the survey of Proposi-
tional Logic, i.e. Chapter 1. There you will see that after the mechanics of
2-valuations have been set up, a semantic consequence relation

ok ¢
is defined which makes precise the informal notion
‘¢ is a logical consequence of ®’.

The definition of this relation = makes use of various higher order notions
(such as the set of all 2-valuations).
The programme is then continued by defining a companion relation

dF ¢

which is entirely combinatorial in nature. The validity of an instance of this
relation can be verified by exhibiting a certain finite sequence of symbols — a
witnessing deduction — which acts as a certificate for the instance. Further-
more, the legality of these certificates can be tested mechanically. The whole
process is entirely finitistic.

The interaction between these two consequence relations is then explored.
The soundness result, i.e. that

dF¢ = Ok o

follows almost immediately from the definitions involved. However, the ade-
quacy result, i.e. the converse

dE¢ => OF o

takes a little bit of work (which involves an essential use of a maximizing
argument).

91
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The combination of soundness and adequacy, i.e. the completeness result
PE¢9 & DF 9

should be seen as demonstrating that the fundamental notion = has a finitistic
and mechanizable construction.

We now wish to attempt a similar programme for modal logic. We will see
that here things are not as simple.

7.2 Semantic consequence

At first sight the appropriate definition of the notion

‘ the modal formula ¢ is a “logical” consequence of the set ® of modal
hypotheses’

seems straight forward. It should hold when every model of ® is automatically
a model of ¢. However, there are at least two problems with this.

Firstly, it is not at all clear what the appropriate notion of ‘model’ should
be. Should it be an unadorned structure, a valued structure, a pointed valued
structure, or perhaps something else. There is no ‘correct’ answer to this
problem; the several different possibilities have to be explored.

Secondly, it is not clear which modal formulas should be regarded as ‘logi-
cally’ valid and can thus serve as a basis for ‘logical consequence’. Again there
is no one answer to this; all possibilities have to be considered.

There are also several other problems which occur with modal consequence,
but let us not worry about these just yet. Let us begin at the beginning.

Recall that modal structures come in three kinds k; unadorned, valued, or
(valued and) pointed. Also let me remind you that at this stage we are working
with an arbitrary modal language (of signature I).

7.1 DEFINITION. Let k£ be a kind (i.e. unadorned, valued, or valued and
pointed). Then for each set of formulas ¥ and formula ¢ the relation

T

holds precisely when each k-structure which is a model of ¥ is also a model of
¢. N

These three relations are connected in an obvious way.

7.2 PROPOSITION. For each set of formulas ¥ and formula ¢, both the im-
plications

VEF¢ = YR = VE'Y
hold.
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Proof. Suppose first that
)
and consider any valued structure (4, a) which models ¥. We wish to show
that (A, &) models ¢. To this end consider any element a of A. Then (A4, o, a)

is a valued pointed model of ¥ and hence, by the supposition, we have a I+ ¢.
Since a is arbitrary this gives

(A,a) IF* ¢

as required.
This proves the first implication and the second follows by a similar argu-
ment. B

In general these two implications are not reversible. For instance, for any
formula ¢ we have

¢ E 0o
but, for any variable P it is easy to find a valued pointed model of
P-]P
so that
¢ P o
need not hold. You may now like to look for examples showing that
E* and E

are distinct.
Note that the above example shows that =¥ does not have the Deduction
Property, i.e.
VoE ¢ = TUE'0-¢

need not hold (since =Y § — []8 does not hold in general). A similar example
shows that |=* also fails to have the Deduction Property. Note, however, that
EP does have the Deduction Property.

7.3 The problem

We can now begin to see how modal logic is much more complex than non-
modal logic. In particular we already have several unanswered questions:

e Which of the consequence relations =* has a combinatorial characteriza-
tion?

o How can we delineate the range of the ‘logically valid’ modal formulas, and
how does this effect the consequence relation?
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e What are the ramifications of the lack of the Deduction Property for *
and E*7?

Some of these questions will be addressed in the next two chapters where the
decision made are justified by proving a couple of completeness results.

To end this chapter we prove a simple result which will form the essence of
a soundness result.

7.3 LEMMA. For all sets of formulas ¥ and formulas 6, ¢ the implications
(Base) ¢V = T E¢

¥ |=” 0— ¢
(MP) } X
U6
(N) YE ¢ = ¥ [
hold (for each label 7).

Proof. The (Base) case is trivial.
For the (MP) case observe that for each valued structure (A4, @) and for-
mulas 4 and ¢, if

(A,@) F* 8 > ¢ and (A, ) IH* 0

then
(A, @) IF ¢

(and, in fact, such an implication holds pointwise).
Finally, the (N) case follows from Lemma 4.8. B

7.4 Exercises

7.1 The three consequence relations =* can be subsumed under one more
general relation. Thus, for sets O, ¥, ® of formulas and a formula ¢ let

0,9,% = ¢
mean that for each pointed, valued structure (A, o, a), if
Amodels ® |, (A ,a)models ¥ |, (A, «a,a) models ®
then (A, a,a) IF ¢.
(a) Show that
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P)EP ¢ & 0,0,0 9
MY ¢ 0V0EF ¢
(1) © ' ¢ & 6,0,0 F ¢.

(b) Show that

() ©,0,9 £ ¢ & 6,1, YUD | ¢
(i) ©,1,0 £ ¢ & 0,0UT,d = ¢

and hence, if convenient, we may assume that
OCvYvYCod
whenever we use this relation.

(c) Show that if

then
0,1, = ¢ => €0V, ¢ | ¢

(d) Deduce Proposition 7.2.
(e) Show that
() ped® = 6,1,0 k¢

.. 0,v,% 6 —
@ ovel o ¢} S 09,3k ¢

(i) O,V V¢ = OV ¢

and hence deduce Lemma 7.3.

(f) Find an example where both
0,9, k¢ , -[6,9,0 [g
hold.

7.2 For each set @ of formulas let ®* be the closure of ® under [:] for arbitrary
labels i. Thus each member of ®* has the form

(e

for some compound label i and § € ®. Show that for each formula ¢, the three
conditions

i K¢ , (i) FE ¢ , (i) ¢ ¢
are equivalent. When proving the implication (iii)=(i), you may find it useful

to use the properties of generated substructures as given in Exercise 4.9 of
Chapter 4.






Chapter 8

Standard formal systems

8.1 Introduction

As I explained in Chapter 1, the principal aim of (non-modal) propositional
logic is to give a syntactic description of the semantic consequence relation
F=. This is done by setting up a formal system controlling a proof theoretic
consequence relation - whose operational properties mimic (we hope) those of
= . The success of this programme culminates in the proof of the completeness
theorem asserting that

o4 & 3¢

for appropriate sets of formulas ® and formulas ¢.

We now wish to carry out a similar programme for modal logic. This is not
entirely straight forward for, as we saw in Chapter 7, there are many different
modal semantic consequence relations, and it is not at all clear which of these
we should isolate for proof theoretic analysis.

The honest approach to this is to state at the outset which semantic con-
sequence relations we are interested in, and then design an appropriate formal
system. We won’t do this. Our approach (which, in fact, is the usual approach)
will be to first construct a proof theoretic consequence relation (or rather, a
whole class of such consequence relations, all of a similar kind), and then see
which, if any, of the semantic consequence relations have been captured.

A second difference between modal and modal-free logic has a deeper sig-
nificance. In the non-modal case there are several different possible styles of
proof systems (Hilbert, Natural, Sequence, ... ). One of the important achieve-
ments of propositional logic (and some of its non-modal enrichments) is that
these different styles are intertranslatable. (The deduction property and the
cut elimination property are two of the tools used in these translations.)

In modal logic the situation is much more delicate; there are significant
technical problems (some of which have not yet been solved) to be faced when
translating one style into another.

97
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We step over these problems by choosing a proof style which best suits our
purpose, namely a Hilbert style of system.

For us a formal system S with its associated consequence relation kg is
determined by the following data.

e An acceptable set S of logical axioms.

o A set R of rules of inference.

The precise definition of these notions will be given later, but once they have
been fixed we may construct the associated consequence relation

® s ¢

between sets of formulas ® and formulas ¢ in a standard way. Thus this
relation holds precisely when there is a witnessing formal deduction consisting
of a finite sequence

¢07¢17"'7¢n

of formulas generated from ® using S and finishing with the formula ¢.

Each formal system S is determined by its two components S (the axioms)
and R (the rules). We will fix the rules once and for all so, for us, the system
S is determined solely by the choice of axioms S.

By its very nature a proof theoretic system is concerned with syntactic
manipulations in a certain formal language. It is thus important that we know
what is a part of that language and what are merely convenient devices for
talking about the language. Therefore, for clarity, I will restate the meaning
of ‘the modal language of signature I’.

8.1 CONVENTION. For an indez set I, the modal language of signature I has
as its basic symbols L, T, A, V,—, -, and [i] for each i € I. (In particular,
— and <> are not part of the language.) M

8.2 Formal systems defined

We need to make precise the following notions.
e An acceptable set of axioms S.

o The rules of inference R.

e A witnessing deduction ¢g, ¢y, .. ., Py.

This we now do.

8.2 DEFINITION. An acceptable set of axioms is a set S of formulas which
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o contains all (modal-free) tautologies,
e contains all formulas of the shape
(K) [i)(0 — %) — ([]6 — [1¥)
for all formulas #,v and labels 4,

¢ is closed under substitution. W

Each set A of formulas generates a smallest acceptable set of axioms S.
Namely, let A" be the set formed by adding to A all tautologies and all
formulas (K) and then let S be the set of substitution instances of A+ . This
gives us a convenient way of describing particular sets of axioms, for we need
only give a generating set .A. There are a host of examples of such sets, many
of which are formed from various combinations of the shapes D, T, B, ... of
Chapter 2. We look at some of these examples in the next section.

8.3 DEFINITION. The rules of inference are modus ponens

0 06— ¢
MP _
(MP) 3
and necessitation 5
N i

for each label i€ I. B

The meaning of these rules will become clear after we have described the
notion of a formal deduction.

8.4 DEFINITION. Let S be the set of axioms determining a given formal sys-
tem S and let ® be an arbitrary set of formulas (the hypothesis set).

(a) A witnessing S-deduction from ® is a finite sequence

¢07¢17"'1¢n

of formulas such that for each index 0 < r < n one of the following holds.

(hyp) The formula ¢, is an hypothesis, i.e. a member of ®.
(ax) The formula ¢, is an axiom, (i.e. a member of S).

(mp) The formula ¢, is obtained by (MP) from two earlier formulas, i.e.
there are indexes ¢,s < r with

¢t = (¢s ad ¢r)
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(n) The formula ¢, is obtained by (Ni) from an earlier formula, i.e. there
is an index s < r with

¢ = I:"jd’s
(for some label i € I).

(b) A formula ¢ is an S-consequence of ®
®ts o
if there is a witnessing S-deduction from ® whose final term is ¢. B
A better understanding of these notions will be obtained by looking at
some particular examples of formal deductions. For this purpose several such

examples are given in the next section. For the time being let us look at some
box (and diamond) manipulations.

8.5 LEMMA. For each formal system S and formulas ¢ and ¢,

Fsp—=¢ = ks [Jv— [0
holds.

Proof. Let us abbreviate ¥ — ¢ by 6. Then any witnessing deduction for
# can be extended to one for [ |9 — [ ¢ as follows.

6 (Hyp)

C1e (V)
60— (Dv — o) (K)
Oy — ¢ (MP)

Down the right hand side I have indicated the justification for each of the
terms in the deduction. B

A useful consequence of this is concerned with equivalences.
8.6 COROLLARY. For all formulas ¢, ¢
Fsypeod = ks [veo ¢
holds. In particular, if ¥ and ¢ are tautologically equivalent then

Fs [y [1¢
holds.
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Recall that the diamond connective <> has been introduced by
O o= ~[-e
Thus, using the sequence of tautological equivalences
—|<>ﬂ¢ — D_\_'(ZS — Dﬂ—nﬁ — D¢
we have
Fs (¢ & ~Ome.
Similarly, by taking contrapositives, the above Corollary gives

Fspood = ks Oy o Oo

This shows that for most purposes > can be regarded as a primitive symbol.

We conclude this section with a couple of observations.

There is some considerable confusion in the literature over the correct no-
tion of a proof theoretic consequence relation. Most authors use a weaker
version which can be described in various ways but which amounts to the
following notion.

8.7 DEFINITION. For a set of formulas ® and formula ¢ let
b LY ¢
mean there is some finite part ¢y, ..., ¢, of & with

Fs 1A ... AP, — ¢

(where here the hypothesis set is empty). B

It is an easy exercise (which you should do) to show that

dFHY o = Dlso

holds, however, in general, the converse is false. Note, however, that when
used with an empty hypothesis set, the two relations agree, i.e.

FS ¢ & ks ¢

holds for all formulas ¢.
The important difference between Fy and s is the Deduction Property.
By construction we have

b0+ ¢ => @ (60— 9)
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but, in general, this is not true of Fs. To see this note that for any formula
¢, the rule (N) gives

¢ ks o

but only for special systems S (the pathetic systems) do we have

Fs (¢ — [1¢).

It is precisely this ‘defect’ of +s which leads many people to consider only the
weaker version F¢ .

The second observation concerns the monotonicity of this consequence no-
tion. We state the relevant result but leave the proof as an exercise.

8.8 PROPOSITION. For each pair of sets of arioms S and T with S C T and
for each pair of hypothesis sets & and ¥ with ® C ¥, the implication

dls¢ = Yty
holds for all formulas ¢.

8.3 Some monomodal systems

In this section we look at some particular, and well known, examples of formal
systems formulated in the monomodal language, i.e. the language with just
one label. All of these examples are generated using various combinations of
the standard shapes of formulas D, T, B, 4, 5 (as given in Chapter 2).

The first and smallest formal system K is the one whose axioms are all
instances of tautologies together with all instances of the shape K. (Thus the
set of axioms of K is the smallest allowed by Definition 8.2.)

Larger systems can be formed by extending the set of axioms. Thus, for
instance, let

KD , KT , KB , K4 , K5

be the systems whose axioms comprise the smallest acceptable set containing
the formulas
D, T, B, 4,5

respectively. Similarly let

KDT , KDB , KD4 , KD5
KTB , KT4 , KTS

KB4 , KBS

K45

be the systems whose axioms comprise the smallest acceptable set containing
the indicated shapes. Continuing further we may form such systems as

KDTB , KDB4 , KB45
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ete.
Two of these systems are particularly important and have given names.
These are
S4 =KT4 , S5=KT5.

On the face of it the five shapes D, T, B, 4, and 5 give us 25 — 32 different
systems, however, as we will see, not all of these are distinct. There are, in
fact, only 15 such systems.

How do we compare two systems and what do we mean by two systems
being ‘the same’? We take a pragmatic, extensional view of this.

Thus given two systems S and T (based on the sets of axioms S and 7) we
write

S<T
if
Fs¢ = bFr ¢
holds for all formulas ¢. It can be seen that S < T implies the apparently

stronger property that
Qs = Sy o

holds for all hypothesis sets ® and formulas ¢.
We now agree to say that S and T are the same if both the comparisons

S<T and T<S

hold.

Using this notation let us look at some of the comparisons which hold
between K, KD,KT,...,KDTB45. These comparisons will follow from various
examples of witnessing deductions.

Our first example shows how the shape D is captured by T. For an arbitrary
formula ¢ let

a=[]~¢ , B=0¢ , v=-a=¢

(so that D(¢) is 8 — =, T(¢) is 8 — ¢, and T(—¢) is &« — ~¢). The following
sequence is a witnessing S-deduction for any system S whose axioms include
the shape T. The justification for each formula is given on the right.

a— ¢ (T)
(@ = =¢) = (¢ — —a) (Taut)
¢ (MP)

B—¢ (T)
B—=¢)—={(s—7—=B—) (Taut)
(=) —(B—7) (MP)
B— (MP)

This deduction immediately gives the following.
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89 LEMMA.KD < KT , KD4<S4 , KD5 < SS.

The next example shows how S5 captures the shape B. Some of the terms
have been omitted and you should fill in these positions for yourself.

[1-¢ — ¢ (T)
: (Taut)
¢— O (M P)
Oo— 8 (5)
: (Taut)
: (MP)
o— O (MP)

Combining this with the previous Lemma we get the following.
8.10 LEMMA. KDB5 < S5.

All modal systems have the following two useful derived rules of inference.

00— ¢ 89— ¢
- e O8— O

We refer to these jointly as (EN), i.e. as ‘extended necessitation’. The first of
these rules is justified by

60— ¢ (Hyp)
(16— ¢) (N)
L0 —¢)— (16— Ll¢) (K)
(16— ¢ (MP)
and the second by
0— ¢
-¢ -——> -6
-6 — [0
08— O

These derived rules make some deductions easier to display. For instance,
working in any extension of KB5 we have
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Smg— OO (5)
OOé— Oé
z (EN)
OO Oé — O 0é
e — OO e (B)
O¢— O 0O¢

which immediately gives the following.
8.11 LEMMA. K4 < KB5 , KDB4 < KDBS.

The previous example showed how, in the presence of B, the shape 4 can
be captured by the shape 5. We can now do the reverse.

(3¢ — (12~ @
O O
: (EN)
0% — OO
Sb— O% (B)
b — OO8

As a consequence of this we have the following.
8.12 LEMMA. K5 < KB4 , KT5<KTB4.

Finally we show how to capture the shape T.

06 — % (4)
[ — <> (D)
6 — OO
~— 0o (B)

OOb—

(¢ — ¢

Combining this with several of the previous results gives us two different
axiomatizations of S5.
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8.13 THEOREM. S5 = KDB4 = KDBS.
Proof. We have

S5 = KT5
< KTB4 (by Lemma 8.12)
< KDB4 (from above)
< KDB5 {(by Lemma 8.11)
< S5 (by Lemma 8.10)

as required. B

8.4 Some polymodal systems

Historically the monomodal systems of the previous section were developed for
various philosophical reasons, for instance, as attempts to formalize some of
the properties of the modalities ‘is necessary’, ‘is obligatory’, ‘is known’, etc.
Alongside these developments there were also various analyses of the properties
of tenses (in natural languages) and time. This brought forth tense logic which
has now become temporal logic and which also encompasses a much wider field
of applicability.

Temporal logic is a the study of certain bimodal system (and various enrich-
ments of these) designed to capture the flow of time. The assoctated transition
structures have the form

A= (A=)

where the two carried transition relations are the forward passage and the
backwards passage through time. The two relations are not unconnected,
however the minimal restrictions we need to put on them are as follows.

8.14 DEFINITION. A temporal structure is a bimodal structure
A= (4,5, =)

where each of the transition relations is transitive, and each is the converse of
the other. B

Using some of the correspondence results that we have obtained we see that
such structures can be isolated by a standard formal system. Thus consider
the bimodal language with box operators [-] and [+], and in this language
consider all the formulas of the following shapes.

[l — [H%¢

e — [0
¢ — [
¢ - [H®e



8.4. SOME POLYMODAL SYSTEMS 107

Let TEMP be the standard formal system axiomatized by the formulas of these
above four shapes.
The following result is straight forward.

8.15 THEOREM. A bimodal structure A (as above) is a temporal structure
precisely when it models the system TEMP,

Proof. The first two axioms ensure that the two relations are transitive,
the third ensures that —— is included in the converse of —, and the fourth
ensures that — is included in the converse of ——. M

As remarked already, temporal logic can be used to analyse some of the
tense properties of natural languages. The recent development of situation
theory is an attempt to analyse the more general information content of natural
languages. This has thrown up another bimodal system.

Thus consider the bimodal language with box operators [~] and [] and
let SL (situation logic) be the formal system whose axioms are all the formulas

¢ — ¢ Lg—9
¢ — [¢] [=l¢ e — [0
¢ — [ e

and the formulas
(~ e — L[=¢

for arbitrary formulas ¢. Structures for this language have the form
A= (A, Lv ___’)

and the models of SL are easily characterized.

8.16 THEOREM. A structure A (as above) models SL precisely when the three
conditions

o the relation — is an equivalence
o the relation — is a pre-ordering

o for each configuration a — b —= ¢ there is an element d with a ==
d—c¢c

hold.

Proof. A routine application of various correspondence results. W

Dynamic logic is a naturally occurring polymodal logic. Furthermore in
this logic the set of labels has its own algebraic structure and this leads to
some quite intricate properties. At brief discussion of this logic is given in
Chapter 14.
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8.5 Soundness properties

In Chapter 7 we introduced three semantic consequence relations * (for
k = u,v,p). These made no reference to any underlying basis of ‘logically
valid’ modal formulas. We can now correct this omission.

8.17 DEFINITION. Let S be a standard formal system with set of axioms S.
Let k be a kind. For each set of formulas ¢ and formula ¢, the relation

® o

holds precisely when each k-structure which is a model of S and of ® is also a
model of ¢. B

Note that
ks & BUSE'S

so that an analysis of =% could be reduced to one of =*. However, the
parameterized version =% leads to a much richer theory.

We have now attached to each formal system S five consequence relations;
the two proof theoretic relations

Fe , ks
and the three semantic relations
TR = T
How do these relations interact? We have already observed that
S ¢ => Dls o
and a simple application of Proposition 7.2 (with ¥ = ® U S) gives
TEL = @R > BELS

We can also add to this a soundness result.

8.18 THEOREM. For each formal system S, hypothesis set ®, and formula ¢,
the implication

PFs ¢ = @5
holds.
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Proof. This is proved by induction on the deduction witnessing ® Fs ¢.

The base cases and the induction steps follow by an application of Lemma 7.3
u

This result can be used to show that different sets of axioms give different
formal systems. For instance, by Lemma 8.9 we know that KD < KT. Thus
to show that the two systems are not the same it suffices to find a formula ¢
with

Fkr ¢ , not{lFkp ¢]

and, by the soundness result, the second of these can be justified by showing

not[ =kp 4)-

To this end, for an arbitrary variable P let
¢=T(P)=(JP— P).

Trivially }_KT ¢
Now consider any structure A with just two points a and b and accessibility
relation
a—b—a

i.e. for all points z
r<a & x=b , r<b & z=a.

Note that A is serial and hence is a model of KD.
Consider any valuation « on A with

a(P) = {b}.
Then (A, «) models KD. Also
al--P , bI-P

so that
alF-P , al [P

and hence
a Ik —g.

Thus (A, @) does not model ¢ which gives the required result.

In the next chapter we prove a couple of completeness results; one appli-
cable to all standard formal systems, the other applicable only to a restricted
class. For both results we do not deal with the full power of the appropriate
consequence relation, but only with the ‘logical’ case, i.e. we restrict to the
case where the hypothesis set ® is empty.
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8.6 Exercises

8.1 Verify that

(@) ke DOAY) Do Ov

(@) Fx OO —w) —~ (00— Ow)
(iii) Fx OT - D(g)

() Fx ~O8— (6 — 9)

) Fx O¢— 016 = 9)

(i) Fx (0 — O¢) — 06— ¢)
(vil) Fx (O — C18) — (08 — [9)
(viti) Fx (8 — 06) = (O8 = O9)
() Fx <8~ D(9)

for arbitrary formulas 8, and ¢.

8.2 Show that
(i) Fke OO« OO
(i) Fra (NP9« O

and hence verify the results of Exercise 4.5.

8.3 For the four shapes of formulas D,T,B,4 consider the 16 = 2* possible
extensions of the system K obtained by adding some of these shapes as axioms.
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(a) Show that this gives no more than 11 different systems with inclusions

as shown.
KTB S5
N\
KT S4
KDB
\
KD KD4
KB KB4
AN N\
K K4

(b) By considering structures with no more than three elements, show that
these 11 systems are distinct.

8.4 TFor each of the systems S of Exercise 8.3, consider the system S’ formed
by adding 5 as a further axiom. Show that this produces no more than four
new systems

K5, K45, KD5, KD45

and fit these into the diagram of Exercise 8.3.
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8.5 For a given formula ¢ in a monomodal language, the modal variants of ¢
are the formulas M¢ where M is a modal operator of the form

D3
D2
oo

Oo0
<O
OO

a*o
0o
oOo
&
o Oo?

O?
etc. In general these are all distinct and there no implications between them.

However, in S4 = KT4 each formula has no more than 7 modal variants. These
with some implications between them are shown in the following diagram.

O
(@]
/Q ’ <>¢\

(iv) (vi)
OOe ¢ <> Oe
OSOe
Cle
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You are invited to verify these implications and to insert the two missing ones.
To do this let - be kg4 and prove the following.

(a) Use T and (EN), and finally 4 to show that

@ Fe—¢ (i) Fo— ¢
@ F OOOe—» OO (iv) F D Ot — OO
v FOCHe—> OO (i) FOOe—> OO0
(vii) F [JO¢— O¢ (i) F Oe— O0¢
() F OO — O (x) F D2¢ - OO 0Oe
() F OOOe— O xii) F de— OOOe
hold for all formulas ¢.

(b) Setting ¢ := <>¢ in (a) and using T and 4, show that
FOMOe OO0 ., (OO O

and hence each sequence of four or more modal operators collapses to
three or fewer.

(c) By considering suitable models of S4, show that there is at least one
formula ¢ for which the above 11 variants are distinct.

8.6 Consider the formal system K5 and let - be Fgs.
(a) Verify that

® +FSOs— O i + JoOUe— (1%
(i) F > ¢ - o 0¢ (iv) = OOe—» OO0
() O — % vy B OOe— [P
(vii) + D<>D [J%¢ (i) F > Oé— [P

(ix) F % — \:I<> D¢ x) F OOe— OO
() +F D% — % i) + OOe— OO%

hold for all formulas ¢.

{b) Show that in K5 the modal variants of a formula ¢ are arranged as

O Oe

/N

(¢ O

I

% v

SOe

and these formulas can be distinct.
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8.7 Show that in S5 each variable has precisely three modal variants and
describe how these are arranged.

8.8 Let I be Fgyg. Show that for each variable P, formula ¢ and integers
m > n > 0, both

FOm— O , -k O"P— O"*'P]
hold, and hence P has infinitely many modal variants in KTB.
8.9 Describe the modal variants of a variable P in K45 and in KB4.
8.10 Find temporal structures which do not model the following shapes.
M L (i) <T (iii) [Ho—¢ (iv) ¢—1[
(v) [Po—[He () [¢— ¢ (Vi) &é— [+e  (vii)) [+]¢ -
8.11 Which of the following are modelled by all temporal structures?
() e — (i) <@H¢ - o
(i) <@ [He = [Hwe (iv) @[ - [He

8.12 The basic temporal system TEMP is too weak to capture many of the
assumed properties of the passage of time. In this and the next two exercises
we consider some suitable strengthenings of TEMP. For each formula ¢ let

[*]¢ abbreviate [~]pAPA [F]o

and let LINTIM be the extension of TEMP formed by the addition of the two
axioms

Flo— e , [®lo— [H[e
To understand the import of this, for each temporal structure A4, let & be the
relation on A given by

ax~b & a-—bora=bora—b
(for a,b € A).
(a) Show that for each model A of TEMP

For all z,
a~z = x k¢

al}-q’)@{

holds for all valuations on A, a € A and formulas ¢.

(b) Show that for each model A of TEMP the three conditions:
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(i) For each formula ¢, A IF* [8l¢ — [] [+¢.
(ii) For each formula ¢, A IF* &> [=]¢ — [+¢.

(iii) For each wedge
+

b

+
O — 0

of elements we have b ~ c.
are equivalent.
(c) For an arbitrary model A of LINTIM:

(i) Show that the relation = is the least equivalence relation which
includes - (and —=).

(ii) Show that each ~-equivalence class of A is linearly ordered by —.

(d) Conversely, show that each disjoint union of linearly ordered sets provides
a model for LINTIM.

8.13 This exercise continues Exercise 8.12. Each linearly ordered set (A, <)

produces a model of LINTIM (by interpreting a —— b as a < b, etc). In
particular

N:(N»<) ’ Z=(Zv<) ) Q=(Q’<) ) R:(R,()
are models of LINTIM.

(a) Find a sentence ¢ modelled by each of A, Z,Q, and R but for which
=[Funtim @)

(b) Find sentences 6 and 9 with

NI G, —[ZIF6 , NIy, ZIF .

(c) Find a formula shape which is modelled by both @ and R but by neither
N nor Z.

(d) Can you find a formula ¢ such that R I+* ¢ but =[Q IF* ¢]?

8.14 For some structures the interpretation of the two operators [ ] and <>
agree, and in this case we often write O for both. Such structures are controlled
by a function next and we think of this as a ticking clock.

(a) For a structure A with a transition relation — corresponding to the
modal operators [ ] and <>, show that the following are equivalent.
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(i) There is a function next : A —> A such that
a—b & next(a) =5

holds for all a,b € A.
(ii) For all formulas ¢, A IF* [Jo « ¢
(b) Let A be the class of structures .4 = (4, —, —) where — is a ticking

clock (given by the function next) and — is the *-closure of —. Show
that A models each of the shapes

Op >-0O-¢ (o« [1%
[Jp=onOlle [ — Od) = (¢ — []¢)
(for all formulas ¢).

8.15 Let S be any non-empty set and let ¥ be any collection of non-empty
subsets of S with S € ¥. We call the elements s of S the situations, and we
call the elements o of X the infons (packets of information). We say a situation
s supports an infon ¢ if s € 0.

Let A be the set of supported infons i.e. the set of pairs

a=(s,0) where s€oa.
Define the relations =+ and — on A4 by

(s,0) =5 (t,7) means o=T
(s,0) — (t,7) means oc=7andt€eT

and set

a) Show that - is an equivalence relation, and — is a partial orderin
g
of A.

(b) Show that .4 models SL.
(c) Suppose that S € £. Show that A models the confluence shape

OO¢—- OO

if and only if for each 0,7 € £ and s € ¢ N 7, there is some p € ¥ with
sepConr.
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8.16 As in Exercise 7.2 of Chapter 7, for each set ® of formulas let ®* be the
closure of ® under [:] for arbitrary labels 7. Thus each member of ®* has the
form

(i]6
for some compound label i and € ®. Let S be an arbitrary standard formal
system.

(a) Show that
d s @

and all three of the implications
QFH ¢ => ' FH = P59 = P ks ¢

hold for all formulas ¢. Furthermore, show that the left hand implication
is not reversible.

(b) Mimic the proof of the Deduction Theorem for propositional logic to
show that the central and right hand implications of (a) are reversible.

(c) Extend the result of Exercise 7.2 to show that the three conditions
P, RSO, PESS

are equivalent.






Chapter 9

The general completeness result

9.1 Introduction

Let S be a standard formal system and let M be a class of structures suitable
for the language of S. The members of M may be unadorned, valued, or valued
and pointed as the case may be, but all must be of the same kind. We say
that S and M are completely matched if for each formula ¢ we have

Fs ¢ & MIF: ¢

where IF* is the satisfaction relation appropriate for the kind of M. Such
an equivalence is called a completeness result, where the implication = is the
soundness component and the implication < is the adequacy component.

A completeness result of this kind is usually the solution to one of two
different kinds of problems.

(a) Here we are given the system S and the problem is to find a class M
which completely matches S. The reason for doing this is to analyse the
properties of S in a more algebraic way, and the choice of M should take
this into account.

(b) Here we are given M and the problem is to find a system S which com-
pletely matches M. The reason in doing this is to obtain a uniform way
of describing the common properties of the structures in M. Thus it is
desirable to make S as simple as possible.

Of course, for an arbitrarily given S or M there may be no matching partner,
or there may be several. Thus proving a completeness result is not just a
routine exercise. Nevertheless, such results exhibit some general features and
there are some commonly used techniques. These will be described in this and
the following chapters.

In this chapter we will prove a completeness result which is applicable to
all standard systems S (and provides a solution to a problem of type (a)). This

119



120 CHAPTER 9. THE GENERAL COMPLETENESS RESULT

universal applicability means that the result is, in fact, rather weak; however
the result does provide a basis for the vast majority of completeness results,
in the sense that many of the proofs of these results are refinements of the
universal proof.

9.2 Statement of the result

For the remainder of this chapter let S be a fixed, but arbitrary, standard
formal system with axiom S. We will produce a class of valued structures
which completely matches S. In fact we will produce two such classes which,
in some sense, are at opposite extremes.

For one extreme let M be the class of all valued structures which model S
(i.e. are models of S). Note that for each formula ¢ we have

MIF ¢ & F¢

(for the right hand side is defined to mean the left hand side). Also, by the
general soundness result, we have

Fs¢ = ks ¢

so a completeness result will follow if we can prove the converse of this last
implication.

For the other extreme we will construct a particular valued structure (&, o)
— called the canonical valued structure of S — which models S (i.e. is a member
of M) and on its own completely matches S.

Putting these together we see that the eventual aim of this chapter is to
prove the following completeness and characterization result.

9.1 THEOREM. Let S be a standard formal system with canonical valued struc-
ture (&, 0). For each formula ¢ the conditions

(i) (&,0) IF ¢
(iii) Fs ¢
() =3 6

are equivalent.

(The numbering of the items of this result has been done to facilitate a
comparison with a later result.)

Note that the implication (iii) = (iv) is just soundness (which we have
already proved in Chapter 8). The implication (iv) = (ii) follows immediately
we have verified that (&, o) models S. Much of the content of this theorem is
in the implication (ii) = (iii).
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9.3 Maximally consistent sets

Intuitively a set of formulas @ is inconsistent relative to S if the machinery of
S can be used to derive a contradiction from ®. Because of the failure of the
Deduction Property we need to take a little care in making this idea precise. It
turns out that the crucial property is the existence or not of formulas ¢, ..., ¢,
in ® such that

Fs d1A...AN¢p, = L (9.1)

The existence of such formulas means that ® is inconsistent (relative to S),
and the non-existence means that ® is consistent. This can be made precise
using the weak proof consequence relation F¥ .

9.2 DEFINITION.

(a) A set of formulas ® is S-consistent if ~[® F¥ L] i.e. if there are no mem-
bers ¢, ..., ¢, of ® for which (9.1) holds. Let CON be the collection
of all such S-consistent sets.

(b) A set of formulas is mazimally S-consistent if it is S-consistent but no
proper extension of it is. Let S be the set of all such maximally S-
consistent sets. W

In more detail, each member s of S is a member of CON and for each
formula ¢
sU{¢p} € CON = ¢€s

holds (for if ¢ ¢ s then s U {¢} is a proper extension of s and so cannot be
consistent). This maximality ensures that each s € .S has several useful closure
properties. Clearly, there is no formula ¢ such that both ¢ and —¢ are in s
(for, trivially,

Fs o A-g — L).

Also, if ¢ ¢ s then sU {¢} is not consistent, so there is a conjunction ¢ of
finitely many member of s with
Fs onNG — L. (9.2)

Similarly, if ~¢ ¢ s then
Fs TA-¢p — L

for some conjunction 7 of members of s. But then, using an appropriate
tautology, we have
Fs AT — L

which would mean that s is, in fact, inconsistent. Since this is not so, at least
one of ¢ and —¢ is in s, and hence s contains precisely one of ¢ and —¢.
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A similar argument shows that s is closed under implication. For suppose,
for some formula ¢, there is a conjunction p of members of s with

Fs p— @

Then ¢ is in s, for otherwise there is a suitable conjunction & such that (9.2)
holds and hence
FsoAp— L

which would mean that s is inconsistent.
By continuing in this way we may arrive at a proof of the following Propo-
sition. (The remaining details are left as an exercise.)

9.3 PROPOSITION. Let s € S. Then
Tes , Llé¢s

and for all formulas 0,9, ¢, the equivalences

-) ~pEs & o¢s

(N) 6AyveEs & fes and YEs

(v) 8vyes & 0es or yeEs

(—) 0—-yves & O¢gs or YPeEs
hold.

Note that this Proposition does not contain a clause corresponding to the
connective [i]. The appropriate property for this will be dealt with in the
next section.

The most important property of S is that it is non-empty and, in fact,
has enough members to distinguish between all formulas which ought to be
distinguishable. The precise result is as follows.

9.4 LEMMA. (Basic Existence Result) For each S-consistent set of formulas
P there is some s € S with ® C s.

Proof. Let (¢, | r < w) be any enumeration of all formulas, and define the
sequence (A, | 7 < w) of sets of formulas by

Ay =0
A | A, u{e¢,} if this is S-consistent
T+ = A, otherwise.

By construction we have
P=A)CAC---CAC--- (r<w)
and each A, is S-consistent. Let

s={Ar|r <w}.
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This set s is consistent. For if it isn’t, then some finite part of s is inconsistent,
and this finite part is included in some A,, which is consistent. Thus it remains
to show that s is maximal.

Consider any formula ¢ such that s U {¢} € CON. There is at least one
index r < w such that ¢ = ¢,. But then

A, u{e} Csu{e}
so that the smaller set is also consistent, and hence
p=¢. €A1 Cs

to demonstrate the required maximality of s. W

As remarked already, this is the most important result of the whole chapter.
In fact Theorem 9.1 (as is also the case with several other results) is little
more than a rewording of Lemma 9.4. Almost all of what follows is a slightly
elaborate exercise in symbol shuffling.

A simple consequence of the Basic Existence Result (i.e. of Lemma 9.4) is
a characterization of S-derivability from a set of hypotheses.

9.5 LEMMA. For each set of formulas ® and formula ¢, the equivalence
P p © (VseS)[PCs= g€y
holds.

Proof. (=). This holds since each s € S is closed under implication.
(«<). The hypothesis (ii) together with the Basic Existence Result ensure
that

U {~¢} ¢ CON.

But then there is a conjunction 7 of members of ® such that
Fs TA—-¢p — L.
An application of a tautology now gives (i). B

One particular case of this Lemma is worth noting separately, namely the
case ¢ = 0.

9.6 COROLLARY. For each formula ¢, the equivalence
Fs ¢ & (Vs€ S)pes

holds.
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9.4 The canonical structure

Each structure A (labelled transition structure) comprises a non-empty carry-

ing set A furnished with an appropriately indexed family of binary relations

(transition relations) — (one for each label i). The canonical structure & for

S is such a structure based on the set § of maximally consistent sets of formu-
las. To complete the construction of S it remains to define the corresponding
family of relations. Thus, for each index 7 let

H
—

be the relation on S where for each s,t € S,
s—st
holds precisely when for all formulas ¢,
(lges = oet.

We also use
t <, S

to indicate that s —— t holds. (As usual, this will help to condense certain
descriptions.)

Note how the () clause of Proposition 9.3 shows that s — ¢ holds exactly
when for each formula ¢

peEt = <dpeEs.

The Basic Existence Result now allows us to add to the equivalences of this
Proposition.

9.7 LEMMA. For each s € S and formula ¢, the equivalence
Llpes & (Vt<:s)|pet]
holds.

Proof. (=) This follows immediately from the definition of <;.
(<) Consider set of formulas

U= (| [Jves)
Then the definition of <; and the hypothesis (the right hand side) gives
VCtesS = t<s => o¢e€t
so that Lemma 9.5 provides 9y, ...,%¥, € ¥ with
Fs 1A AY, — O
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Using the basic properties of S, this gives

Fs [ AL A [ — [l

Since each [i]y, € s and s is closed under implications, this gives [i]¥ € s,
as required. B

9.5 The canonical valuation

As we will see later, in general the unadorned canonical structure & is not
a model of S. However, it does model S when enriched by suitably chosen
valuations. The canonical valuation ¢ on G is given by

o(P)={seS|Pes}
for variables P. Equivalently, o is such that
slFP & Pes
for s € S and variables P. This equivalence extends naturally.
9.8 LEMMA. For each s € S and formula ¢, the equivalence
sh-¢ & o¢e€s
holds.
Proof. For each formula ¢ consider the condition
($) (Vse S)[slF g €5

We verify (¢) by induction on the complexity of ¢.

The base case holds by the definition of ¢ (and since T € s and L ¢ s).
The passage across the propositional connectives follow from the equivalences
of Proposition 9.3. It thus remains to pass across [i].

For a given s € S and formula ¢, using first the definition of I- and then
the Induction Hypothesis (¢) followed by Lemma 9.7, we have

sl [i]g & (Yt <;s)tlF 4]
& (Vt<;s)[pet] & [pes

which gives ( [:]¢), and so completes the proof. @

As an immediate consequence of this with Corollary 9.6 we have the fol-
lowing.

9.9 COROLLARY. The canonical valued structure (&, o) models S.
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9.6 Proof of the result

The proof of Theorem 9.1 is now very short. For instance, for each formula ¢,
Lemma 9.8 and Corollary 9.6 give

(6,0) IF* ¢ & (Vse S)[s I+ ¢
o (VseS)pes] & ks o

which verifies the implication (ii) = (iii). The implication (iii) = (iv) is just
soundness, and the implication (iv) = (ii) is a consequence of Corollary 9.9.
]

9.7 Concluding remarks

On the face of it, Theorem 9.1 gives us two solutions to problem (a) (of Sec-
tion 9.1) for an arbitrary standard system S. However, these solutions are not
of much practical value. On the one hand we are told we may analyse S by
looking at the class of all its valued models. Unfortunately, to investigate this
large class we must already have a fairly extensive knowledge of S (in which
case we do not need the completeness result). On the other hand we are told
we may analyse S by looking at a particular valued model. Unfortunately,
this model is constructed from S and the process of determining its properties
involves an analysis of S (which makes the exercise somewhat pointless).

In spite of these drawbacks, Theorem 9.1 does have some value. It does at
least tell us that every standard system has a single characteristic valued model
(a fact which is not at all obvious). However, to bring out its full potential,
we must now refine the Theorem. We may do this by either strengthening the
conclusion, or by modifying the proof to extract more information.

There are two possible lines of development.

One possibility is to try to eliminate the references to valuations, and look
for a characteristic class M consisting of unadorned structures. This can be
done for certain pleasantly disposed systems S (for which & itself models S).
It turns out that such systems S have a characteristic class M defined entirely
without reference to S, and hence the completeness result does open up a
genuine second line of attack on S. This case is discussed in the next chapter.

Another possibility is to look for a characteristic class which consists en-
tirely of finite structures. This then opens up the possibility of a mechanical
test for derivability within the system. (For, clearly, checking validity in a
finite structure is potentially mechanizable.) Again we find there are many
systems for which this approach is feasible, and these are discussed in a later
chapter.

There are, of course, systems with no known completeness result (beyond
that of Theorem 9.1) and there are examples of theories with various demon-
strable complexities (or eccentricities). A first course in modal logic is not the
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place for a detailed account of these, but such examples should at least be
mentioned. (Otherwise you might get an over rosy view of modal life.) A few
of these more complex systems will be described later.

9.8 Exercises
9.1 Fill in the details of the proof of Proposition 9.3.

9.2 This exercise continues and makes use of the notation of and is related
to the content of Exercise 7.2 and 8.16. Thus, for an arbitrary formal system
S and set @ of formulas, let S(®) be the set of all s € S with ®* C s. This
set S(®) is converted into a transition structure G(®) using the restriction to
S(®) of the transition relations of &. Thus & is the particular case G(@). In
the same way let ¢ be the restriction to &(®) of the canonical valuation on &.

(a) Show that for each s € S(®), formula ¢, and label 7, the conditions

e [ilpes
o for each t € S(®),if s — t then p € ¢

are equivalent.

(b) Show that
slH¢ & p€s

holds for all s € S(®) and formulas ¢.
(c) Show that (&(®), o) models S U ®*.

(d) Show that for each formula ¢, the conditions
(i) & +go
(iil) ®ks ¢ iir) k5 ¢
(iil) @ ks ¢ (iir) @ L ¢
(iv) (6(®),0) models ¢

are equivalent.






Chapter 10

Kripke-completeness

10.1 Introduction

Each formal system S has associated with it three primary consequence rela-

tions
Fs }22 s |=g

(as well as several secondary ones). From the soundness properties we know
that for each formula ¢ both the implications

Fs¢ = kB¢ = FEs¢

hold. The completeness result of the previous chapter shows that the first of
these implications is an equivalence and, furthermore, there is a fixed valued
structure (&, o) such that both components are equivalent to

(8,0) I ¢.

In this chapter we bring in the third component =¥ ¢. In general this is not
equivalent to the other two, so we are interested in the following notion.

10.1 DEFINITION. A formal system S is Kripke-complete if
Fs ¢ & k5 ¢
holds for all formulas ¢. B
The aim of this chapter is to show that many (if not all) of the formal

systems we are interested in are Kripke-complete. In fact most of these enjoy
a stronger property.

10.2 DEFINITION. A formal system S is canonical if its canonical (unadorned)
structure & is a model of S. W

129
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For instance, the smallest theory K is canonical (since every modal structure
is a model of K). Later in this chapter we will generate many more examples
of canonicity. Before we do that let us see why canonicity is useful.

10.3 THEOREM. Let S be a canonical formal system with canonical valued
structure (&, 0). For each formula ¢ the conditions

(i) & ¢
(i) (&,0) Ik ¢
(iii) Fs ¢

(w) =5 ¢

(v) F§o

are equivalent. In particular, each canonical system is Kripke-complete.

Proof. The implication (i) = (ii) follows by the definition of IF*. The two
implications (ii) = (iii) and (iii) = (iv) are part of Theorem 9.1. The impli-
cation (iv) = (v) is trivial. Finally the implication (v) => (i) is an immediate
consequence of canonicity. B

In a sense this proof is a cheat since it has been achieved as a result of a
judicious choice of notion (namely canonicity). To justify calling the result a
theorem we must now exhibit a collection of interesting canonical systems.

'10.2 Some canonical systems

So far the only canonical system we know is the smallest one K. In this section
we give a couple more examples before, in the next section, we show how to
generate a whole family of such systems.

Our first example is the system KD obtained by adding to the basic axioms

all formulas
D(¢) : Op—

(for arbitrary ¢). We know this set of formulas characterizes seriality, so the
following result is crucial.

10.4 LEMMA. Let S be any system with KD < S. Then the canonical structure
S of S is serial.

Proof. Consider any s € S (where, of course, S is the carrier of G, i.e. the
set of maximally S-consistent sets). We must produce some ¢ € S with

s —t
i.e. such that for each formula ¢

[loes = ¢pet.
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To this end let ® be the set of all formulas ¢ for which
[e¢ € s.

It is sufficient to show that & is S-consistent (for then Lemma 9.4 provides
some t € S with ¢ C ¢, and hence s — t).
By way of contradiction suppose that ® is not S-consistent. Then

Y L
and hence there are ¢,,..., ¢, with
Fs ¢ — L ie. kg —¢
where
b IS GiA- AP
An application of (N) now gives

Fs []-¢

hence, since KD < S, we may use D(—¢) to get
Fs ¢
Thus, rephrasing <>—¢, we have
Fs =[J¢ ie. ks [Jé— L.

Finally, since
Fe (Oérn---A U — [e)

we see that [ ]¢ € s and, more importantly,
shksg L
which is the sought contradiction. @
Since the (unadorned) models of KD are precisely the serial structures, this
result has an immediate consequence.
10.5 COROLLARY. The system KD is canonical, and hence Kripke-complete.

For our next example of canonicity consider the system KR formed by
adding to the basic axioms all formulas

R(¢) : [P¢— ¢

(for arbitrary ¢). We know that the models of KR are precisely the dense
structures, so our aim is to verify that the canonical structure of KR has this
property. To do this we use what you may think is a rather obvious result.
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10.6 LEMMA. For an arbitrary formal system S let r,t € S be such that
O¥er = g€t
holds for all formulas ¢. Then we have
r—s—t
for some s € S.
Proof. Consider the set of formulas
o ={0] oerpu{v|vet}

We show that @ is S-consistent.
By way of contradiction suppose otherwise, so that

Fs (1A A0 A O A=A Oty — L)
for appropriate 6y, -, 0m, %1, - -, ¥, Let
0 :=0A---NO, and ¥ := Y1 A--- Ay
Note that
Fe (O6A-A Db — [8) , Fe (O¥ = Ot A A )
so that [ )]0 € r, and clearly v € t. These implications also give
Fs (A Oy — 1)
which can be rephrased as
Fs 8 =~y or ks 08— [0
and hence an application of (EN) gives
ks (06 — (0%

But now, since [ 18 € r, this gives [ }2~¢ € r, and hence ~¢ € t, which is
the required contradiction.

This shows that & is S-consistent, and hence (by the Basic Existence Re-
sult) there is some s € S with ® C s, i.e. such that

(J6er => s and Yet=> Oves

for all formulas 6 and ¥. The first of these gives r — s and the second gives
s — t, which is the desired result. B

Using this result we quickly obtain the analogue of Lemma 10.4.



10.3. CONFLUENCE INDUCED COMPLETENESS 133

10.7 LEMMA. Let S be any system with KR < S. Then the canonical structure
S of S is dense.

Proof. Consider any r,t € § with r — ¢. This with the shape R shows
that for each formula ¢ we have both

[(’er = [oer = ¢€t
and hence the required s € § with
rT—8—>1

is provided by Lemma 10.6. W

10.8 COROLLARY. The system KR is canonical, and hence Kripke-complete.

10.3 Confluence induced completeness
We have seen that the three systems
K , KD , KR

are canonical, and hence Kripke-complete. Lemmas 10.4 and 10.7 also ensure
that KDR is canonical. In fact these results are just particular instances of a
quite widely applicable result making use of the confluence properties.

Recall from Chapter 6 that each 4-tuple of sequences of labels

= i(1),i(2),...,4(p)
3(1),3(2), ..., 3(q)
k(1),k(2), ..., k(r)
11),1(2), - .., 1(s)

gives us two related gadgets. Firstly there is the structural property

i
J
k
|

CONF (i; j; k: I)

which is concerned with the formation of a diagram of the following kind.
. b .
/N
a d
o A
c

Conf(i; j; k; 1)

Secondly there is the set
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of formulas
<G> lile — [ <de

(for arbitrary ¢). We know that a structure has property CONF (i;]; k;|) pre-
cisely when it models Conf(i; j; k; I).
We now recognize Conf(i;]; k;|) as an axiom schema; in particular we may
form the system
KG,j, k1)

whose proper axioms are precisely the set Conf(i; j; k;1). More generally, let &
be any set of 4-tuples
o= (,j, k1)

(of sequences of labels of varying length and components). Let
K(Z)

be the system whose proper axioms are all the sets Conf(c) for 0 € . For
convenience let us refer to such a system as a confluence system. In this section
we prove the following result.

10.9 THEOREM. Each confluent system is canonical and consequently is also
Kripke-complete.

To prove this we use a generalization of Lemmas 10.4 and 10.7, and for this
we need an extension of Lemma 10.6.

10.10 LEMMA. Let S be an arbitrary formal system, let r,t € S, and let
i=1(1),i(2),---i(p)
be a sequence of labels such that
[(loer = g€t
holds for all formulas ¢. Then we have
r=5(0) <2 s(1) X ... 2, ) =t
for some s(0),s(1),---,s(p) € S.

Proof. This is proved by induction on the length p of i.
For the base case p = 0 we are given that

pET = Pp€Et

i.e. that r C t, and hence r = ¢. Thus we may set s(0) =r =1¢.
For the induction step (p > 0) we may decompose i as the concatenation

i=jk
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of two non-empty sequences j and k of labels. The property relating r and ¢ is
then

[(Jklper = €t

(for arbitrary ¢). It is sufficient to produce some s € S such that
[iloper => ¢p€s , [K]JpeEs = et

for then we may invoke the Induction Hypothesis to produce the required
sequence.

The proof is now a replica of that of Lemma 10.6.

Thus consider the set of formulas

®:={0]| [[J0eru{wy | vet}

We show that ® is S-consistent.
By way of contradiction, suppose otherwise, so that

Fs GLA-- Al AJOYIA--- A OY, — L
for appropriate 6y, -, 0., %1, - -, %n. Let
8 :=0A---Nb, and Y=Y A A,
Note that
b (G160 A A [D0m — [10) , Fk (K09 = GOPr A= A <OYy)
so that [i]6 € 7, and clearly v € t. These implications also give
Fs A <OY — L

which we can rephrase as
Fs 0 — [k
Several applications of (EN) now give

Fs []0 — [i] k9.
But now, since [i]6 € r, this gives
Gl0d~yer
which (by the given relationship between r and t) gives
- € L.

Since ¢ € t, this is the sought contradiction. B

We can now obtain the generalization of Lemmas 10.4 and 10.7.
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10.11 LEMMA. Let i,j,k,| be a fized 4-tuple of sequences of labels, and let S
be a formal system with K(i,j, k,1) < S. Then the canonical structure & of S
enjoys CONF (i; j; k; 1).

Proof. Consider any p,q,r € S with

holding. To this end consider the set of formulas

®:={0| (l0eqtu{y| [yer}

By Lemma 10.10 it suffices to show that ® is S-consistent.
By way of contradiction, suppose that & is not S-consistent. Then (since
[-] commutes with A) there are formulas 6 and ¥ with

iloeq , [lver

and
Fs Ay — L.

This can be rephrased as
Fs 8§ — -

and hence applications of (EN) give
ks [i10 — [i]-¢

so that [i]-% € ¢. But p SN q so that <i>[i]-%¥ € p and hence, by
Conf (i; j; k; 1), we have [k] <1i>-1 € p. Finally, since

k
q—7

we have <> € r, i.e. - [1]¥ € r which is the required contradiction. B

Theorem 10.9 is now an immediate consequence of Lemma 10.11.
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10.4 Exercises

10.1 Let S be any standard formal system all of whose axioms are sentences.
Show that S is canonical. Hence show that KD is canonical.

10.2 Let E and F be the set of all formulas of the shapes
E:—=OT—(Hée—¢) , F:=[(He—9)
respectively (for arbitrary ¢). Consider the two standard formal systems
S=KE , S=KF
separately.
(a) Find a correspondence result for S.

(b) Show that S is canonical.

10.3 For fixed label 4,j,k,I,m,n let K(3,4,k,1,m,n) be the formal system
axiomatized by all the formulas K(3, , k, , m, n) of Exercise 5.3 of Chapter 5.
Show that this system is canonical.

10.4 Let S be the standard formal system axiomatized by all formulas of the

shape
O(de—v) v LDy — ¢)

for arbitrary formulas i and ¢. Recalling Proposition 5.5, show that S is
canonical.

10.5 Let ¢,4,k,1,m,n be fixed labels and let S be the formal system axioma-
tized by the shape

(> [e A <& [nly) — [lE(dAY)
(for arbitrary formulas ¢,%). Show that S is canonical.

10.6 Let S be the formal system axiomatized by the formulas of the shape
given in Exercise 6.3 of Chapter 6 (for the given parameters). Show that S is
canonical.

10.7 Continuing with Exercises 8.12 and 8.13 let NATTIM be the extension
of LINTIM formed by the addition of the axioms

o [+H]T
o L_()
o D [+]o— Li(e)
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(for all formulas ¢). Here L_ and L., are the two Lob shapes formed using [-]
and [+] respectively. Let A be an arbitrary model of NATTIM and set

I(A) = {a€ A|a k- [FL}.
(a) Show that A" models NATTIM but Z does not.

(b) Making use of descending chains and axiom L_ show the following for
each model A of NATTIM.

(i) For each b € A there is a unique a € I{A) with a ~ b.

(ii) There is a function
next: A —> A

such that foreacha € A
a =5 next(a)
and
a5z = z=next(a) or next(a) - z
(for all z € A).

(ii) The function next is injective.

(c) Given a model A of NATTIM, some a € I(A), and some variable P,
consider a valuation on .4 where

z Ik P & (3Im € N)next™(a) = z]

(for each z € A). Making use of the axiom based on L show the
following.

(i) a IF [ ®P.

(i) For each b € A there are unique a € I(4) and m € N with b =
next™(a).

(iii) A consists of disjoint copies of N.

(d) Show that
NIF ¢ = AIF ¢

holds for all formulas ¢.

(e) You are not asked to prove that NATTIM is Kripke-complete, however,
assuming that this is true, show that

Fnatrim ¢ & N IFY ¢

holds for all formulas ¢.



Part IV

Model constructions

This part begins the non basic part of the book and is built around a
theme of semantics preserving morphisms. First in Chapter 11 the no-
tion of a bisimulation is developed. This is a kind of relation between
structures designed to highlight the similarities between them which,
as a side product, has the required semantic preserving properties.
The notion subsumes most other semantic preserving morphisms.

Building on this notion, in Chapter 12 a method of constructing
smaller structures from larger structures is described. This method
of filtrations has completeness and decidability consequences for the
sytems to which it is applied. These are developed in Chapter 13.
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Chapter 11

Bisimulations

11.1 Introduction

Both transition structures and valued transition structures are examples of
relational structures. There is a standard way of comparing the algebraic
properties of two such structures, namely through the notion of a morphism.

11.1 DEFINITION. (a) A morphism

A#B

from a structure A to a structure B of the same signature is a function
f:tA—>B
from the carrier A of A to the carrier B of B such that
(Rel™) For each label ¢ and elements a,z of A
ez > fla) > f(@)

holds.
(b) A morphism

Ua) > (8,5

from a valued structure (A4, ) to a valued structure (B, f) is a morphism f
between unadorned structures (as in (a)) such that

(Val™) For each variable P and element a of A
a€a(P) = f(a)ep(P)

holds. B
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It is important to notice that these two defining conditions are implications,
and not equivalences. All the standard universal algebraic constructions are
carried out with these morphisms in mind, nevertheless there are situations
where a more restricted notion of morphism is desirable. Modal logic is one of
these cases.

Given a morphism f (as above) it is natural to consider which formulas are
preserved or reflected by f, that is, the formulas ¢ such that for each element
a of A, one or other of the two implications

(Aa,a) IF ¢ & (BB, fla)) I ¢ (11.1)

holds. For a general morphism f the corresponding class of formulas ¢ is not
very interesting, hence the need to restrict the morphisms in some way.

Suppose first that we are interested in those morphisms f for which the
equivalence (11.1) holds for all formulas ¢ and elements a of A. A rather sim-
ple restriction on f will ensure this, and the resulting morphisms are variously
known as zigzag morphism or p-morphisms (depending on the literary preten-
sions of the author). What is interesting about this restriction is that, once it
has been elucidated, it becomes clear that it is also applicable to relations (as
well as functions) between A and B. Those relations restricted in this way are
called bisimulations, and this chapter is devoted to a full discussion of these.

A more extensive problem is to look for morphisms f for which the equiv-
alence (11.1) holds for a restricted class of formulas. In this rather general
form nothing beyond rather superficial results can be expected (for there are
just too many parameters involved). There is, however, a particularly distin-
guished class of such morphisms known as filtrations. These are discussed in
the next chapter.

11.2 Zigzag morphisms

In the literature you will find the terms ‘zigzag morphism’ and ‘p-morphism’
used more or less interchangeably. However, on closer inspection you will also
find there are two closely related notions involved and it is instructive to make
a pedantic distinction between these. Thus here we will use the two terms for
the following notions

11.2 DEFINITION. We need two more kinds of morphisms.

(a) A p-morphism
f

A—>8B

between two structures A and B of the same signature is a morphism f
such that
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(Rel™) For each label i and elements a of A and y of B with
f(a) == vy, there is an element z of A with ¢ —— x and

f@)=y.
holds.
(b) A zigzag morphism

f
(A’ a) —> (B ) ﬂ )
between two valued structures is a p-morphism f (as in (a)) such that
(Val™) For each variable P and element a of A the implication
a€a(P) <« f(a)€p(P)
holds. ®

The condition (Val™) is the converse of the condition (Val™) of Section
11.1. Since f is a morphism it must also satisfy this condition so each zigzag
morphism satisfies the equivalence

(Val™) a€a(P) < f(a)ep(P)
(for all appropriate P and a). Note that given any p-morphism

S

A———>B

and valuation @ on B, the equivalence Val™ may be used to construct a valu-
ation « on A such that f becomes a zigzag morphism

Aa) 1> (8.5).

For this reason the distinction we have made between p-morphism and zigzag
morphism need not be followed too enthusiastically.

The reason for introducing zigzag morphism is explained by the following
result.

11.3 THEOREM. Let
(o) L5 8.9)
be a zigzag morphism. Then
(A,a,a) ko & (B,BbIF¢
holds for all elements a of A and formulas ¢.

We need not prove this result here since it is a simple consequence of the
broader analysis which is the main topic of this chapter.
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11.3 Bisimulations

Given a pair
(Aa) , (B,B)

of valued structures (of the same signature) we we interested in relations
RCAxB

which connect the semantical properties of the structures. There are two such
relations of particular interest.

11.4 DEFINITION. Consider two valued structures (as above).
(~) Let ~ be the relation between A and B defined by
a~b & (VPeVar)acalP)sbe (P)

for a € A and b € B. We say an arbitrary relation R is a matching if
R C~.

(~) Let = be the relation between A and B such that foralla € Aand b€ B
axb
holds precisely when the equivalence
(A,a,0) IFop & (B,B,b) IF ¢

holds for all formulas ¢. We call =~ the semantic equivalence relation. B

Note that the semantic equivalence relation = is a matching. Our objective
is to look for various approximations to =.

11.5 DEFINITION. Consider two valued structures (as above).

(a) A relation R has the back and forth property if for each label ¢ and
elements a of A and b of B, if aRb then both

back (Vy <; b)(3z <; a)[zRy]
forth  (Vz <; a)(Jy < b)[zRy]
hold.

(b) A bisimulation is a matching which has the back and forth property. @
For example, the empty relation is a bisimulation (vacuously), however we

will see more interesting examples later. Before we do that let us see how =~
and bisimulations are connected.
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11.6 THEOREM. Each bisimulation between two valued structures (A, a) and
(B, B) is included in the semantic equivalence relation.

Proof. Let R be the given bisimulation. For each formula ¢ consider the
following condition

() Foreacha€ Aand b€ B,ifaRbthen, alF ¢ & b IF ¢.

We show that (¢) holds for all formulas ¢ by induction on the complexity of
é.

The base case holds since R is a matching, and the passage across the
boolean connectives is immediate. Thus it suffices to consider the passage
across [i] for an arbitrary label 1.

Consider any formula [i]¢ and elements a and b with aRb . Then

alk o & (Vz<a)z IF ¢ & (Vy<:b)y Ik ¢] & bIF [i]o

where the central equivalence is verified using the Induction Hypothesis and
the back and forth property, as follows.

Suppose z I ¢ for each x <; a and consider any y <; b. The back condition
gives us a particular z <; @ with zRy. But then (¢) gives

tlFé o ylFo

and hence y I+ ¢. This proves one half of the equivalence and the converse
follows in a similar fashion.
This completes all the required induction steps. B

This result shows that the semantic equivalence relation = sits below ~
and above all bisimulations. We need to close this gap, but before we do that
let us see how bisimulations subsume zigzag morphisms.

Each morphism

f

A—>B
gives us a relation F' C A x B, namely its graph defined by

aFb & f(a)=b
(for a € A and b € B).

11.7 THEOREM. Consider any morphism f with graph F', as above.

(a) This morphism f is a p-morphism precisely when F has the back and
forth property

(b) Given valuations on the structures, the morphism f is a zigzag morphism
precisely when the F is a bisimulation.
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Proof. We will actually prove something a bit more detailed. Thus consider
any function
fiA—> B.

We show the following.

(i) The function f has Rel™ (and hence is a morphism) precisely when F
has the forth property.

(i1) The function f has Rel™ precisely when F has the back property.

(i) Given valuations « on A and £ on B, the function f has Val™ precisely
when F'is a matching.

We prove these three correspondences in turn.

(1) Suppose first that f has Rel™ and consider any a,z € 4 and b € B with

Then f(a) = b so that, by Rel™, we have & — f(z), and hence we may set
y = f(z) to verify the forth property. Conversely, suppose that F has the
forth property, and consider any a,z € A with a —— z. Setting b = f(x) we
have aFb so that (by the forth property) there is some y € B with

zFy b—ivy.

Since y = f(x), this gives f(a) = f(z), as required.
(ii) Suppose first that f has Rel™ and consider any a € A and b,y € B
with '
aFb , b—>y.

Then f(a) = b so that f(a) — y and hence, by Rel~ there is some z € A4
with .

flxy=y , a—>u
This verifies the back property. The converse implication follows in the same
way.

(iii) This is immediate. W
This result when combined with Theorem 11.6 gives a proof of Theorem
11.3.

We will say nothing more about zigzag morphisms; all we need to know
about them can be deduced as the functional case of a bisimulation.
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11.4 The largest bisimulation

For the remainder of the chapter let

(A,e) . (B,B)

be a fixed pair of valued structures. We know there is at least one bisimulation
between this pair, namely the empty relation. This, however, does not hold
the attention for very long (even though it may be the only bisimulation). A
more interesting example is at the opposite end of the scale.

11.8 THEOREM. There is a unique largest bisimulation i.e. a bisimulation
which includes all other bisimulations.

Proof. Let R be the family of all bisimulations. We know that R is non-
empty (since @ € R). Set
S=UR
i.e. let S be the relation such that
aSh

holds (for a € A and b € B) precisely when there is some R € R with aRb.
Clearly S is a matching (and, in fact, it is included in &) and includes all
bisimulations. Thus it suffices to show that S has the back and forth property.

For a fixed label ¢ consider any a € A and b € B. Consider also any z € A
with x <; a. By definition of S there is some R € R with aRb. But then,
since this R is a bisimulation, there is some y <; b with xRy. In particular,
xSy, and so we have verified the forth property. The back property is verified
in the same way. @

Because of its special position we let
be this largest bisimulation. In particular we have
B C & ¢ ~

which gives us lower and upper bounds for =. In general these three relations
are distinct, but there is an interesting situation where the two lower ones
agree.

We say a structure A is image finite if for each label i and element a of A,
there are just finitely many elements & with

i
a— .

In particular, every finite structure and every deterministic structure is image
finite.
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11.9 THEOREM. Suppose both the structures A and B are image finite. Then
the two relations = and = coincide.

Proof. It suffices to show that ~ has the back and forth property. We will
verify the forth property; the verification of the back property then follows in
a similar fashion.

Consider elements z,a € A and b € B with a =~ b and = <; a (for some
label 7). We must produce some y € B with y <; b and z ~ y.

Let y1,...,yn be all the elements y € B with y <; b. We may restrict our
search to this finite set. By way of contradiction suppose there is no such y,
with £ = y,. Then for each 1 < r < n, there is a formula 8, with

k=0, , y IF 6.

Let ¢ be
hv...vé,

so that y, IF ¢ for each 1 < r < n, and hence

bk o

But then, since a = b, we have

alr 6

and hence z I+ ¢ which produces some 1 < r < n with
z I+ 6,.

Since this is a direct contradiction, the proof is complete. B

11.5 A hierarchy of matchings

The construction of = given in the proof of Theorem 11.8 does not provide
much information beyond that = is a bisimulation in a special position. There
is another construction of & (this time from above rather than below) which
also provides a measure of its complexity. To describe this we need some
preliminaries.
Given a relation R, its derivative is the relation R defined such that, for

each a € Aand b € B,

aR"b
holds precisely when

aRb

and for each label i both
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o (Vz < a)(3y <; b)[zRy|

e (Vy < b)(3z <; a)[zRy]

hold. Trivially RY C R. Note also that the operation (-)" is monotone, i.e.
SCR = S'CR'

holds for all relations R and S.

Bisimulations are precisely those matchings which are the fixed points of
(+)7, i.e. matchings R such that RY = R. This enables us to apply a standard
procedure for obtaining fixed points.

Let Ord be the class of ordinals. For a given relation R we define the

descending chain
(Ry | @ € Ord)

by an iteration of (-)Y. Thus we set
Ry=R s Ra+l = (Ra)' y R, = ﬂ{Ra | a< A}

for each ordinal ¢ and limit ordinal A. On cardinality grounds this chain
eventually stabilizes, i.e. there is some ordinal oo such that

R, = R

for all ordinals a > co. In fact, oo is the first ordinal « such that Ry = R,.
In particular, if the parent relation R is a matching, then the stable descendant
R, is a bisimulation.

11.10 THEOREM. For each matching R, the matching R, is the largest bisim-
ulation included in R.

Proof. We have already noted that R, is a bisimulation and R, C R.
Consider any other bisimulation S C R. Then, using the monotone property
of ()Y we have

S=8"CR'"=R,.

In the same way an obvious induction shows that
SCR,

for all & € Ord; in particular, S C R, as required. W

Since & is the largest bisimulation and is included in ~, it is the largest
bisimulation included in ~. Thus we may apply the above construction to
obtain & from ~. We let

~g = v N ~Natl = (Na)' s ~ = n{NOtl o < /\}

for each ordinal ¢« and limit ordinal A\. Then = is just ~. This ordinal co
is a measure of the distance between ~ and =, and hence tells us something
about the complexity of =.
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11.6 An example

At this stage in the proceedings it is instructive to look at a class of (partic-
ularly simple) examples. These examples show that the required value of oo
can be indefinitely large.

In all the examples the two valued structures (A4, o) and (B, 3) are the
same, so we may concentrate on just one of them, .4. Also, for each variable
P, we set

o(P) = A.

This means that the relation ~ is just A x A, i.e. that a ~ b holds for all
a,be A
The structure .4 is monomodal, in fact

A= (Av _*)
where A is an ordinal and, for a,b € A
a—b & b<a

(where < is the standard ordering on A).
For these examples we have a concise description of the relations ~.

11.11 PROPOSITION. For each ordinal o and a,b € A, the conditions

(i) an~yb
(i) e=b or a<ab

are equivalent.

Proof. This is proved by induction on a.
The base case a = 0 is trivial since a ~¢ b and 0 < a,b hold for all a, b.
For the induction step a — o + 1, suppose first that a ~,4; b and that
a #b. Then a < b (say) so, setting y = a the back property of ~4 1= (~q)"
produces some z < a with x ~, y. Since x # y the Induction Hypothesis gives
a < z,a, so that
a<zr<a<b

and hence o +1 < a,b.

Conversely, suppose that o + 1 < a,b and consider any r < a, We require
some y, b with  ~, y. But if £ > a then we may take y = z, and if @ < z then
we may take y = a, for in both cases the Induction Hypothesis gives x ~, y.

For the induction leap to a limit ordinal A we argue

a~b & (Ya< e~ b
& (Ma<Me=bora<a,lb
& a=borVa<Na<ab & e=borA<ab
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which is the required result. @

This class of examples shows that for each ordinal & the two relations ~,
and ~,; can be distinct. For let A be an ordinal which is at least &« +2. Then

a=a , b=a+1
are both members of A, and clearly
a~eb , notla~gq1 b

which witnesses the required distinctness.

11.7 Stratified semantic equivalence
We now return to considering the fixed pair
(A, 0‘) , (B’ )

of valued structures. Each set of formulas I' gives us a relation |I"| between
these structures where, by definition,

a|T|b
holds (for a € A and b € B) precisely when
VoeDalF ¢ < biF g
Thus, for example,
|Var| is ~ and | Form | is a.

Notice that many different sets I' can give the same relation | T |. In
particular, if ['B is the boolean closure of I', then

IT?| = |r].

These relations | I' | are most useful when I is closed under subformulas, but
we need not assume this in general.
For each set I let I'” be the set of formulas of the form

¢ or [¢

for some ¢ € T and label . We are interested in the comparison between | T' |
and | TT .

11.12 LEMMA. For each set of formulas T, we have | T [YC|T© |.
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Proof. The argument for this is essentially the same as the argument veri-
fying the induction step in the proof of Theorem 11.6. B

Next let
Ao =Varu {T, J_}

so that (Ag)® is the set of Box-free (i.e. propositional) formulas and hence
(using the above remark)

|A0| = ~ = n~q.

Now for each r < w set
Aryr = (ArB )D

to produce an ascending chain
Ao CAFC--CA CAFCA,C---

with
A, ={A, | r <w} = Form

and hence
[Au] = =~.

We are interested in the intermediate relations | A, |.
11.13 LEMMA. For each r < w, we have ~, C |A,|.
Proof. We have seen already that
~oo= | A
Now assuming the inclusion holds for 7, we have

it = o~ S AT = [A7T C A7) = Al

r =

where the crucial step (the second inclusion) follows by Lemma 11.12.
The required result now follows by induction. B

Taking the limiting case of this gives the following.
11.14 COROLLARY.~, C =.

We have seen already a condition which ensures that the two relations ~,
and =~ coincide, namely image finiteness. But then =~ also coincides with =.
It is, therefore, of interest to find natural conditions which force ~, and = to
agree but where these relations may still be distinct from =.
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To this end, let us say a set of formulas I" is essentially finite for the pair
of valued structures in question, if there are finitely many members vy,..., v,
of T" such that for each ¢ € I there is such a v with

(A, ), (B,B) I (¢ < 7).

For example, any finite set is essentially finite. Also the set Var is essentially
finite for the ordinal example of Section 11.6.

Recall that we say the signature is finite if there are just finitely many
labels.

11.15 LEMMA. Suppose the signature is finite and let ' be an essentially finite
set of formulas. Then T and T'C are also essentially finite.

Proof. Let 71,..., ¥, be the given finitely many members of I' which span
I'. We are interested in the formulas 1 of the form

T A AT,

where each £+ is either v or —y. Notice that there are just finitely many such
formulas .
Each boolean combination of 7,...,v, is tautologically equivalent to a
formula ¢ of the shape
PYV... Vi,

where each formula %, is a formula of the kind 9 just described. Thus we see
that ' is essentially finite.

Finally, since the set of labels is finite, we see that I'J is essentially finite.
[ |

The next result explains why we have introduced this notion of essential
finiteness.

11.16 PROPOSITION. If the set of formulas T is essentially finite then the
two relations | T |¥ and (TV) coincide.

Proof. By Lemma 11.12 we know already that
IT|" ¢ ().

Thus it suffices to show the converse inclusion, assuming that I' is essentially
finite.

Let 41,...,7, be the given spanning members of I'. Consider any a € A
and b € B with a | T° | b. Consider also any = <; a (for some label 7). We
must produce some y <; b with z | T | y.

Set

P = EmA.L ALY,
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where each 7 is v or —y with the sign chosen so that
z I+ 7.
Note that
rhky , el® | [[J-pelP.

Now a IF <>t so that b IF <>t (since a | I | b) which gives some y <; b
with y 1+ 4. It suffices to show that z | ' | y. But for each ¢ € T" there is
some vy with

gk (@) , ylk(pen)

and hence
zlF¢ & ylko

by the relationship of z and y to . B

Finally we have arrived at the result we have been travelling towards.

11.17 THEOREM. Suppose that the signature is finite and that Var is essen-
tially finite. Then for each r < w the two relations ~, and | A, | agree. In
particular ~,, and = coincide.

Proof. By definition, ~y and | A | agree. Also, assuming that ~, and
| A, | agree, an application of Proposition 11.16 gives

M= () = (ADT = TP = (A
so the required result follows by induction. B
This result shows that for the ordinal examples of Section 11.6 the two

relations ~,, and ~ coincide. Notice also that for these examples the relation
%= can be much smaller.

11.8 Exercises

11.1 Structures of the various kinds form several categories.

(a) Show that the composite of two morphisms (between structures of the
same kind) is itself a morphism.

(b) Show that the composite of two p-morphisms is itself a p-morphism, and
the composite of two zigzag morphisms is a zigzag morphism.

11.2 For the monomodal language, the singleton set {0} carries just two tran-
sition structures
L, R

where the transition relation on £ is empty and on R it is not.
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(a) Show that the unique assignment g : A — {0} defines a morphism

A—g->72

and that this morphism is a p-morphism precisely when A is serial.

(b) Show that the morphisms

L——f—>A

are in bijective correspondence with the elements of .4, and that the
p-morphisms (in this direction) are in bijective correspondence with the
blind elements of A.

(c) Determine the morphisms
A—>L , R—> A
Which of these are p-morphisms?

11.3 Let
f

A—>B
be a p-morphism and let & be a valuation on 4. Show there are two valuations
A and p on B such that the following hold.

(a) Both
(A, ) —£—> (B,A) , (A,a) L (B, p)

are zigzag morphisms;

(b) For each valuation § on B,

f
(A, 0) —> (B,5)
is a zigzag morphism if and only if A < 8 < p, i.e.
A(P) € B(P) C o(P)
holds for all variables P.

11.4 Let A and B be structures with A C B, and let f be the insertion
f:A—> B.

(a) Show that f is a morphism.

(b) Show that A4 C, B (in the sense of Exercise 4.9) if and only f is a
p-morphism.
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11.5 Let
RCAxB , SCBxC

be two relations. The sequential composite
RSCAxC
is the relation defined by
a(R;S)c & (3 € B)[aRbS(]
(for a € A and c € C).

(a) Show that the sequential composite of two back and forth relations is a
back and forth relation, and the sequential composite of two bisimula-
tions is a bisimulation.

(b) Let
fitA—>B |, ¢g:B—>C

be two functions with graphs F' and G. Show that the sequential com-
posite F';G is the graph of the function composite gf.

11.6 Consider the structure
N =(N,—)
carried by the set of natural numbers N with the successor relation given by
a—b & a=b+1

(for a,b € N). Let v be the valuation on N with v(P) = N for all variables P,
and consider the induced matching hierarchy ~,.

(a) Show that for each a,b € N and r < w
a=b<r
a ~pq1 b & or
a,b>r.
Hence show that ~, =~ is just equality.
(b) For each k € N, find a sentence ¢; such that

alk ¢ & a=k

holds for all a € N.



Chapter 12

Filtrations

12.1 Introduction
In Chapter 11 we isolated a class of valued morphisms
(A, @) —> (B, B)
namely the zigzag morphisms, for which the equivalence
(A,a,a) Ik ¢ & (BB, f(a) Ik ¢

holds for all elements a € A and all formulas ¢. These morphisms are most
useful when the two structures are are given independently and when we really
are concerned with all formulas. However, there are many situations where we
are given only the valued structure (A4, ) and we are required to construct
a valued structure (B, 3) together with an appropriate morphism f such that
the equivalence holds only for a restricted class of formulas. More often than
not we also require B to be finite and as small as possible. In this chapter
we will look at the commonest method of obtaining such morphisms, namely
the method of filtrations. As we will see later in Chapter 13 this method has
some significant consequences for the completeness and decidability of various
formal systems.

Throughout the chapter I' is some fixed set of formulas which is assumed
to be closed under subformulas. In most applications this set I' is the set of all
subformulas of a given formula. Our objective is to ensure that the equivalence
holds for all formulas ¢ € T

12.1 DEFINITION. Let (A4, @) and (B, ) be two valued structures.

(a) A I'-morphism from the first to the second is a morphism

f

A——>B

157
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such that for each variable P € T
ac€a(P) = f(a) € pB(P)
holds for all a € A.

(b) A T'-filtration from the first structure to the second structure is a I'-
morphism f, as above, such that:

(Sur) This morphism is surjective.
(Var) For each variable P € I and element a € A

ac€a(P) & f(a)e p(P).
(Fil) For each label ¢ and formula ¢ with [<]¢ € I, the implication
alk [{l¢ = =zl-¢

holds for all elements a, z of A with f(a) — f(z) in B. W

Notice that there are no restrictions at all on the variables P ¢ T, in
particular the filtration f need not be a full valued morphism.
The first thing to do now is to demonstrate why filtrations are useful.

12.2 THEOREM. Let f be a T-filtration (as above). Then, for each formula
¢ € T’ the equivalence

(Aaa) k¢ & (BB fla) k¢
holds for all elements a of A.

Proof. We proceed by induction on ¢.

The two base cases ¢ = T and ¢ = L hold trivially. For the case ¢ =P €
Var; either P € T in which case the equivalence is given by (Var), or P ¢ T in
which case there is nothing to prove. The induction steps across propositional
connectives follow easily since I is closed under subformulas, thus it remains
to deal with the induction step across a box.

Fix a label ¢ and consider any formula ¢ with [:]¢ € T'. Since we also have
¢ € I' the Induction Hypothesis gives

zlk¢ & flz)l-¢
for all £ € A. We must show that
alk [il¢ & fla) Ik [¢
for all a € A.
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Suppose first that a I+ [i]¢ and consider any y € B with f(a) LN .
Since f is surjective there is some x € A with f(z) = y. But then (Fil) gives
z I+ ¢ and the Induction Hypothesis gives y I+ ¢, so that f(a) IF [i]qﬁ.

Conversely, suppose that f(a) IF []¢ and consider any = € A with ¢ — z.

Since f is a morphism we have f(a) —— f(z), so that f(z) IF ¢ and hence
the Induction Hypothesis gives z I+ ¢. Thus a I+ [i]¢ as required. B

In this proof I have been a little bit sloppy because I did not state precisely
what the Induction Hypothesis is. Before you continue you should do this and
make sure you understand the mechanism of the induction.

12.2 The canonical carrying set

We have already fixed the set I'. We now fix the valued structure (A4, @) and
turn to the central topic of this chapter.

For the given (A, «) and T', how can we construct a I-filtration of
(A, ) for which the target is as small as possible ?

Consider the equivalence relation ~ on A (the carrying set of .A) defined by
a~z < (WpeD)alk ¢ & z i ¢

for all a,x € A and set
B=A/~

i.e. let B be the set of equivalence classes of A. For each a € A let a™ be the
equivalence class to which a belongs, i.e. let

a={r€A|a~z}

Let
f

A——> B
ar—>a”

be the canonical surjection. We wish to construct a valued structure {5, 3) on
B in such a way that f becomes a I'-filtration.
Before we do this let us estimate the size of B.

12.3 LEMMA. Suppose the set of formulas T is finite. Then so is B and, in
fact, card(B) < 2¢erdT),

Proof. The set
' — 2]
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of all functions from I" to 2 is finite with cardinality 2¢*«D). For each ¢ € T
let
fo: T —>2

be the function given by
lifalk ¢
fa9) =
0ifa IF —¢
(for ¢ € T'). The definition of ~ can be rephrased as
a~T & f a = f z
in particular we have a well-defined injection

B——> -2
@ — f,

which gives the required result. B

Our main problem is to convert B into a transition structure satisfying the
appropriate conditions. It turns out that there are many ways of doing this,
but there is a ‘left-most’ (or 3-) solution and a ‘right-most’ (or V-) solution.
We look at these two cases in detail.

12.3 The left-most filtration
For each label 7 let —in be the relation on B = A/~ given by

b=y & (Haebazey)a—>

(for b,y € B). Let B' be the corresponding structure on B. First a simple
observation.

12.4 LEMMA. The canonical assignment f : A — B 1is a surjective morphism
A— B.

Proof. Suppose that a —» 7 for some a,z € A and label i. Then
a€f(a) , z€f@) , a"a
and hence @ — 7, as required. W

Let A be the valuation on B' given by
beXP) & (Jacb)ac€alP)
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for all variables P € T and elements ¢ € A. The values A(P) for other variables
P are not important, but for precision we may set

A(P)=10
for such P.

12.5 THEOREM. The assignment

(4,0) L5 @0
1s a '-filtration.

Proof. By Lemma 12.4 and the construction of A the assignment f is a sur-
jective [-morphism from (A, o) to (B!, A). It thus remains to verify properties
(Var) and (Fil).

By construction we have

a€a(P) = f(a) € A(P)

for all ¢ € A and variables P € T'. Conversely, if f(a) € A(P) (for some ¢ € A
and P € T') then, by definition of A there is some z € f(a) with = € «(P).
But then z ~ a so that, by definition of ~, we have a € a(P), as required to
verify (Var).

Finally, to verify (Fil), consider any pair of elements a,z € A with f(a) —,
f(z) (in B'). Then, by definition of —,, there are u,v € A with

u~ma , v~T , u—b>ou.
Hence, for each formula ¢ with [:]¢ € I, the definition of ~ gives
alb ¢ = ulk ¢ = viFgd =zl ¢

as required. W

12.4 The right-most filtration
For each label i let —, be the relation on B = A/~ given by
' For each formula ¢ with [<]¢ € T,
b—> y &

(Vaebzey)lalr (o = z Ik ¢

(for b,y € B). Let B" be the corresponding structure on B.
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126 LEMMA. The assignment
f:A—> B

is a surjective morphism A — B'.

Proof. Suppose ¢ —  and consider any u € f(a),v € f(z). Then
wu~a , T~
and for each formula ¢ with [i]¢ € I we have
ulFk [ = alk [(Jp > clk ¢ = v lF ¢

so that f(a) —, f(z) as required. M

Let p be the valuation on B” given by
bep(P) < (Vaeb)|acalP)

for all variables P € I" and elements a € A. The values A(P) for other variables
P is not important, but for precision we may set

MP)=B
for such P.

12.7 THEOREM. The assignment

Ua) L5 (8,5)

is a I'-filtration.

Proof. We must verify the conditions (Var) and (Fil).

For (Var) consider any variable P € T' and element a € a(P). Then for
each z € f(a), we have z ~ q, so that z € a(P), and hence f(a) € p(P).
Conversely, if f(a) € p(P) then, since a € f(a), we have a € a(P) as required.

To verify (Fil) consider any a,z € A with f(a) ——, f(z). Then since
a € f(a) and z € f(x), for each appropriate formula ¢ we have

alk [i{J¢ = zlk¢

as required. W
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12.5 Filtrations sandwiched

So far we have at least two ways of converting the canonical quotient

A—feB

into a I-filtration. These are not the only possible constructions but, as we
show in this section, all compatible I'-filtration structures on B are sandwiched
between (B',\) and (B", p). Before we prove this, a simple observation.

12.8 LEMMA. The identity map

B——>B
b—— b

provides a T-morphism (B, \) — (B", p).

Proof. For an arbitrary label ¢ consider any b,y € B with b —; y. By the
definition of ——, there are @ € b and z € y with a — z. Now consider any
u€band v €y . Then

u~a , T~U

so that, for each formula ¢ with [ ]¢ € I’ we have
ulk o = alk (g =>zl-¢ = vliFo

so that & —, y. This shows that the identity map is a morphism B' — B".

Next consider any variable P € I" and element b € B. If b € A(P) then, by
definition of A, there is some a € b with a € a(P), and hence, by the definition
of p, b= f(a) € p(P). Thus

be A(P) = be p(P)

which is enough to complete the proof. B

Consider now an arbitrary valued structure (B, 5) based on the set B =
Al~. We say (B, ) is I'-sandwiched if both the following conditions hold.

o For each label 7 and elements b,y € B both the implications
b—i»,y = b—;y = by
hold.
o For each variable P € T both the inclusions
A(P) € B(P) S p(P)
hold.
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These conditions delimit the range of I'-filtrations.

12.9 THEOREM. Let (B, 3) be a valued structure based on the quotient set B.
Then the canonical assignment f : A — B provides a I'-filtration if and only
if (B, ) is T'-sandwiched.

Proof. Suppose first that f is a I-filtration. .
Consider any label i and elements b,y € B. If b —, y then there are a € b
and z € y with a — x hence, since f is a morphism

b=f(a) > f(z) =y.

Also if b — y then for each a € b and z € y we have f(a) — f(z), so that

(Fil) ensures that b —, y. Similarly, for each variable P € T and elements
a € A and b € B with f(a) = b, we have

be MP) = a€a(P) = be p(P)
and
be B(P) = a€ a(P) = be p(P)

as required.

This shows that (B, ) is I'-sandwiched.

Conversely, suppose we know that (B, B) is I'-sandwiched. Then, for each
a,r € A, since f is a morphism 4 — B', we have

oz > fl@) S f@) > flo) [
Thus f is a morphism .A — B and it remains to verify (Var) and (Fil).
The property (Var) follows almost immediately using both ends of the
sandwich.

Finally, to verify (Fil), suppose that f(a) 2 f(z) (for some a,z € A).
Then f(a) —, f(z) and hence, for each appropriate formula ¢,

alk [i]¢g = =zl

as required. W

12.6 Separated structures

Recall that in Definition 11.4 of Chapter 11 we introduced the semantic equiv-
alence relation = between two valued structures. As a particular case of this
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we can consider the relation on one valued structure (A, &), i.e. the relation ~

on A given by
For all formulas ¢,
axT &

(A4,0,0) IF ¢ & (A,a,1) IF ¢

for all a,xz € A. We say a valued structure is separated if this relation is just
equality, i.e. if
axr = a=<x

holds for all a,z € A. In this section we observe how filtration constructions
produce separated structures.

Thus, fix the usual data of a valued structure (A4, a), a set of formulas I’
with the induced equivalence relation ~ on A, and the quotient set B = A/~.
Let

f
(A, a) —> (B,5)
be a filtration where the target structure (B, §) is carried by B. Note that

a~z & f(a)= f(z)
holds for all a,z € A.

12.10 LEMMA. In the circumstances given above, the structure (B, 3) is sep-
arated.

Proof. For each a,r € A we have

For all formulas ¢,
e + | |

fla)lk ¢ & f(z) Ik ¢
For all formulas ¢ € T,
fl@lk ¢ & f(z)IF ¢
For all formulas ¢ € T,
=
alk ¢ & Ik ¢

= o~z > f(@) = f(2)
where these implications follow by
e the definition of =,

e restriction,
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e the filtration preservation property,
o the definition of ~,

and finally the above remark.

12.7 Exercises
12.1 Let T be the set of sentences (variable-free formulas). Note that for this

set I" the valuation plays very little part in the notion of a I'-filtration.
Consider the 13 element monomodal structure A

2.
s

o —=—» 0 — 0

[¢]

(o]

p
\o——-o—-o
AV

N

where all the transitions are displayed explicitly (in particular, no node is
reflexive).

[¢]

(a) Determine the equivalence relation ~ on A induced by T

(b) Show that the left-most and the right-most -filtrations of A are identical
and both have just four elements.

12.2 Let N'* and N~ be the two monomodal structures on N (the set of
natural numbers) with transition relations given by

a5 b e b=a+1 , a—be a=b+1.
Let T be the set of sentences.

(a) Show that the left-most I-filtration of Nt effects a complete collapse to
a reflexive point.



12.7. EXERCISES 167

(b) Show that the right-most [-filtration of A/~ is an isomorphism.

12.3 Consider the infinite monomodal structure A4

L L
/
\o o o o
\o \o

where all the transition are displayed explicitly (in particular, no node is re-
flexive) Let T be the set of sentences.
Construct the left-most [-filtration of A.

12.4 Show that the target of a filtration need be neither finite nor separated.

125 Let I" be the set of variables. Let .A be any monomodal structure and
let & be any valuation on A such that for each a € A there is some P € I" with
a(P) = {a}. Determine the left-most and right-most I-filtrations of (A, a).

12.6 Suppose the valued structure (A, @) is both finite and separated.

(a) Show that for each pair of distinct elements a, x of .4, there is a formula
&a,» which distinguishes between a and z in the sense that both

(A,a,a) Ik &, and (A a,7) IF =&,
hold.
(b) Show that for each ¢ € A there is a formula p, such that
(A,a,z2) IF p, & z=a
holds for all z € A.
(c) Show that for each X C A there is a formula 7x such that
(A,a,a) F7x & a€e X
holds for all a € A.
Let 1 be any valuation on A4 and let (-)* be the substitution given by
P 7yp

for each variable P.
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{d) Show that
(A p,a) Ik ¢ & (A ,a,a) I+ ¢*

holds for all elements a of A and formulas ¢.
12.7 Let I be the set of all formulas and let
(4.a) L5 5.5
be a surjective valued morphism.

(a) Show that if f is a zigzag morphism then f is a I-filtration.

(b) Show that if (B, B) is finite and separated and f is a [-filiration, then f
is a zigzag morphism.



Chapter 13

The finite model property

13.1 Introduction
We have seen several examples of completeness results of the form
Fs ¢ < M models ¢

where S is a standard system and M is a suitable class of structures (and ¢
is an arbitrary formula). However, in all of these cases there has been little
or no information about the size of the structures in M. In this chapter we
investigate the consequences of the existence of such an equivalence for a class
M of finite structures.

13.2 The fmp explained

Let S be any standard system and consider the following three classes of finite
structures.

F the class of finite valued structures which model S
G = the class of finite (unadorned) structures which model S
H the class of separated valued structures which model S

For any of these classes K, let Th(K) be the set of all formulas ¢ modelled by
K. Clearly
Th(F) CTh(H) , Th(F) C Th(G)

(since H C F and each valuation on a member of G produces a member of F).
Much of the usefulness of the fmp is due to the following result.

13.1 THEOREM. The three sets
Th(F) , Th(G) , Th(H)
are equal.

169
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Proof. We show that
Th(G) C Th(H) C Th(FF)

which, with the above observation, gives the required result.

For the first inclusion consider any (A,a) € H. From Exercise 12.1 we
know that for each valuation p on A and formula ¢ there is an appropriate
substitution instance ¢* of ¢ such that

A IF o & (4,a)IF ¢*

In particular, since the axioms of S are closed under substitution and (A, «)
models S, we see that (A4, ) also models S. Thus A models S and hence
AeG.

This shows that for each formula ¢,
GETRHG) = Al ¢ = (Aa)l ¢
and hence (since (A4, @) is an arbitrary member of H) we have
¢ eTh(G) = ¢€Th(H)

as required.
For the second inclusion consider any member (A, &) of F and let = be the
semantic equivalence relation on A given by

For all formulas ¢,
axb &

alk¢ o biIFg

(for a,b € A). We know we may slice (A4, @) by = to produce a filtration

(4,0) L5 (8B,5)
for which
Aa,a) k¢ & (BB fla) I+ ¢

for all formulas ¢ and ¢« € A. We know that B is separated, and hence
(B, 3) € H. This is enough to give the required inclusion. B

Now let
S(fin) = Th(F) = Th(G) = Th(H)

so that
|—s ¢ = ¢ (S S(fm)
(for all formulas ¢).
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13.2 DEFINITION. We say the system S has the f(inite) m(odel) p(roperty) if
the above implication is, in fact, an equivalence. B

Although it is not within the scope of this book, it is worth saying a few
words about the consequences of the fmp concerning decidability.

Most formal system S that we are concerned with are such that the set
S(all) of all formula ¢ for which

ks @

is automatically recursive enumerable. This is the case when S is finitely ax-
iomatizable. If such a system also has the fmp then, in fact, it is decidable,
i.e. the set S(all) is recursive. To see this we use the equality S(all) = S(fin)
and the fact that the complement of S(fin) is recursively enumerable. To enu-
merate the complement of S(fin) first begin to enumerate all finite structures.
Using the fact that S is finitely axiomatizable we can extract from this list
an enumeration of all finite models of S. We then enumerate all the formulas
which are not modelled by at least one structure in this second list. This list
of formulas is the complement of S(fin).
We formally record this fact.

13.3 THEOREM. Let S be a finitely axiomatizable system with the fmp. Then
S is decidable.

Let us now continue with our study of the fmp. First we observe that it is
not necessary to use all finite models of a system.

13.4 LEMMA. Suppose S is a standard system and M is any class of finite
structures such that the equivalence

Fs ¢ & M models ¢
holds. Then S has the fmp.
Proof. All the structures in M model S so that either
MCF or MCG
depending on whether the structures are valued or not. But then either
S(fin) =Th(F) CTh(M) or S(fin)=Th(G) C Th(M)
so that for each formula ¢
$p€S(fin) = o¢eThM) = Frs o

which gives the required result. W

The fmp is another way of obtaining completeness.
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135 THEOREM. Let S be a standard system with the fmp. Then S is Kripke-
complete.

Proof. Let M be the class of all the unadorned models of S. Then G C M
and for each formula ¢

Mmodels¢ = Gmodels¢ = +g ¢

where the second implication holds by the fmp. This gives the required Kripke-
completeness. W

Theorems 13.3 and 13.5 show that finitely axiomatizable systems with the
fmp are rather pleasant. Thus it is worth looking at some examples of such
systems.

13.3 The classic systems have the fmp

The classic systems are those monomodal systems whose axioms are the various
combinations of the shapes
D, T, B, 4, 5.

(There are 15 such systems.) We use several different filtrations to show that
each of these systems has the fmp.
To illustrate the method used let us begin with the minimal system K.

13.6  THEOREM. The system K has the fmp.

Proof. Consider any formula ¢ such that
nOt[l—s ¢]

It suffices to produce a finite valued structure which models K but which does
not model this formula ¢.

We know there is some valued structure (A, o) which models K but does
not model ¢. This model may not be finite so we produce the required model
by taking a slice of (A, a).

Let T be the set of subformulas of ¢ and let

(4,a) L5 8.5)

be any I-filtration (say the left-most one). Since I' is finite, the structure
(B, B) is finite and (trivially) models K. Also, for each v € T and a € 4,

(Aa,a) Fy & (BB f(a) IF v
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Finally, there is some a € A with a I+ —¢ and hence (since ¢ € I') we have
f(a) I+ —¢ so that (B, 3) is the required model of K which does not model ¢.
.

We now have to deal with the various axioms D, T, B, 4, and 5. For this
we use a mixture of correspondence properties and preservation properties.
First a rather trivial result.

13.7 LEMMA. Suppose
f

A——>B
is a surjective morphism. Then both

(d) if A is serial then so is B
(t) if A is reflexive then so is B
hold.

Proof. (d) Consider any b; € B. We must produce some b, € B with
by — by. Since f is surjective there is at least one a; € A with f(a;) = b;.
Since A is serial there is some a; € A with a; — a,. Since f is a morphism
this gives f(a;) — f(a2) so we may set by = f(as).

(t) This is proved in a similar way. W

This preservation result is sufficient to show that KD and KT have the fmp.
However it is not strong enough to deal with the other axioms because other
properties are not preserved by mere surjective morphisms. We need a tighter
form of morphism, and this is where filtrations are useful. As an illustration
let us see how we handle the shape B.

13.8 LEMMA. Suppose
f
(‘A) a) —> (Bv ﬁ)

1s a left-most filtration where A is symmetric. Then B is also symmetric.

Proof. Consider any b;,b; € B with by — b,. Since the filtration is
left-most there are a;,a, € A with

fla)=b , flaz)=by , a1 — a.

Since A is symmetric, we have a; — a; and hence, again since each filtration
is a morphism, we have b, — by, as required. B

We can now extend our class of examples of systems with the fmp.
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13.9 THEOREM. Let S be any of the 6 systems whose axioms are taken from
D, T, B.
Then S has the fmp.

Proof. We know that there is a structural property || S || such that for each
structure A
AmodelsS <& Ahas |5 .

Also, from Lemmas 13.7 and 13.8, we know that for each left-most filtration

,0) L5 (8,5)

if Ahas || S || then B has || S ||
Now consider any formula ¢ with

IlOt[ |‘s ¢t]

Since S is Kripke-complete, there is some structure A with property || S || and
which does not model ¢, i.e. there is a valuation « on A such that (A, o) does
not model ¢.

Let T’ be the set of subformulas of ¢ and let f, as above, be the left-most
I-filtration of (A, ). Note that B is is finite (since I' is) and B has property
[| S ||, and hence models S. Finally, since ¢ € T', we know, by the filtration
property, that (B, ) does not model ¢, from which we obtain the required
result. @

We now turn to the shape 4 which, of course, characterizes transitivity. To
deal with this we need a custom built filtration.

As usual, let T' be any set of formulas which is closed under subformulas.
Also let (A, @) be any structure, and consider the canonical I'-quotient

S

A——> B

where

flm)=flaz) & (Vye€Dalky & ap k7]
(for a1,as € A). We convert B into a structure using the transition relation
— given by

For all a; € by,as € by and
by — by & { formulas ¢ with [ J¢ €T,
{al F ¢ = as IF oA 6.

We impose on B the usual valuation 3 given by
be B(P) < (Jac€bd)aca(P)]

(for P € T’ with other values of # unimportant).
This construction is sometimes known as the Lemmon filtration.
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13.10 LEMMA. Let (A, o) be any valued structure with A transitive. Then the
above construction produces a U'-filtration

f
(A, ) —> (B, 5)
for which B is also transitive.

Proof. We verify the various conditions in turn.

To show that f is a morphism consider any a;,a; € A with a; — a,. We
must show that f(a;) — f(az). To this end consider any z; € f(a;) and
Zo € f(ap). Then for each formula ¢ with [ ]¢ € I' we have

o Ik (¢ = a Ik [Jo¢ (since f(x1) = f(a1))
= a Ik [JoA )% (since A is transitive)
= aylk oA o (since a; — as)
= x koA ¢ (since f(az) = f(z2))

as required.
The three conditions (Sur, Var, Fil) hold by construction.

Finally we must show that B is transitive. Thus, consider any by,b,,b3 € B
with
by — by — b3

and let a; € b; for i = 1,2,3. Then for each formula ¢ with [ _|¢ € T we have
alF [Jo = alF oA []¢
= ay It ¢ = a3 lF oA []o

so that by — b3 as required. W

This result with Lemma 13.7 is enough to obtain the following result.
13.11 THEOREM. The three systems
K4 , KD4 , KT4=54
all have the fmp.

Next we look at the combination of transitivity and symmetry, i.e. the
models of KB4. Again we need a custom built filtration. Thus consider the
usual data of a finite set of formulas I’ which is closed under subformulas, let
(A, @) be any valued structure, and consider the canonical I'-quotient

AL>B

We convert B into a structure B using a transition relation — and then
impose the usual valuation 3 on B. For transitivity and symmetry the appro-
priate relation is defined as follows.
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by — b, & Forall a; € b; and ay € by and formulas ¢ with [ ¢ € T,
ailk ¢ = ay koA 16

and

aalt (¢ = a koA [0
I will leave the proof of the following to you.

13.12 LEMMA. Let (A, a) be any valued structure with A transitive and sym-
metric. Then the above construction produces a I'-filtration

f
(Aa a) —— (Ba ﬂ)
for which B is also transitive and symmetric.

These results are enough to prove the following result.

13.13 THEOREM. Let S be any of the 11 standard formal system whose azioms
are made up of various combinations of the shapes D,T,B, and 4. Then S has
the fmp.

We now consider the systems formed by extending the above 11 systems
by the addition of the axiom 5. This gives us four new systems K5, KD5 and
K45, kD45.

The axiom 5 alone, which captures the euclidean property, is a little more
delicate to deal with. We need a bit of a preamble.

Starting from any set I' of formulas, which, as usual, we assume is finite
and closed under subformulas, we first set

Or = {O¢lgel} , O = {OolseTl}
and then set
r* =ruJrur.

Thus I' C I"* and I'* is also finite and close under subformulas. We now iterate
this construction to get

I-\0 =T s Fr+1 = (Fr).
for each r < w, and then set
r = | H{D | r <w}

In general I'* is closed under subformulas but need not be finite. However,
when we work relative to the base system K5, we can retrieve finiteness.

By Exercise 8.6 of Chapter 8 we know that modulo K5 each formula has just
finitely many modal variants. More precisely, we know that for each ¢ € I'™*
there is some 0 € I'** with

Fks ¢ 6
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so that I'™* contains no more information than I'**.
Consider any valued structure (A4, @) and let

f

A——> B

be the canonical I"**-quotient. Let — be the transition relation on B given
by

For each a; € by,ay € by and formula ¢ € I'**,

a; Ik (o = az IF ¢

and

a; F $op <= ay ik o

Note the direction of the second implication in this definition.
This gives us a structure B on which we impose the usual valuation.

h— b, &

13.14 THEOREM. When the structure A is euclidean, the assignment f pro-
duces a '**-filtration

UL 8.8

where B is also euclidean.

Proof. We verify first that f is an unadorned morphism. Thus consider
any T;,%; € A with
Ty — T2

and any ey € f(z1), a2 € f(x;). For each ¢ € I'** there are 9,8 € I'** with

bks (Joev , ks Op e 8

and (since A models K5) both of these equivalences hold in .A. Hence

alk e = by
= 1'1”‘1!)

= z Ik ¢ = a k¢
where these implications follow by
¢ the above equivalence,

¢ the I'**-induced equivalence,

¢ the above equivalence,

the transition z; — x5,

the I'**-induced equivalence.
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A similar argument shows that

a; I+ <>¢ < a2 |- ¢

and hence we get
f@1) — f(=2)

to verify the morphism property.
The remaining properties required for a filtration are straight forward.
Finally, we must show that the target structure B is euclidean.
To this end consider any elements by, by, b3 of B with

/

by

\

bs.
We show that b, — b3. Thus, consider any
a1 €Eby , ay€by , az€b;
and any formula ¢ € I'**. Then
alr [Je=>alk OO = a b (¢ = a3 IF ¢
where these implications follow by
o the K5-equivalence trick used above and the definition of b, — bs,
e the variant <> []¢ — [J¢ of the 5 axiom,
e the definition of by — bs.
A similar argument shows that
az Ik ¢ <= a3z Ik o

and hence by, — b3, as required. B

A routine argument now gives the following.
13.15 THEOREM. The two systems K5 and KD5 have the fmp.

Finally, it remains to deal with K45 and KD45 which are the systems that

capture transitive and euclidean (and serial) structures. Here we use the rela-
tion
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by — by < Forall a; € b, and a, € ay and formulas ¢ with [ ¢ € T,
alF [J¢ = alk Ao

and
- [Jo & alk ¢
and then impose the usual valuation on the structure.

13.16 LEMMA. Let (A, @) be any valued structure with A transitive and eu-
clidean. Then the above construction produces a I'-filtration

4,0) L8,

for which B is also transitive and euclidean.

Proof. Assuming we have already shown that the construction does give a
[-filtration, let us see why it preserves the euclidean property.
Thus consider any b;, by, b3 € B with

/

by

\bg.

We must show that b, — b;. To this end consider any a; € by, as € by, a3 € by
and consider any formula ¢ with [ ]¢ € I'. Then the definition of — on B
gives

sl [J¢ = alk o = alk o
and

as IF qu@al I+ D(b@a;; I+ D¢

so that b, — b3, as required. B
Putting all of this together with various earlier results we have all the
ingredients for the proof of the following.

13.17 THEOREM. Let S be any standard system whose arioms are made up
of various combinations of the shapes D, T, B, 4, and 5. Then S

o is finitely aziomatizable,
o is Kripke-complete,
o has the fmp,

e s decidable,
and hence S s very pleasant.

I will leave you to provide the various details.
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13.4 The basic temporal system has the fmp

So far we have used the filtration technique to obtain the fmp only for mono-
modal systems. However, the technique can also be used with polymodal
systems, but some of the details are a little more intricate. As an example of
this let us show that the basic temporal system TEMP has the fmp.

Recall that, from Chapter 8, Section 8.4 the models of this system are the
temporal structures, i.e. the structures

A=(4, 5 =)

where the two relations are converses of each other and both are transitive.
Fix such a structure together with a valuation o on 4. Fix also some set T’
of formulas which is closed under subformulas. (In any application this will
be the set of subformulas of some given formula.) The proof of the fmp boils
down to the construction of a I'-filtration

“4,0) L5 8.5)

where B is also a temporal structure.
To do this consider the canonical I'-quotient

A—faB.

We will furnish B with two transition relations —t, — converting B into the
required temporal structure B, and then impose the usual valuation § on B.
Thus define =, — on B as follows.

b N by & Forall a; € by, ay € by and for all formulas ¢,
(+) if [+]¢ € T then
ok [Fé = aylk oA [F¢
(=) if [-]¢ € T then
aalF Ho = a koA [

by — by & Forall a; € by,a, € by and for all formulas ¢,
(=) if [-]¢ €T then
alt Ho = alk¢n e
(+) if [+]¢ €T then
ay Ik [#l¢ = a Ik ¢A [+]¢

Let
B=(B,—, =)

We need to check several things.

13.18 LEMMA. The function f is a morphism A —> B.
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Proof. Consider first any a;,a; € A with a; = a,. We must show that
f(a1) = f(az). To this end consider any z; € f(a1),z2 € f(as) and any
formula ¢. Then:

if [+]¢ € T then

o b [H¢ = a b [+]¢ (since 7; ~ a,)
= a Ik [#oA [+]%0 (by axiom 4)
= ay Ik oA 4]0 (since a; - ay)
= z koA [+]d (since ay ~ x,)

and

if [<]¢ € T then

b [F¢ = a Ik [Ho (since x5 ~ a,)
= a; Ik [Hon P9 (by axiom 4)
= a; koA [Ho (since a; — a,)
= x; Ik oA [ (since a; ~ x1)

which gives the first required result.
A similar argument also shows that

a—a = f(a1) — f(az)
to complete the proof. W
This with a couple of trivial observations shows that we have constructed
a I-filtration ;
('Aa a) —_—> (B ) :8 )

and so it remains to show that B is a temporal structure.

Clearly (by definition) the two relations — —— on B are converses. Thus

the final required piece of information is provided by the following.
13.19 LEMMA. Both the relations of B are transitive.
Proof. Consider any by, by, b3 € B with
by =5 by 5 by
and consider any a; € by, ay € by, az € bs. Then, for each formula ¢,
(+) if )¢ €T then

a lk [#d = ax ik oA [+]o
= ay I+ [+]¢ = a3k oA [Fo
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and
(=) if [-]¢ €T then

ai b [l = ax ik oA [Flo
= a Ik [-]¢ = a3 lF oA [F]¢

which shows that b —— b, and hence — is transitive.
A similar argument shows that — is also transitive. B

I now expect you to fill in the details of the following result.

13.20 THEOREM. The basic temporal system
o is finitely ariomatizable,

¢ s Kripke-complete,

o has the fmp,

o is decidable,

and hence is very pleasant.

13.5 Exercises

13.1 Let S be a standard formal system axiomatized by a single sentence. By
Exercise 10.1 of Chapter 10 we know that S is canonical. Now show that S
has the fmp.

13.2 Show that a left-most filtration of a pathetic structure has a pathetic
target. Hence show that

KP, KDP, KTP, KBP
all have the fmp.
13.3 Recall that the shape
(k)¢ — [l [1]¢

(for arbitrary ¢) captures a certain composition property. Let A be the 4-
element structure

t
o — O O—J—->

consisting of one i-transition, one j-transition, and no k-transitions. By con-
sidering a certain valuation on .4, show that the above formula need not be
preserved by left-most filtrations.

13.4 Filtrations are useful because of their preservation properties.
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(a) Show that for arbitrary labels ¢ and j the shapes

i) [Jo— &¢ (i) [J¢— Ule
(i) ¢ — []<w¢ (v) [l¢— [<e

are preserved by left-most filtrations.

(b) Consider that particular case of (ii) where 7 labels [] and j labels []%.
Thus the shape [ ¢ — [2¢, i.e. transitivity, is preserved by left-most
filtrations. What, if anything, is wrong with this argument?

13.5 Consider the formal system KE of Exercise 10.2 of Chapter 10.

(a) Show that KE has the fmp.
(b) Show that the extensions KBE and KDE have the fmp.

(¢) Using a modified Lemmon filtration, show that KE4 has the fmp.

13.6 Consider the formal system KF of Exercise 10.2 of Chapter 10.
(a) Show that KF,KBF and KDF have the fmp.
{(b) Show that KF4 has the fmp.

13.7 Counsider the two shapes E and F of Exercise 10.2 of Chapter 10.
(a) Show that KE5 has the fmp.
(b) What can you say about KF57?

13.8 Recall the notion of a good structure introduced in Exercise 4.12, namely,
a

monomodal structure which is transitive and serial and such that each of its
elements can see a reflexive element. Suppose the monomodal valued structure
(A, @) is transitive and serial (but not necessarily good). For an arbitrary
formula ¢ let T be the set of subformulas of ¢ and let

(A, a) —> (B, )
be the Lemmon [-filtration.

(a) Show that B is good.

(b) Show there is no formula whose models are precisely the class of good
structures.






Part V

More advanced material

We have isolated three important properties of standard formal
systems: being canonical, and having the fmp, both of which imply
the third property of being Kripke-complete. We have also seen may
examples of systems with these properties. In this part we look more
closely at the connection between these properties.

In each of Chapters 14 and 15 we look at a system which has the fmp
but is not canonical. Both of these systems have independent interest.
In Chapter 16 we consider a system which is canonical but does not
have the fmp. This system is custom built to have these properties
but may, in time, be found to have interest in its own right. Finally,
in Chapter 17, we look at two systems, one of which has all three
properties and the other having none of the properties. Furthermore,
these two systems have precisely the same class of unadorned models.

Taken as a whole these four chapters hint at some of the complex-
ities that can arise in modal logic.
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Chapter 14
SLL logic

14.1 Introduction

Dynamic logic is an extension of polymodal logic designed to aid the analysis of
the content and shape of programming languages. The labels of the signature
are thought of as particular programs. Each transition structure is thought of
as a machine on which these programs may be executed, with the elements of
the structure corresponding to the various possible states (or configurations)
of the machine. Given two such states a and b and a program (label) 1,

i
a—b

indicates that a run of the program ¢ in the machine when it is configuration
a may result in a transition to configuration b. (The ‘may’ here allows for
non-deterministic runs, so there may be other resulting configurations as well.
Executions of the program i are deterministic precisely when the relation —— is
(partially) functional.) Formulas of the corresponding modal language express
properties of the machine states. So a state will satisfy [i]¢ if after any
execution of program ¢ from the state, the resulting state satisfies ¢.

So far this is just a matter of using different words for familiar notions,
however dynamic logic also has some additional facilities.

Firstly, programs can be combined in various ways, and this imposes an
algebraic structure on the set of labels which must be reflected in the logic.
For instance, given two programs ¢ and j we may combine them sequentially
or non-deterministically

ij o, 1Uj.
Here ij is the program which, when run, first executes i and then executes
j; and 7 U j is the program which, when run, will execute either ¢ or j non-
deterministically. Thus we see that both

[k]¢p < L] [J¢ and [Jo o [ioA [i]e
where k = 4j and [ = i U 7, ought to be part of the supporting logic.

187
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A less trivial example to handle is caused by an undetermined repetition of
a program. For a program ¢ let i* be the program which executes i an indef-
inite, but finite, number of times. Thus, morally, i* is the non-deterministic
combination

PUuivEUEIU.
(where 0 is the program which does nothing), and we would like

“Iklg = oA (oA [H]oA fon--- 7

where k = 7*, to be part of the supporting logic. Unfortunately the right hand
side of this is an infinite conjunction, so we can not regard it as part of the
modal language. In this chapter we will see how the desired effect can be
achieved in a different way.

As I have remarked already, each formula # expresses a property which a
state may or may not have. But this means it is possible to have a program

67

which, when executed at a state, will test whether or not that state satisfies

8. More precisely, we want

97
a—b

to hold when
a satisfies# and a=0b

so that
¢ « (0 —¢)

should be part of the supporting logic. This kind of axiom is not hard to
handle but the whole construction does introduce a new order of complexity.

Formulas are constructed from labels (and other syntactic entities). Usually
these labels are atomic objects, but now we have a method of constructing new
labels from formulas, which in turn give new formulas, which in turn spawn
new labels, from which we obtain new formulas, etc. This means that in its
full generality the language of dynamic logic is highly nested and a formula can
have a rather intricate structural complexity. Consequently some extra care
must be taken when working through a proof by induction on the structure of
a formula (which, in practice, means almost all proofs).

In this book we will not concern ourselves with this second problem. We
restrict our attention to the first problem, namely of how the x-closure of
a relation can be captured in modal logic. If you are interested in a fuller
development of dynamic logic you may like to start with [27, Chapter 10] and
then move on to [28].
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14.2 The *-closure of a relation

Given a relation — on a set A, the x-closure of — is the least reflexive and
transitive relation on A which includes —. Thus if = is this *-closure, then

*

a—b
holds precisely when there is a chain xy, z1,...,z, of elements of A with
Aa=Tg— T3 — -+ — Tp=>b

In particular, the case n = 0 ensures that — is reflexive, and the case n = 1
ensures that —— includes —. Since such chains can be concatenated, we see
that — is transitive.

In this chapter we consider a modal language with just two labels and
corresponding modal operators [ | and [¢]. Thus the transition structures
for this language have the form

A= (4,—, )

We say such a structure is a x-structure if —— is the *-closure of —. We will
exhibit a set of axioms which ensure that a structure (of the above signature)
is a *-structure, and discuss the completeness of the corresponding formal
system.

14.3 The axioms for SLL

Consider the set of all formulas of the following shapes.

(x1) [lo—o
(x2) [Jo— [1[-J¢
(*3) [l — UJs) = (¢ — [J9)

These axioms, which are sometimes known as ‘Segerberg’s axioms’, are an
important part of the axioms for dynamic logic, and although they are still
somewhat weaker than this full set, they do provide an example of a formal
system which is slightly more interesting than most of the ones considered so
far in this book. We name this standard formal system SLL.

Note that both (*1) and (*2) are general confluence axioms (as described
in Chapter 6). In particular we know that (x1) ensures that the relation —
is reflexive, and (*2) ensures that the composite — — is included ——. The
shape (*3) is new, and has the general form of an induction axiom.

The combined content of (x1,2, 3) is given by the following correspondence
result.
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14.1 THEOREM. For each structure
A = (A’ —, —'))
the conditions

(i) A s a *-structure
(1) A models SLL
(iii) For some variable P, the structure A models the three formulas

[]P - P
[]JP— [J[]P
[J(P— [OP)— (P — [-]P).

are equivalent.
Proof. (i) = (ii), Suppose that .4 is a *-structure. From the confluence

results we know that .4 models (x1) and (x2), so it remains to check (x3).
Suppose, for some formula ¢, valuation «, and element a, that

alk [J¢—[l¢) , alkg

and consider any element b with

a—"b.

We must show that b I+ ¢. By (i) there is a chain of elements
a=T9g— T —> -+ —> T, = b.
Note that ¢ — z, for each 0 < r < n and hence

z, Ik ¢ — [l¢.
This gives
2, k¢ = 2o IF &
so that (since zo I+ @) we have z,, I+ ¢, i.e. b IF ¢, as required.
(ii) = (iii). This is trivial.
(iii) = (i). Suppose that (iii) holds. From the first two components we

know that
-2 is reflexive

and

L] *
a—b—c=a—c

(for all a,b,c € A). In particular we may set b = ¢ to get

a—b = a-—=b
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i.e. — is included in ~—. But now we have
L] L]
a—b—oc=>a—Db—c=a—c

and then a simple induction shows that the x-closure — is included in —-.
It thus remains to verify the converse.
For a fixed element a, consider any valuation o on .4 such that forallz € A

zlFP = a-"z
(where P is the given variable of (iii)). Consider any element b with
a—b , bl P
Then a — b so that, for each element z
b—z = a-5b-"zr =>a—z =zl P

ie. b IF [JP. Thus
a Ik [P — [JP),

and, trivially, a I+ P. The third component of the hypothesis (iii) now gives
al+ [«]P

so that
a—2b=a-b

as required. B

Now that we have this correspondence result it is tempting to try to follow
the usual path to show that SLL is Kripke-complete. However, this path doesn’t
reach the required destination.

14.4 SLL is not canonical

As with every standard formal system, SLL has a canonical valued model (&, o)
which is characteristic for SLL (in the sense that

Fsie ¢ & (6,0) IF” ¢

for all formulas ¢). However, unlike the other systems we have considered
so far the unadorned structure & does not model SLL, i.e. the system is not
canonical.

To fix the notation let

6 = (Sa -, ;))

This structure & does have some of the properties required to be a x-structure.
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142 LEMMA. (a) The relation —> is reflezive and transitive.
(b) The relation — is included in ——.

Proof. (a) As before, axiom (*1) ensures that —— is reflexive. Note also
that a combination of axioms (%2, 3) and rule (N) gives

Fsu [l — [1%¢

and this ensures that —— is transitive.
(b) Consider any s,t € § with s — ¢. Then, for each formula ¢, axioms
(x1,2) give

tloes = [[slopes = [*loet = ¢t
so that s — ¢, as required. W

An immediate consequence of this result is that the *-closure — of —
is included in ~2». We will see how the converse fails, and hence & is not a
*-structure. To do this consider the *-structure
N = (N y -—), ;))
where for each m,n € N
m-—n & n=m+1.
Since, by definition, — is the *-closure of —, we have

m——n & m<n.

Trivially A models SLL.
For a fixed n € N and a variable P, consider any valuation on A for which

0,1,....n% P , n+1lIF P

Thus
Ol PA[JPA---A[J"PA-[s]P.

This shows that each finite part of
® = {(J*PkeNtu{-[]P}
has a pointed valued model, and hence is SLL-consistent.

14.3 THEOREM. The canonical structure & is not a *-structure.



14.5. A FILTRATION CONSTRUCTION 193

Proof. The SLL-consistent set ® exhibited above provides us with some
s € S with
[(J"Pes and -[*]JP€s

for all n € N. The negated formula gives us some t € S with

§——t

, -Pet.
But then s — ¢ can not hold, for otherwise there is some sequence
§=8§ —8 — - — 8 =1

which (since [J¥P € s) gives P € t.
This shows that —— is not included in — which is enough for the required
result. B

Theorem 14.3 shows that SLL is not canonical but, as we will see in the
next section, it is still Kripke-complete and decidable.

14.5 A filtration construction

In this section we look at a construction which will provide the basis of a proof
that SLL has the fmp (and hence is Kripke-complete and decidable). Thus,
consider any structure

A = (A, —, —°—>)

together with a valuation « on A for which
(A, o) models SLL. (14.1)

In the eventual application of the construction this structure will be given to
us (and in all cases could be taken to be the canonical valued structure for
SLL). Note that we are not assuming that 4 is a x-structure.

As usual the construction also depends on a given set of formulas I'. This
set will have the following closure properties.

[ is closed under subformulas. (14.2)
For each formula §, [*]#eT = [ ][+]9ecT. (14.3)
T is finite. (14.4)

Note that for any formula ¢ there is at least one set I' satisfying (14.2,14.3,14.4)
with ¢ € T'. In fact there is a smallest such I" obtained by first closing off under
subformulas and then closing off under property (14.3). The fact that this I’
is finite is something that you should verify.
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With this structure A and set I" we consider the usual equivalence relation
~ on A given by

a~z & VeD)alk 8 &z I- 6

(for a,z € A). We then set
B=A/~

and we let @ — a™ be the canonical quotient function A ——= B. Note that,
by (14.4), the set B is finite. We will construct a certain valued structure
(B, 3) based on B.

We make use of a definability property (which is reminiscent of an earlier
result).

14.4 LEMMA. For each element a of A and subsetY of B, there are formulas
Aa and py such that

() z~a Szl A,
(m) 27 €Y &z Ik py

for each x € A.
Proof. We first set
da = N{6eT|alt }A-\{#eT|al -8}

and then set
By = Aga) VotV Ag(n)

where a(1)~,...,a(n)” is an enumeration of Y. B

Next let = be the relation on B given by
by & (3acbhzeya— 1

(for b,y € B), let — be the *-closure of —, and set

~

B = (B, ).

By construction B is a *-structure and hence is a model of SLL. Lemma 14.4
gives us some information about the definability of ——.

145 LEMMA. For each element a of A there is a formula v, such that for all
T €A
a1 & (Aa,1) ko,

Furthermore, we have (A, a,a) \+ [«]u,.
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Proof. For a given a € A let
Y = {z7|z€ Aand a~ - 27}

and set ¥, = py. The required equivalence follows by part (m) of Lemma 14.4.
For the second part we first show that

(A, a,a) b [*](ve = [va)- (14.5)
To this end consider any element x of .4 with
a>z , zl v,

This second condition gives

~ X~
a — T

and we require z |- [Jv,. Thus consider any element u of A with r — u.
Then, by construction of —, we have

~ % ~ R~
a —Tr —Uu

so that

and hence u I+ v,, as required.

This verifies (14.5).
Now, by (14.1), we know that (A, a) models the axiom (x3), so that

(A,a,0) IF v, — []v,.
But, trivially, ¢ IF v,, and hence a I [*]v,, as required. B

It is worth observing that the full power of (14.1) has not yet been used.
So far we have used only that (A, o) models (x3); as yet the axioms (*1,2)
have not been needed.

146 COROLLARY. The assignment a — a~ provides a surjective morphism
A— B
that is, the implications

a—zI = a0 — 1z~

. ~ _* o~
a—T = a4 —T

hold for all a,x € A.
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Proof. The first implication holds by construction and the second holds
since a I [*]v,. The surjectivity is trivial. B

Of course we are working towards something stronger than this.
Notice that, by construction of ~, for each variable P € I" and b € B we
have

(Jaeb)a - P] & (Vaeb)a - P

Thus we may define a valuation 3 on B such that for all P € " and a € A we
have
a€a(P) & o~ € B(P)

with the values S(P) for other P irrelevant. We fix such a valuation on B.
147 LEMMA. A T-filtration

(A, @) —> (B, 5)
is provided by the assignment a — a”.

Proof. From the above remarks it suffices to show the following for all
elements a,z of A and all formulas 8.

eIfav = g~and [J#el, then alt []0 = z IF 6.
o Ifa >z~ and [¢]0 €T, then alF [¢]6 = z IF 4.

The first of these holds by the construction of =~ from —.
For the second, suppose that

so there is a sequence of transitions

a~=aa";a;’_)..._)a

For any formula § with [+]¢ € T we have [ ] [»]6@ € T (by closure property
(14.3)), and hence, for each 0 < r < n, a use of axiom (*2) gives

a- &+ [+J0 = a. v (J[J0 = arqy1 IF [2]6
which, by a simple induction, gives
alk [0 = z Ik [+]6.

The required result now follows by axiom (x1). B
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14.6 The completeness result

Let M be the class of all *-structures and let M(fin) be the class of all finite *-
structures. Both of these are classes of models of SLL and, in fact, characteristic
classes.

14.8 THEOREM. For each formula ¢, the three conditions

(i) Fsu @
(i) M models ¢
(111) M(fin) models ¢

are equivalent.

Proof. Ounly the implication (iii) = (i) is non-trivial.

Suppose that M(fin) models ¢ and consider any valued structure (A, a)
which is characteristic for SLL (say, the canonical valued model). We show
that (A, a) F* ¢.

Consider any set of formulas I' satisfying (14.2,14.3,14.4) with ¢ € T, and
let (B, B) be the I-filtration of (A, ) constructed in the previous section. Then

(A,a) I ¥ < (B,B) IF° ¢

for all formulas % € I'. In particular, since B is a finite model of SLL, we have,
B IF* ¢, so that (B, ) IH* ¢, and hence (A, «) IF* ¢ which gives the required
result. W

This result completes the proof of the following.

14.9 THEOREM. The formal system SLL has the fmp (and hence is Kripke-
complete) but is not canonical.

14.7 Exercises

14.1 Show directly that ks, [*]¢ — [+]%¢.

14.2 Consider a ticking clock structure A as in Exercise 8.14 of Chapter 8,
with next instance function next. This gives a model of Segerberg’s axioms
(with [] replaced by (). Let S be the formal system axiomatized by this
form of Segerberg’s axioms together with the shape

Op = ~0O ¢
Given an element a of A and r € N, write

a(r) for next’(a).
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Given a valuation « on A let v be the valuation on A (the structure used in
Section 14.4) given by

rev(P) & a(r) € o P)
(for all variables P).
(a) Show that the assignment r — a(r) is a zigzag morphism

WV, v) —> (4, ).

(b) Show that both
N,v,r) IFP ¢ & (A a,a(r)) I ¢

and

NIF ¢ = AIF ¢
hold for all » € N and formulas ¢.

(c) Find an example to show that this second implication need not be an
equivalence.

(d) Show that S is not canonical.
14.3 For m,n € N an (m,n)-spoon is a set A of m +n + 1 elements
@=0ag,01,...,8m =C , Cc=by,by,....b,=c¢
furnished with a ‘next’ function given by

next(a;) = @iy for0<i<m
next(b;) = bjn for0<j<n.

Pictorially this is

a=ag —=Q3 — - —ay=c b

by ~—— e

This gives us a ticking clock structure A = (A4, —, —) which eventually
cycles and which, of course, models SLL.
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Let
f:N—> A
be the function given by
fi@d) = o for0<i<m
fm+kn+3) = b, for0<j<mn

(in particular f(m) = ¢).
It can be shown that for each formula ¢ and valuation v on N with
N, 1,0) I+ ¢
there are m,n € N and a valuation g on N such that
(N, 1,0) IF ¢
and

m+reuP) & m+n+r€ p(P)
for all » € N and variables P in ¢.

(a) Show that

next*(f(r)) = £(r + )
for all »,s € N.

(b) Show that f is a p-morphism N —> A.

(c¢) Show that for each formula ¢,

N IF ¢
holds if and only if
Al ¢
holds for all spoons A.

14.4 For an arbitrary set A let [ be an arbitrary box operator on PA (where
[T need not be induced by a transition relation on A). An S-companion of
[ is a box operator [+] on PA satisfying

(+1) [IX C X

(2) [IXxc OCx

(x3) [J(X — 0OX) € (X - []X)
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for all X C A. (Thus the pair [], [] satisfy Segerberg’s axioms).
For each X C A set
DX = Xn X

and let
(D*X | @ € Ord)
be the ordinal indexed chain defined by
DX = X
Da+1 D(DO‘X)
D* = N{D*X |a< A}

(for each ordinal « and limit ordinal A).

(a) Show that an S-companion is idempotent.

(b) Show that [[] has at most one S-companion.

(c) Show that D is deflationary, monotone, and N-preserving.

(d) Show that for each X C A there is a unique largest Y C X with DY =Y.

(e) Show that setting
[(]JX = theY of (d)

produces the S-companion of .

(f) Show that
[]X = D®X

for some suitably large ordinal oo.

(g) Show that if [] is induced by a transition relation then this ordinal co
is just w.

14.5 Suppose that A is a model of SLL and the generating transition relation
is already reflexive.

(a) Show that .A models
[IOP - [P

if and only if for each element a there is some element b with ¢ — b
and where b can see only itself.

(b) Does this generalize the result of Exercise 5.8 of Chapter 57



Chapter 15

Lob logic

15.1 Introduction

L&b logic is the study of the shape L(¢), i.e.

O(Ll¢ —¢) — o

We have seen that the models of this shape are the transitive well-founded
structures, but apart from that, you may ask, what is so special about it?
Why pick out this one from amongst a whole host of equally dreary looking
shapes? To answer this question, and hence motivate the study of Lob logic,
we must look at the history of an apparently unconnected part of mathematics;
namely Godel’s incompleteness theorem.

Consider the first order structure

N = (N1+7 X7370a1)

that is, the natural numbers N furnished with the usual arithmetical attributes.
Elementary arithmetic is the study of the first order properties of M. To
do this we work in an associated first order language £ and analyse various
recursively axiomatizable theories T which, we hope, will completely capture
the elementary properties of A/. The main theory studied is Peano Arithmetic,
but there are others as well.

By construction (or assumption), the theory T is sound in the sense that

TFo = NECG? (15.1)

for each sentence o of £. (Here, F and |= are the first order entailment and
satisfaction relations. They should not be confused with modal relations with
the same notation.)

The objective of the whole exercise is to obtain a recursively axiomatized
theory T for which the soundness implication (15.1) is an equivalence. Before
1930 it was more or less expected that eventually Peano Arithmetic would turn
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out to be such a theory, but then Gédel proved his incompleteness theorem
which simply says that there is no such theory.

The method of proof used by Godel is to show how the external behaviour
of T and its associated entailment relation F can be mimicked within 7. Thus
we first show how each sentence ¢ has a name "¢ in £ which is a numeral
(denoting some natural number and called the gédel number of o). We then
construct a certain formula Th(-) of £ (containing just one free variable) which
captures I in the sense that for each sentence o,

Tho & N Th("oD). (15.2)

Here Th("¢") is the sentence obtained by replacing each occurrence of the free
variable in Th(:)) by the numeral "¢ ™.

The next step is to show how many of the important consequences of (15.2)
are actually deducible in T. It turns out that these consequences can be
reduced to just three instances, called the derivability conditions. (They were
first isolated by Hilbert and Bernays, and then slightly modified by Léb.) The
conditions assert that for all sentences ¢ and T,

(Dl) T+ o = T+ Th("a™)
(D2) Tt Th(Fo —77).—.Th("6™) — Th("17)
(D3) T F Th(To™) — Th("Th("o™)")

hold. Notice how these are reminiscent of the rule(N) and the axioms K and
4 of modal logic.

The final component in the Gédel incompleteness proof is the fixed point
property. In the first instance this asserts that for each formula ¢(-) with just
one free variable, there is a sentence 6 with

TF 6o ¢(T8).

For most purposes we don’t need this generality; the following instance will
suffice.

{A) For each sentence ¢ there is some sentence 6 such that
T+ 6 < [Th(67) = o]
holds.

Notice that if we take the trivially false sentence L for o, then (A) provides
us with a sentence v with

T+ v e =Th("™y7). (15.3)

By (15.1) this displayed equivalence holds in A/ (i.e. is true) and then (15.2)
provides us with an informal reading of v,



15.1. INTRODUCTION 203

v: T am not provable (in T).

A few more mental acrobatics shows that this sentence v ought to be true, and
hence

STEA , NEY

so that the implication (15.1) can not be reversed. In detail, using (15.3) and
(15.1) and then (15.2) and finally (15.1) again, we have

NE-vy=>NETH("Y)=>TkFy = NEY

and hence N |= v. But then N | =Th("y") and hence ~[T + 4] (by (15.3)
and (15.2)), as required.

The informal reading of the Goédel sentence -y suggests that we should also
look at a formalized version of

I am not provable

i.e. a sentence n with
T+ ne Th{( ™). (15.4)

(The fixed point property ensures that such sentences do exist, although they
are not immediately obtainable from the version (A).)

Twenty years after Godel’s result (i.e. around 1950) Henkin asked about
the truth value of . Unlike v, this is not immediately decided by informal
arguments. The correct answer was given a few years later by Léb, and this is
where the derivability conditions come into their own.

Given an arbitrary sentence 7 satisfying (15.4), use (A) to obtain a sentence
4 such that

TF 6o [Th(T6) — n).

Using the implication —, applications of (D1, 2) give
T F Th("67) = Th("¢™)
and
T+ Th("¢?) = .Th("Th("67")") — Th("™n™)
where here
o is Th("6™) — 1.
But now (D3) gives
T+ Th("6™y — Th(™n")
which, by (15.4), gives
T+ Th("6M) - n
and hence we have verified that 7 + 4. A final application of (D1) gives

T + Th("6) which, from above, shows that T 5. Thus the Henkin sentence
is provable (and hence true).
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It is clear from this argument that once we have used (A) to obtain the
sentence §, the rest is a modal computation in the system K4. This prompts us
to look at whether K4 can be extended so as to incorporate a suitable version
of (A). The crucial observation was made by Macintyre and Simmons in [39]
(although there it is not expressed in modal terms).

15.1 THEOREM. Let S be any standard formal system extending K4. For each
formula ¢, the following are equivalent.

(i) Fs L(g).
(ii) There is a formula § such that ‘s 6§ & ([]6 — ¢).

Furthermore, if there is such a formula é then
Fs [J6« o , Fsd=(é—9¢)
and hence 6 is essentially unique.

Proof. (i) = (ii). Suppose that (i) holds, i.e. that

Fs LI —¢)— Lle

and set

6:= ¢~ 9
so that

Fs [J6 — [o.
But, trivially,

|—s ¢ e d 6

so that, by (EN), we have

Fs o — (6.
Thus

Fs (16« o

and we may replace [ |¢ by []6 to get
Fs 6 = (16— @)

as required.
(ii} = (i). Conversely, suppose that

Fs 5(—)([]5—)(]5)

Then
}—55/\D6—+¢ , Fsodp—6
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so that (N) and K give us
bs [J6A % — ¢ , ks (e — (16

which, using 4, shows that

Fs (16« ¢

and hence
Fs 6 « ([Jo — ¢).

This last equivalence gives

Fs L(¢) < ([J6 — [¢)

s0 that, using the previous equivalence, we have g L(¢), as required. B

This result opens up a whole new field of enquiry.

First of all the routine properties of the modal system K4L should be es-
tablished. I do this in the rest of this chapter. In particular I show that K4L
is not canonical but does have the fmp (and hence is Kripke-complete and
decidable).

Theorem 15.1 shows how the shape L captures the fixed point principle
(A). But what about other fixed point principles (such as the one required to
obtain the Henkin sentence 7)? In the early 1970s this question was studied
intensively by two groups of people, one centred in Amsterdam and the other
in Sienna. The outcome of this study was a quite general result of which a
particular case is as follows.

Let ¢ be a modal formula containing a variable P all of whose
occurrences lie within the scope of [ ]. Then there is a formula §
such that

|_K4L 6o ¢[6 for P]

All variables in é also appear in ¢ and, naturally, P does not occur
in 6. There is a certain unicity about é since

Frka (P o d)A [LI(P = ¢).—.(P e @)
holds.

Another direction of enquiry concerns the interpretation of [ ] as Th(.),
and to what extent the properties of Th(-) are captured by K4L. This was
solved by Solovay around 1975 when he obtained a completeness result which,
in imprecise terms, shows that K4L is exactly the theory of Th(:).

We won't look at these more advanced results in this book. If you are
interested, a rather turgid account is given in [14]. A far more readable and
comprehensive account is given in [44], and the survey article [43] is well worth
a read. An amusing account of this use of modal logic is given in [45).
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15.2 The system defined

Let LL be the standard formal system axiomatized by all formulas of the shape

Lg): (e —¢)— Lo

Note that we have not included the shape 4 as an axiom of LL. This is because
we don’t need to.

15.2 LEMMA. For each formula ¢,

Fu (¢ — 1%
holds.

Proof. For the given formula ¢ set ¥y = ¢ A [_]¢. Then

Fe Oy — OleA (%9
so that
b ¢ = (LY — ¥)
and hence
Fe U — LDy — ¥).
Thus, using L(v), we have

Fuo Lo — v

which, since Fx [ ]9 — [ ]%¢, gives the required result. W

In Lemma 5.6 we saw that every model of LL is transitive and hence also
models the shape 4. Lemma 15.2 is just a proof theoretic version of this result.
This result shows that LL and K4L are essentially the same system.

In Theorem 5.7 we showed that the models of LL are precisely the well-
founded, transitive structures. Later we will see that these structures charac-
terize LL, but before we do that let us show that LL is not canonical.

15.3 The rule of disjunction

A formal system S is said to have the rule of disjunction if for all formulas

Pny- - Pn,

Fs L1V V ¢ = ks gror --- or ks ¢n.

In this section we see that LL has this rule and then use this to show that LL
is not canonical.
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Consider any valued structure (A, @) which is characteristic for LL. i.e.
such that
Fu ¢ & (4,a) IF° ¢

for all formulas ¢. We modify (A, &) to get a new structure.
Thus let b be a new element (not in A4) and set

B=AuU{b}.

Let — be the relation on B given by

z,y€A and z —y
Ty & or

z=b and y€ A
for each z,y € B (where — is the distinguished relation of A). Set
B=(B,—=)
and let 3 be the valuation on B with
B(P) = o(P)

for all variables P. (In particular b ¢ G(P).) It is an easy exercise to show
that for each ¢ € A and formula ¢

(B,B,a) IF? ¢ <& (A ,a,a) IF? ¢ (15.5)

and hence
(B,8,b) IF* ¢ & (A,a) I ¢ (15.6)
(where b is the distinguished element of B).

15.3 LEMMA. The valued structure (B, 3) models LL.
Proof. By (15.5) it suffices to show that
(B,5,0) I L(¢)
for each formula ¢. To this end suppose that
(B,B,b) K [1(L]¢ — ¢).
Then, using (15.6), we have
(Ao) I [Ip— ¢

so that
(A,a) IF° (Lo — @)
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and hence, by L(¢),

(A, @) IF* [o.
These give
(A,a) IF* ¢
so that a second use of (15.6) gives
(B,B,b) IF* ¢

as required. W

Using this we quickly obtain the main result of this section.
15.4 THEOREM. The system LL has the rule of disjunction.
Proof. Suppose that
Fu e v...v Ugn

for some formulas ¢y, ..., ¢,. Then, using Lemma 15.3 we have

(Baﬂvb) ”_P \:‘¢1V...V D¢n

and hence
(B,B,b) IF? [,
for some 1 < r < n. This, with (15.6), gives

(A, a) I+ ¢,

and hence k| ¢,, as required. B

Finally, for this section, we use the rule of disjunction to obtain some
information about the canonical structure for LL. For this purpose let us say
an element of a structure is all seeing if a — x for all elements z of this
structure. In particular such an element will be reflexive.

15.5 LEMMA. The canonical structure & of LL has an all seeing element.
Proof. Consider the set of formulas
¢ = {~¢|-[Fu 4]}
This is LL-consistent. For if not, there are formulas ¢, ..., ¢, with
Fuo ~Oéi A A-én — L

i.e. with

Foo Lo VeV [én.
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The rule of disjunction now gives us some 1 < r < n with | ¢,, which is
clearly contradictory.
Since @ is consistent, there is some s € § with & C 5. Then

-k ¢l = -[oes
for each formula ¢, and hence for each t € S

D¢€8 =>FL ¢ = et

so that s — ¢, and hence s is all seeing. B

Since all models of LL are well founded and in particular irreflexive, this
immediately gives the following.

15.6 THEOREM. The system LL is not canonical.

154 The fmp
Let M be the set of all structures
B=(B,—)
with the following properties.
(i) The carrier B is finite.
(ii) The relation — is transitive and irreflexive.
(iii) The relation is tree-like in the sense that for each z,y,z € B

T2 = T —Yyorr=yory —x
y— 2 Y =Y Y .

(iv) There is a root, i.e. a (unique) element b such that b — x for all other
elements z.

For convenience let us refer to such structures as finite trees.
Condition (ii) ensure that any chain of elements

To — T —> Tg —> -+

of a finite tree B can not contain repetitions hence, by (i), must be finite. Thus
M is a class of models of LL. In this section we improve this observation.
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15.7 THEOREM. The class M of finite trees is characteristic for LL, i.e. for
each formula ¢ the equivalence

Fuie ¢ & M models ¢
holds. In particular, LL has the fmp and so s Kripke-complete and is decidable.

Since M is a class of models of LL, soundness gives the implication =. The
proof of the converse implication < will take up the remainder of this section.
Fix some formula v with —[F 7]. We must produce some B € M with
=[B IF* 4], that is, we must find some valuation 3 on B and an element b of
B with
(B, 3,b) IF? .

(The element b will turn out to be the root of B.)

Let (A, «) be any valued structure which is characteristic for LL (e.g. the
canonical valued model). In particular we have —[(A4, o) IF* v]. As usual,
(B, 3} will be constructed from (A, ). To do this we could use the filtration
technique, but I have chosen not to do this so as to illustrate another technique.
The elements of B will be certain finite chains of elements of A ordered by
extension.

First of all we need to pick out a special element of A.

15.8 LEMMA. There is an element a of A such that
(A a,a) IFP =y A [y (15.7)
holds.
Proof. By way of contradiction suppose there is no such element, so that
(A0) IF° [y — .

But then
(Ayo) I OOy =)

and hence axiom L(v) gives
(A,0) I .
This, with the original hypothesis, gives
(A a) IF v

which contradicts the chosen property of v. B

We now fix an element with property (15.7). All our subsequent computa-
tions take place within A.
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Let ' be the set of subformulas of v. This set I is finite. The size of the
constructed finite tree is determined by the cardinality m =| I' |. (A crude
upper bound for the size of the constructed B is m™, however this can be
considerably improved.)

To facilitate the construction of B we introduce some terminology.

We say an element = of (A, @) is relevant if there is some formula ¢ € T
with

z Ik =d A []o.
In particular, the formula v witnesses the relevance of the distinguished ele-
ment a. A chain of elements
XI=T1,T2y ... yTpy...,Tn
of A is acceptable if each term z, is relevant and

L] =Ty —> - ——Lp —> - — Ty,

Given such a chain x we write £(x) for its last term z,. Notice that there is at
least one acceptable chain, namely the chain a of length 1 whose sole term is
a (the distinguished element). Clearly ¢(a) = a.

15.9 LEMMA. Each acceptable chain has length no more than | T |.

Proof. Consider any acceptable chain x (as above). Since each term z, is
relevant there is a sequence of formulas

¢17¢27"'y¢rv"')¢n

where each is a member of I' with

z, Ik =g A D¢r

for 1 < r < n. It suffices to show that these formulas are distinct, for then we
have n <| T |, as required.
By way of contradiction, suppose there are 1 < r < s < n with

¢r = ¢5 = ¢ (say).
Then, amongst other things
.,k [l , z, Ik ¢
which, since z, — x,, is the required contradiction. W
The elements of the required tree B will be certain acceptable chains x.

The initial element x; of each selected x will be a and the relation of B will be
the initial section ordering for chains.
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We construct the carrying set B of B in layers
B,B,,...,B,,...,B,

where m =| I | and where each B, consists of chains of length 7.
The base and step constructions are as follows.

(1) By has one member, namely the chain a.
(r — 7+ 1) Suppose we have constructed B, with this set finite. Consider
all pairs x, ¢ where

x€B, , ¢€l , €x) IF Ong.

There are no more than | B | x | I | such pairs. (There may be no such
pairs, in which case B,.; = @, and the construction terminates.) Note that

the axiom L(¢) gives
£x) Ik (=¢ A [¢)
and hence there is some element y of A with £(x) — y and
y Ik oA []o.
In particular, the element y is relevant and the extended chain
y=x~y

is acceptable (with £(y) = y). Select one such extension for each pair x, ¢ and
let B, be the set of selected extensions.

This completes the construction of the layers.
Now set
B = B1UB2U"'UBm

and let — be the initial section ordering on B, i.e. for z,y € B
X — y & xis a proper initial section of y.

Let
B = (B,—).

You should have no trouble verifying that B € M. In particular, note that the
root of B is a.
Observe also that the construction ensures the following.

(*) For each x € B and ¢ € T’ with
£x) Ik O
there is some y € B with
X—Y

, Ly) koA o

In fact there is such a y with just one extra term.



154. THE FMP 213

Finally consider any valuation § on B such that
(B,8,x) r? P & (A, a,f(x)) P P

for all variable P € T'. (The behaviour on other variables is irrelevant.) We
prove the obvious extension of this equivalence.

15.10 LEMMA. The equivalence
(B,B3,x) IF? ¢ < (A, a,l(x)) IF? ¢
holds for allx € B and ¢ € T.

Proof. We proceed by induction on the structure of ¢. The base case
holds by the choice of 3, and the passage across propositional connectives is
immediate. Thus it suffices to show that

xIF (¢ & €x) I+ (¢

where ¢ € I' and we already have the corresponding equivalence for ¢.
For the implication =, suppose that x I+ [ ]¢ and, by way of contradiction,
that

Then, by (), there is some y € B with
x—y , )k -¢

and hence, by the Induction Hypothesis, y It —¢. This is the required contra-
diction.

For the implication <, suppose that £(x) IF []¢ and consider any y € B
with x — y. Then, by construction of B,

£(x) — &(y)
so that £(y) I+ ¢ and the Induction Hypothesis gives y IF ¢, as required. B

As an application of this Lemma consider the case where x = a, the root
of B. Then £(a) = a, the distinguished element of .4, and we have

(B,B,a) F* ¢ & (A, a,a) IF? ¢
for all ¢ € I'. In particular, with ¢ = v, we have
(B, ,3, a) I+ s’

which is enough to complete the proof of Theorem 15.7.
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15.5 Exercises
15.1 Let S(¢) be any formula shape for which
Fk S(¢) — ([1¢ — ¢)
holds for all formulas ¢. Let S be the formal system axiomatized by all the
formulas
L1S(¢) — Lo

(for arbitrary ¢).

(a) Show that S < LL.

(b) Show that S has the rule of disjunction.

(c) Show that the canonical structure & of S has an all seeing point.

(d) Does this means that S is not canonical?
15.2 (Grzegorczyk formula) For each formula ¢ let
U(¢) == L@ — o) ¢ , Grz(¢) := [JU(¢) — ¢.
(a) For an arbitrary formula ¢ set
0:=¢— % , v:=9¢n0.
Show that the following hold where in (i) the formula £ is arbitrary.

i)tk @W—=8 — (6~ LlpVe)
(i) Fk Ov— Oe¢

(iii) Fk (v — [¥) — (¢ — U¢)
(iv) Fk O@— Ov) — 6

(v) Fk ¢ = U(¥).

{(b) Let S be any standard formal system which entails all the formulas Grz(¢)
for arbitrary ¢. Show that for all formulas ¢ both

Fs Oée—¢ , ks o — %0
hold.
15.3 Using the notation of the previous Exercise, let
Hrz(¢) := [JU(¢) — ¢

(for arbitrary ¢). let
KG , KH
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be the formal systems axiomatized by all the formulas

Grz(¢) , Hrz(¢)

respectively. Let KHT be the extension of KH given by the addition of the
axiom T.

(a) Show that KG = KHT.
(b) Show that KH has the rule of disjunction.
(c) Show that KG has the rule of disjunction.

(d) Find a formula ¢ such that both
Fke ¢, —(Fkn 4]

hold.






Chapter 16

Canonicity without the fmp

16.1 Introduction

In earlier chapters we have isolated two structural properties of a standard
formal system S, namely being canonical and having the fmp, both of which
ensure that S has the important property of being Kripke-complete. It is,
therefore, of interest to ask whether these two structural properties are equiv-
alent. Well, they aren’t, in fact they are independent. In the previous two
chapters we have seen two systems SLL and LL which have the fmp but are not
canonical. In this chapter we will see a system which is canonical but does not
have the fmp. Initially this system was constructed solely to distinguish be-
tween these two properties but, as we will see, it does have some independent
interest.

16.2 The system defined

We work in a monomodal language, so we are interested in transition structures
of the form
A = (A, —).

Let T be that standard formal system whose axioms are all the formulas of
the shapes

(T)y Ue—¢

() O(O% - Ov) — (O —9)
where ¢ and ¢ are arbitrary. We will see that T is Kripke-complete but does
not have the fmp.

The axiom T is, of course, the one that captures the reflexivity of the
transition relation. The structural property captured by () will be described
in the next section.

By setting ¥ = []%¢ in (*) we obtain the shape

(%) ([P0 — [P¢) — (e — [1%¢)

217
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which in some ways is easier to understand. Let R be the system whose axioms
are all formulas T and (* * x). Clearly

R<T

and we will see that R does not have the fmp. However, the other properties
of R are more enigmatic.

16.3 The characteristic properties

As with the proof of many results about standard formal systems, the crucial
step is to obtain a correspondence property. In the case of T this property is
rather strange.

16.1 LEMMA. A transition structure A = (A, —) models the shape (x) if
and only if the property:

For each element a € A, there is some b € A with

ea—b—a

o forallz,ye A, b—y—zx = a— 1.

holds.
Proof. Suppose first that .A models the shape (x), in particular .4 models

O(0P- 0@ - (OP-Q)

where P and () are two fixed and distinct variables. Consider any given element
a € A and let « be any valuation on 4 such that

ztlFPea—z , 2FQ&x#a
hold for all z € A. Then
alb [P , alk-Q

so that
alF ~(JP—- Q)

and hence, using the modelled formula,

alb O(OPA Q).

This gives some b € A with ¢ — b and

bk (PP, bk &A@
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from which the two required listed items follow.
Secondly, suppose that A has the described structural property, and con-
sider any valuation « on A and element a of A with

alr ((P¢— Oy) , alk O¢

for given formulas ¢ and 1. We require, of course, that a I 4.
The structural property provides an element b of A satisfying both the
listed items. Since a — b we have

biF [12— [
Also, for each z,y € A,
b—y—r=>a—zx=>zl ¢

so that b I [ J%¢, and hence & I [ . Finally, since 6 — a, we have
a IF 9, as required. A

16.4 Canonicity

With the correspondence result of the previous section, we can attempt the
usual proof.

16.2 THEOREM. The system T is canonical, and hence Kripke-complete.

Proof. Let
T = (T,—)

be the canonical structure associated with T based on the set T of all max-
imally T-consistent sets of formulas. A routine argument shows that ¥ is
reflexive, so it remains to show that ¥ has the structural property given in
Lemma 16.1.

Consider any s € T. We must produce an appropriate t € T. To this end
consider the set of formulas

¢ = {[P¢| Ooespu{Ob|0es})

We show first that ® is T-consistent.
By way of contradiction suppose that ® is not T-consistent. Then there
are appropriate formulas @1, ..., ®m,01,...,0,, with

Fr D20 A A [P0 A OO A Ay — L

Let
=N ANy , 8 =06NN0O,
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Then
(J¢es , Oes

and
Fr (0% « DP0iAADPm , Fr OB — OHA---A b,

and hence
Fr O%A O8— L
This gives
Fr (P — (O
so that
Fr O(O% — (J-6)
and hence the axiom (*) gives

Fr ¢ — -0

which in turn gives the contradictory -8 € s.
This shows that ® is T-consistent, and hence there is some ¢t € T with
® C t. For any such t and formula ¢ we have, using the axiom T,

[(Jees = [10edCt = g€t
so that s — ¢. Also, for each formula 6,
bes = OPedCt
so that ¢ — s. Finally, consider any u,v € S with
t— v —u.
then, for each formula ¢,
(Joes = [1*pet = teu

so that s — u, as required. B

16.5 The finite models

In this section we consider the finite models of R. Since any model of T is also
a model of R this will give us some information about the finite models of T.

16.3 LEMMA. Fach finite model of R is transitive.
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Proof. Let A be any model of R and consider the induced modal operation
[] on PA. Since the transition relation of A is reflexive, the operation [ ]
is deflationary, and hence A is transitive precisely when [] is idempotent.

Consider any X C A. Since [] is deflationary we have a descending chain

Xo0Ox2@x2---20X2 (r<w).
Suppose that
O¥x =0x.

Then
O@x>0Ox) = 4

so0 that, using axiom (* * x), we have
(Ox>[OX) =4

and hence
O*x = Ox.

An easy induction now shows that

O+*x=0"x = O0'X=0X

for each r < w.

Finally, if A is finite, then the descending chain given above must stabilize,
i.e. there is some r < w with [J™3X = [0 *'X. Thus (J2X = [(JX, which
is enough to show transitivity. B

Let M be the class of all finite models of T. Thus each member of M is
transitive and so models

Oe— O%
for each formula ¢. Thus if T has the fmp, then
Fr (¢ — %

and so every model of T is transitive. In the next section we show this is not
so, and hence prove the following.

16.4 THEOREM. The system T is canonical (and hence Kripke-complete) but
does not have the fmp.
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16.6 A particular model

Consider the structure

N = (N,—)
where the relation — is defined by
r—y & rxly+l

(for each z,y € N). Clearly N is reflexive.
Consider any a € N and let b=a + 1. Then

b—a—a.
Also, for each z,y € N, we have
b—y—z=2>b<y+1<24+2 =2 a<y<z+1l = a— =z

This shows that A has the structural property of Lemma 16.1 and hence is a
model of T. However,

4—3—2 but -[4— 2

so that A is not transitive, and hence T has a non-transitive model.

16.7 Exercises

16.1 Show that T < S4.
16.2 For i,j,k,l € N with
2<j<k , 14+1<i+j

let R(4, j, k,1) and S(<, j, k,!) be the formal systems axiomatized by T together
with, respectively, all formulas of the shape

O ¢ — %) — O(O¢ — %)
or
(e — Of) — (D¢ — %)
for arbitrary ¢, 1. (Thus the system R of this chapter is R(1,2,3,0).)
(a) Show that R(3, 7, k,!) < S(1, 4, k,1).

(b) Show that if
27, j<i k2K, 1T

then both
R(, 5,k I') <R(, 4,k 1) and S(&, 5, K,1') < S(i,5,k,1)
hold.
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(c) Show that each finite model of R(3, 7, k, !} is transitive.

(d) Recalling the correspondence result of Exercise 5.3 of Chapter 5, show
that S(4, j, k,1) is canonical.

(e) Show that the structure A of Section 16.6 models S(i, 7, k, {).
(f) Show that neither R(4,j, k,!) nor S(3, j, k,!) has the fmp.






Chapter 17

Transition structures aren’'t enough

17.1 Introduction

The central theme of this book is the notion of a labelled transition structure
and the use of modal languages to analyse such structures. We have seen
many examples of formal systems S and, in Chapter 9, we have proved a
quite general completeness result for such systems in terms of the semantics
supported by labelled transition structures. We have also developed methods
(mainly canonicity and the fmp) for obtaining the stronger property of Kripke-
completeness. In fact we have yet to see an example of a system which is not
Kripke-complete. In this chapter I will give such a system. This example will
also indicate some of the discrepancies between labelled transition structures
and modal systems.
I will describe two standard formal systems

KY , KZ
with the following properties.
e KZ is canonical and has the fmp.
o KY < KZ.
e KY and KZ have the same class of unadorned models.
o KY and KZ have distinct classes of valued models.

The first property is achieved, using Exercises 10.1 of Chapter 10 and 13.1
of Chapter 13, since KZ is axiomatized by a single sentence. The first three of
these properties ensure that, for each formula ¢, the following scheme of ten
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implications hold.
*
bry ¢ <= Fky ¢ == Fky ¢
f
l
4
bz ¢ == Fkz ¢ &= Fkz ¢

The fourth property ensures that neither of the implications (*) is reversible,
in particular, the system KY is not Kripke-complete.

*

17.2 The system KZ

We work in the monomodal language and we use the informal terminology
acanseed & a—b
a is blind <& a can see no elements

for elements a and b of the considered structure. In particular

alk []JL <& aisblind
alr &L & acan see a blind element

Consider the sentence
z=0OT-[1

and let KZ be the system whose sole proper axiom is Z.

As remarked above, we know that KZ is canonical and has the fmp. Note
also, since KZ is axiomatized by a sentence, a valued structure (A4, o) models
KZ preciely when A models KZ (for the valuation plays no part in ther mod-
elling process). We can easily characterize the unadorned models of KZ. The
above discussion gives the following

17.1 LEMMA. Each modal structure A is a model of KZ precisely when each
non blind element can see a blind element.

For each formula @ let
2(0) = OOT - (9
so that Z is just Z(L1). Note also that
|_K 1 -8
so that (EN) gives
and hence, using the axiom, we have
}'-KZ ‘:I <>T — [:|0 1e |_KZ Z(@)

This enables us to construct many systems weaker than KZ by taking axioms
of the form Z(8) for various shapes of 8. The system KY is one of these.
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17.3 The system KY

For each formula ¢, we have
T(¢) = [e¢—¢.
We use this to construct the formulas
X(¢) = OT@) —¢ and  Y(¢) = JOT - [IX(¢).

In the above notation Y(¢) is just Z(X(¢)). Let KY be the system whose set
of proper axioms are all the formulas Y(¢) (for arbitrary ¢). As a particular
case of the observation at the end of the last section we have

Fkz Y ()
which demonstrates the following.

17.2 PROPOSITION. KY < KZ.

The crucial result is to connect the class of models of KY and KZ. This is
done by the next result (which is a correspondence result for the shape Y).

17.3 THEOREM. For each structure A the conditions
(i) Al Z.
(ii) For all formulas ¢, A - Y(¢).
(iti) For some variable P, A I+ Y(P).

are equivalent.
Proof. (i) = (ii). This follows by soundness and Proposition 17.2.
(ii) = (iii). This is trivial.
(iii) = (i). Consider any configuration
a—b
together with a valuation on A such that for each z € A4
zlFP & z#b
holds (for the given variable P). Then for each x with b — z we have either
z#b or x=b
In the first case we have z I+ P and hence z I+ T(P). In the second case have

r=b—zx=0b
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so that z IF <{>-P, and again = I+ T(P). In both cases we have z I+ T(P)
which shows that

b I+ CJT(P).
Now, assuming (iii) we have
a Ik Y(P)
and hence
ok OOT = ol OX(P)
= bk X(P)
= biF P = b#b

so that a IF =[] <OT.
This shows that for each a € A

a lF <>T — =[] <>T
or, in contrapositive,
alr ] <>T — [T

as required. B

This result gives the third of four properties listed in Section 17.1. It
remains to verify the fourth.

17.4 A particular structure

In this section we construct a particular modal structure .A and analyse some
of its properties. This structure will provide an appropriate example to show
that the two systems KY and KZ are distinct.

To begin the construction let

A=NU{w, o0}

i.e. let A be the set of natural numbers N together with two extra elements
which we choose to call ‘w’ and ‘co’. We enrich A with a simple transition
relation — to form the structure .A. Thus, for m,n € N we let

n—m <~ m<n

and, for each m € N, we let

hold together with
00 — w.

No other instances of — hold. In particular, neither co nor w is blind (since
oo can see w, and w can see 0), and w is the only world seen by co. This shows
that
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o A is not a model of KZ.
The remainder of this section is concerned with showing the following.
o For many valuations «, the structure (A4, @) is a model of KY.

In particular, there is at least one such valuation . Then (A, a) does not
model KZ but does model KY, and hence KY and KZ have distinct classes of
valued models.

We use a certain class & of subsets of A (i.e. X C PA). Thus let X be the
set of all subsets U of A such that either

(+) U is finite withw ¢ U
or

(-) U'isfinitewithwe U
(where here U’ is the complement A—U).

Observe that

0 , A, {0} , NuU{w}
are all in X' (for the first and third satisfy (+), and the second and fourth
satisfy (—)). Note also that neither {w} nor {w,c0} are in X. Next you
should check that, for each subset U of A,

U satisfies one of (+) (=) < U’ satisfies the other

so that X is closed under complementation. Finally, a few simple computations
show that X is closed under U and N. For instance, suppose that U has (+)
and V has (—). Then

weVCUUV and (UuV)Y=UnV' CV

so that U UV has (-).
This shows that X is closed under the boolean operations U, N, (-)’ (which,
of course are used to interpret the boolean connectives of the language). We

add to this a similar, but stronger, result concerning the induced box operation
(0 on PA.

17.4 LEMMA. For each subset U of A we have [JU € X (and hence X is
closed under the operation []).

Proof. Consider any U C A and recall that for all a € A
a€e U = (Vzr=<a)zell

To compute [JU we consider two cases.
Firstly, suppose that N C U. Then U is one of

N , Nu{w} , Nu{foeo} , 4
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and a simple calculation shows that

ON=ONU{o})=NU{w} and [JINU{w}= A=A

Secondly, suppose that N ¢ U, so there is a least n € N—U. Then, for each
m € N we have

me QU = (Vz<m)zelU] = ntdm

ie.
me JU = m<n

Also, we easily check that

0,1,2,---,ne QU
and hence, with a little more computation, we find that
{ {0,--+,n,00} fwelU

{0,---,n} ifwégU.

0ov =

In both cases [JU has (+), and hence [JU e X. B

You should make sure that you understand the computations of this proof,
for we are going to use several more similar computations.
First a simple observation

17.5 PROPOSITION. Let o be any valuation on A such that
alP)e X

for all P € Var. Then
[#la € X

for all formulas ¢.

Proof. This follows by a routine induction on the complexity of ¢ using
Lemma 17.4 and the fact that A is closed under the boolean operations. B

Let us now do some computations of

I[¢]| a

for particular cases of ¢ and a.
Note first that, from the computation in the proof of Lemma 17.4, we have

010 = {0}
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and hence (for any valuation «)

(OoT1 = ODITI
= 004
= O-0e¢
= [HL, -, w,00} = {0,00}.

Next consider any formula ¢ and valuation with

U=[¢lex

(where we have omitted the distinguishing valuation). We will compute

[Tl . X1 . [OX(e)

in terms of U. To do this it is convenient to isolate several cases.
In the first case we suppose

(i) N C U (so that, since U € X, also w € U).

231

Secondly, when (i) isn’t the case there is some least n € N—U and with this n

we have three further cases.
(i)n¢U , welU , owelU
({li)n¢gU , welU , oogU
(iving¢U , wg¢U

The calculations in the four cases are similar but slightly different as follows.

First, by the previous calculation, we have

A in case (i)
OU =< {0,---,n,00} in cases (ii,iii)
{0,---,n} in case (iv)

so that, since

[Tl =(0Ov) vy

we have
U = U in case (i)
_JUu{n+1,---,w} = {n} in case (ii)
[T(9)1= vu En +1,--,w} = {n,0} in c:z (iit)

Uu{n+1, - w00} = {n} in case (iv)

and hence

[OT@)] = OlT(e)] = { 1{407” in case (i)

-,m,00} in cases (i, iii, iv).

Continuing in the same way, since

Xl = ([(OT@®D vidl
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we find that
R in case (i)
X(¢)] = { UU{n+1,---,w} in casesii,iii,iv)
and hence
[ A in case (i)
(LX) = { {0,---,n,00} in cases(ii,jii,iv).

These computations provide much of the proof of the following result.

17.6 PROPOSITION. For each valuation «, if o(P) € X for all variables P,
then (A, @) models the system KY.

Proof. Consider any formula ¢. By Proposition 17.5 we have
U=[dla € X

so that, from above,
{0,00} € [[IX(e)]

(where again we have dropped the «). Thus, remembering the computed value

of [[(]<>T], we have
[Y(#)] =4

as required. @

17.5 Exercises
17.1 Consider the structure A of Section 17.4.

(a) Compute the following.

@ [0 () [CI<A] () [CJ<OTI
(v) [OOOL (v) [z (vi) [4(9)]

where, in (v,vi), 8 is an arbitrary formula.
(b) Find
(i) all U C A such that [(JU =U,

(ii) some U C A such that (JU = -U,
(iii) some U C A such that all the sets [JU, for 7 < w, are distinct.
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(¢) Show that [] is not continuous in the sense that there is an ascending
sequence U
LechC---ClU, S+ T<w

of sets such that
OUu U 0Ou
where [(JU = {(OU, | r < w}.

17.2 We have seen that there are infinite valued structures (A, ) which model
KY but not KZ. Are there finite valued structures which can do the same job?

17.3 Here is another example of a formal system which is not Kripke-complete;
this time a bimodal one.

Let S be the extension of the basic temporal system TEMP (of Chapter 8,
Section 8.4) formed by the addition of the two axiom shapes

L(¢) , M(¢)

for arbitrary formulas ¢ (where L_ is Lob’s axiom for [-], and M, is McKin-
sey’s axiom for [+]).

(a) Using Theorem 5.7 and Exercise 5.8 of Chapter 5, show that no temporal
structure models S.

(b) Consider the temporal structure N' = (N, <)

(i) Show that A" models L_.
(ii) Show that for each X C N

X finite = [#]<>X =0 , X infinite = []<OX =N.

(iii) Show that if v is a valuation on A such that for each variable P
either v(P) is finite or v(P) is cofinite then (N, ) models S.

(c) Show that S is not Kripke-complete.
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Appendix A

The what, why, where,... of modal logic

A.1 Introduction

This chapter is one of the first parts of this book that you should read. You
might think this is a little strange since it is also one of the last things in the
book. However, all of the material in this chapter should appear somewhere,
and I believe that it is better if it is all in one place rather than scattered
throughout the book. This position is as good as any.

A.2 Beginning

Put yourself in the position of a complete beginner to modal logic; someone
who already knows the basics of propositional and predicate logic and who
now wants to learn something of modal logic. (You may actually be such a
person.) There are many reasons why you may want to do this, from mere
curiosity to an eventual use in a particular application. What should you do
to acquire this knowledge?

One thing you could do is attend a course on modal logic, but let us assume
that this is not an option. The other thing to do is read various text books on
the subject. Which ones? There are, in fact, only a few possibilities.

The first possibility is [29] by Hughes and Cresswell, first published in
1968. This, at the time it was written, was the most comprehensive and
accessible introduction to the subject. It contains descriptions of many of the
systems that were, and to some extent still are, of interest. It discusses the
proof theoretic properties, completeness, and decidability of these systems,
and various comparisons between them. (It also contains some material on
predicate modal logic.) This book will give you a good impression of what
modal logic used to be.

However, the book was written before the use of Kripke structures was fully
understood and consequently is severely limited in technique and, in terms of
content, seems a little ad hoc.
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The second book by Hughes and Cresswell, [30], published some 16 years
later, benefits from the influence of Kripke’s insight. The difference in style
between the two presentations is immediately apparent. The aim of the book
is more or less a standard introduction to the subject without unnecessarily
repeating material from [29]. Thus, along with the basics it contains material
on Kripke semantics, completeness, correspondence results, and other struc-
tural properties. (It again also contains some predicate modal logic.) This
book, perhaps augmented by material from [29], can be used as an entry into
modal logic.

The book [17] (which chronologically separates [29] and {30]) has proba-
bly been the standard introduction to the subject since it was published (in
1980). It contains much of what is needed; a survey of the various systems of
interest, completeness properties, correspondence results, decidability, etc. It
can be used either as an alternative to [30] or, better still, combined with [30]
to produce a balanced account. Like much of the literature on modal logic,
these books concentrate too much on syntactic considerations, enumerating
the properties of many different systems and the interaction between them.
Semantical aspects are always a long way behind.

Two other books you may like to consult are [38] and [42]. Unfortunately,
these are sometimes rather difficult to get hold of.

All of these books have, from the present perspective, one major flaw: they
are all concerned with monomodal logic. This gives them what is increasingly
being seen as a rather peculiar slant. It also cuts out a lot of material which
ought to be part of the basics of modal logic. The subject ought to be seen
as an analysis of the interaction between various kinds of modalities; in short
the underlying language ought to be polymodal.

A more balanced view of the subject is given in the extended survey [27].
This little book is one of the best places to start to learn the subject. It quickly
and succinctly describes the pertinent techniques, doesn’t linger too long over
exotic proof theoretic considerations, and gives Kripke structures the central
place they deserve. You will, however, need to augment this book with other
material.

The book you are now reading is an attempt to meet these various ob-
jections to the presently available accounts of modal logic. In doing this it
starts from a fundamentally different point of view. The central objects of
study are not the syntactic systems of modal logic; these are merely the tools
of the trade. These tools are used to analyse and describe the basic objects of
interest which are Labelled Transition Structures (sets furnished with a family
of binary relations).

Particular kinds of LTSs occur in many different areas. Kripke structures
are themselves (unlabelled) TSs and so many ‘possible world’ situations pro-
vide examples of LTSs. Any mechanism that has different states and tran-
sitions between these states is an LTS. Such mechanisms occur in program
semantics (in the form of abstract versions of the machines on which the pro-
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grams are executed, and the various rewriting systems used to compile and
describe the operational behaviour of these programs). LTSs are the support-
ing structures on which many of the accounts of distributed communicating
systems are based. Aspects of LTSs can be found in the analysis of non-well-
founded sets and parts of situation theory. More generally, since transition
structures are nothing more than collections of binary relations, it is not hard
to find examples of them all over the place.

So we decide to make LTSs our central notion. What material should a
first course about these structures contain?

We could go for a purely algebraic account. We could describe such prop-
erties as the appropriate notions of morphism between these structures (the
standard morphisms, p-morphism, simulations and bisimulations); the various
constructions on LTSs (generated substructures, ultrafilter extensions, etc);
the related notion of an enriched boolean algebra (modal algebra); and per-
haps culminating in a version of the Stone representation theorem for these
structures.

Such a course would make no mention at all of modal logic (just as a course
on boolean algebras, or more generally, lattices, need not mention propositional
logic). All of these topics have to be learned at some time but not necessarily
at the beginning. We are concerned here with another important tool — the
use of modal languages. (Once you have mastered these basic techniques you
should look at the book [10]. There the interplay between the algebraic and
logical aspects are developed in depth.)

As with other areas of mathematics, many of the interesting properties of
LTSs are describable in a second order fashion. In some mysterious way modal
languages capture many of these properties in an apparently zero order fashion.
This makes modal languages a powerful tool for the analysis and codification
of LTSs. The central objective of modal logic is to develop and refine this tool.
Usually this is done with a particular application in mind but there is enough
common material to justify a unified account of the basics of the subject.

A.3 About this book

You want to learn some modal logic and after a bit of dithering you have
decided to be sensible and use this book. What can you expect from the book,
and what will the book expect of you?

Let me first set down the perimeters inside which the book operates.

o The book is an introduction to modal logic. It assumes no prior knowl-
edge of the subject, but does assume some familiarity with propositional
logic (and a little bit of predicate logic). It will also help if you already
have a bit of mathematical sophistication, if not you should be prepared
to acquire some as you read.
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o Because the book is an introduction, it can not be a comprehensive
account of the subject, even of the basic parts of the subject. In order to
keep it down to a reasonable size I have had to be selective. The main
criteria used to make these selections is that I believe that semantical
considerations should come first.

o The book is concerned exclusively with propositional modal logic. Pred-
icate enrichments are not dealt with. Furthermore, the base logic is
classical (i.e 2-valued). Modal enrichments of constructive logic are not
considered. This excludes a lot of material but does, I believe, stay
within a natural boundary.

e The central concept of the book is that of a Labelled Transition Structure
and modal languages are regarded as a tool for analysing these structures.
This means that the main emphasis is on semantical aspects. Proof
theoretical methods are barely touched on. This, I believe is the correct
perspective for an introductory text. Proof theoretic manipulations can
become meaningless gibberish without some supporting semantics to aid,
at least, the soundness of the methods. Transition structures provide
almost all of these supporting semantics.

I have organized the book so that it could be read linearly, starting at
the beginning and working through to the end. However, as with almost all
mathematical texts, I wouldn’t read it like that. You should read the book in
such a way that you get to the heart of the material as quickly as possible,
missing out details on the way, but frequently going back to fill in these details
as necessary.

A possible route through the material is:

o Parts of Chapter 2;
o Parts of Chapter 3;

o Parts of Chapter 4;

followed by either

e Parts of Chapter 5;
or

¢ Parts of Chapter 8.

You are then in a position to go through the proof of a reasonably non-trivial
result, say either

e The confluence result, Theorem 5.4
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or
e The completeness result, Theorem 9.1.

You will find that to do this you will need to fill in various details that you
have skipped, so you must go back and do this. In this way you will eventually
build up an understanding of the subject.

An important part of this process is doing exercises. One of the first things
you should read in any chapter is the selection of exercises, and you should
start doing these exercises as quickly as possible. Also you don’t necessarily
have to do the exercises in the order listed, if there is some exercise you can’t
do, then leave it for later and go on to another one.

A fairly extensive set of solutions is given in the Appendix B. Use these
initially to get hints to the solutions and only read the full solution after
you have sweated over the exercise for a while. It is not enough merely to
understand the solution to a problem, you have to learn to produce these
solutions yourself, and the only way to do this is by hard work.

A.4 What next?

Suppose now that you have become familiar with the basics of the subject (say
parts I, II, III, and IV of this book) and have dipped into the various other
texts mentioned so far. You are now ready to stretch yourself a bit further.
What should you do next?

Reading the two survey articles [15] and [11] should be high on your list.

The first of these articles [15] describes some of the advanced techniques
of monomodal logic (perceived as something to be studied for its own sake).
Unfortunately the article does at time read like an aimless ramble through the
modal forest rather than a directed tour lead by a guide who knows where
he his going. (For a possible explanation of this see the first footnote of the
survey.)

The second survey article [11] is concerned with the expressive power of
modal languages (again almost exclusively monomodal). Its approach is more
in line with this book, i.e. the modal language is there to analyse properties
of Kripke structures, not the other way round. If you like this article then
you should also spend quite a bit of time on the book [10]. This will help
you develop a deeper understanding of modal logic, especially the algebraic
aspects. It is written in a monomodal framework, but you should have no
difficulty extending much of the book to a polymodal setting.

There are several relevant survey articles in the handbooks [1], [24], [25],
and [35], some of which I have already mentioned. The articles [11, 15, 16, 28,
43, 49] of [24] all have something to offer, and the article [18] of [35] is relevant.
You will find the articles [6, 48] of [1] of interest with the article by Stirling
[48] particularly useful as this will point the way towards many different facets
of the subject. In [25] the articles [13, 22, 33] have some promise.
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One topic has not been addressed in this book, in fact it has been deliber-
ately avoided.

If modal languages are to be of use then we will inevitably be led to certain
particular formal systems. (Which particular systems will depend on the area
of application in mind.) At times we will need to give formal proofs within
these systems. To be able to do this efficiently a deeper understanding of the
workings of these systems need to be developed. If you look at this problem you
will quickly realize that the Hilbert style proof systems presented in this book
are notoriously difficult to use if actual proofs need to be presented (they were
not developed for that purpose). A different, more amenable, style of proof
system is required. This problem also occurs with modal-free propositional
logic, but it is not so important there. As with modal-free languages there
are several possible approaches to efficient modal systems; natural deduction
system, sequent systems, tableau systems, etc, each of which can come in
many different variants. The arguments for and against these various styles are
more concerned with implementation and automation problems rather than the
styles themselves, so are better discussed in this setting. If you are interested
in these matters you could start with the book [21] and then move on to [50].

A.5 Some uses of modal logic

The original use as a method of analysing the properties of the informal natural
language modalities ‘is necessary’, ‘is obligatory’, ‘is known’, ... is still valid.
Furthermore, in a polymodal setting the interaction between these constructs
can be attacked. In this respect you may like to read [49].

Tense logic as originally conceived is an analysis of tenses in natural lan-
guages. An account of this perspective is given in [16], and again you may like
to look at [49]. The two books [23] and [9] are specifically aimed at this use of
modal logic.

Beginning with Kamp [31] the basic language of tense logic has been en-
riched, by adding operators such as ‘until’ ,‘since’, ..., to produce much more
expressive languages and powerful systems. This has spawned the subject of
temporal logic which has many different connections with computational prob-
lems. A comprehensive survey of temporal logic starting from its origins as
tense logic is given in [12]. This survey also contains material on the analysis
of temporal properties based on ‘intervals’ or ‘events’ as opposed to ‘points’.
This is something not mentioned in this book.

Temporal logic can also been used to illuminate certain aspects of non-
temporal modal logic. To motivate this consider any monomodal structure

A= (A, —)

which we assume is serial. A path through A is an infinite sequence of transi-
tions
a = g(0) —a(l) —a2) — - —a(r) —---
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(r <w). Let At be the set of all pairs (a, ) where a is a path and 7 < w. We
convert At into a transition structure using the relation

(a,r) — (b,s+1) & a(r) = b(s).
Also, given a valuation & on .4 we define the valuation o on .4 by
(a,7) € a*(P) & a(r) € a(P).

You may now check that for each ¢ € A and formula ¢, the following are
equivalent.

eal ¢
e For all (a,r) € At, if a(r) = a then (a,7) IF ¢.
o There is some path a with a(0) = @ and (a,0) IF ¢.

What is the point of this? Suppose we introduce two new transition relations

X o

—_

on At by
(a,7) =5 (b,5) & a(r) =b(s)

and
(a,7) = (b,s) & a=band s=r+1.

Then the transition
(a,r) — (b,s+1)

can be decomposed as the composite
(a,7) = (b,s) = (b,s + 1).
Also, introducing the corresponding box operators [x], [o] we find that
[(J¢ < [I[l¢ and []¢p « —[]-¢

hold in .A*. Thus we have achieved a decomposition of [ | into two more
primitive operators.

A similar construction can be carried out for polymodal systems and lan-
guages. This takes us into the realms of linear and branching time temporal
logics, a topic which has found uses in various aspects of specification and
verification techniques. The article [19] is a full survey of this topic including
such aspects as the comparative expressiveness of the various languages used
and their decidability properties. There is also a full discussion of the areas of
application of these techniques in computing science.
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You will find {47] a useful little paper. There you will see some applications
of bisimulations to the branching time structure 4%, and a complete axiom-
atization of the logic of [x]. This completeness proof modifies and extends
the standard techniques used in Chapter 9. The survey article [18] deals with
these aspects of temporal logic, and the book [40] describes some of its uses.

In several uses of modal logic the set of labels itself carries an algebraic
structure which has to be reflected in the behaviour of the modal operators.
One example of this is dynamic logic. A brief introduction to this is given in
11.1 of Chapter 11. A full survey can be found in [28].

Another example is the analysis of distributed communicating systems.
Much of this analysis is based explicitly or implicitly on the notion of a tran-
sition structure. Here the labels (usually called actions in this context) have
a rather intricate algebraic structure. The paper [46] is a nice account of how
transition structures and various associated modal logics are employed in the
study of CCS (one of the calculus used to analyse communicating systems).

Many of the enrichments of the basic modal language can be subsumed
under the use of fized point operators. A hint of this can be seen in Exercise 14.4
of Chapter 14. As in that exercise, the semantics of fixed point operators can
not be dealt with successfully using only transition structures: it is necessary to
use modal algebras (because of their lattice theoretic completeness properties).
This is one reason why fixed point constructions have not been discussed in
this book. An account of these fixed point enrichments is given in [4].

There is a direct connection between modal logic and automata theory.
Given a set I of labels, let I* be the set of all words on I, i.e. the set of all
finite strings

o = 1:01:1 v in

of labels ig,%1,...,%, € I. Each transition structure of signature I can be used
to define certain subsets of I*. Thus given the structure .4 and an element a
we say that a accepts the word « if there is a path
i0 i in
a=0q —> 0 — "~ 0p — On1
through A. Let Acp(a) be the set of all words accepted by a. Thus Acp(a) is
the regular language defined by a. Notice that for each word o we have

a € Acpla) & a lF T.

Thus we see the connection.

Similar ideas can be used to characterize various testing equivalences on
process algebras (which are nothing more than transition structures). For a
survey of these ideas see [2] (where you will also find connections between
modal logic and things you haven’t dreamt of).

A general survey of the various applications of modal logic (more specifi-
cally, temporal logic) to computing science is given in the book [26].
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There are several other areas in which modal techniques can be applied,
some of which are quite well developed and some are still in the initial stages
of development. There is also the whole topic of predicate modal logic (of
which nothing has appeared in this book). You may be interested in these
applications rather than the topics mentioned. Whatever your interests, you
will need to know something of the material of this book.






Appendix B

Some solutions to the exercises

B.1 Chapter 1

1.1 (a) Witnessing deductions in a Hilbert systems such as this can be quite
long and difficult to find.

(ii) Let

A
P

Y 7

p—v

"aaY
I i
)
|
>

and then check that

Ki: (§-p)>(A—(E—0)
Sy 1 E—p
KiS, « A= ({—p)
Si: A=€—=p) =A== (A—p)
S1(K182) « A=8—=(A—p)
Ky : (A=98)
(Sl(Kng))Kg : (A — p)

provides a witnessing deduction. On the left hand side appears a justification
for each step, with concatenation indicating a use of MP.

(iii)Let
p = 009 o = 0-9¢ T = p—oo
A= 01— 9) b= Y—op v = Yoo
and
£ = p—

By part (ii) we may construct witnessing deduction B; and B, with

By : T=§)—-A-1)>(A—¢
By, : 7€

247
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and then

BB, : A—-71)—> (>
Sy @ A—oT
BIB2S2 DA —>§
S A=2H->A-u) A —w)
SI(B1B25’2) : (A g ,u) g (A — l/)
Ki:p—>0A-p
K2 7%
K1K2 A= M
SI(BIB2S2)(K1K2) AoV

provides the required witnessing deduction.
(iv) An appropriate deduction can be constructed out of the ones given for
parts (ii) and (iii).
(b) Using the Deduction Property it suffices to show that
(i) o+ ¢ (i) v -0 >v,0F ¢

(iii) 06— (v —¢),9,0F ¢ (iv) 0-9,v—>00F ¢
(v) 6-(0—9)0F ¢

and witnessing deductions for these are easy to find.

1.2 By definition this CON has finite character and, trivially, is basically
consistent.
To verify conjunctive preservation consider the case, for instance, where

0Ny e P e CON.
Then each finite subset of
QU {0, v}
is a subset of
Yu {0y}

for some finite ¥ C . But then ¥ U {# A ¥} is also a finite subset of ® and
hence has a model v, say. Any model of § A ¢ is a model of both 8 and ¥,
so that v is a model of ¥ U {6,7}. The other two cases are dealt with in the
same way.

To verify disjunctive preservation consider the case, for instance, where

ovyede CON.
By way of contradiction suppose that

dU{0} ¢ CON and ®U{y}¢ CON.
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This gives us finite subsets ¥y, U5 of ® such that neither
T,u{f} nor T,uU{y}
has a model. Setting ¥ = ¥y U ¥, we see that neither
Yu{f8} nor TU{y¥}

has a model. But

Tu{vy}
is a finite subset of ® and hence has a model v. This valuation models ¥ and
at least one of § or v, which leads to the required contradiction.

Negation preservation is proved in a similar fashion.

The compactness result now follows by Theorem 1.5 (for this particular
family CON).

1.3 (a) Consider any valuation v with [¢]}, = 1. This v extends some 7 € II,
and then

[¢"]. = [¢]. =1
so that [A] = 1. Thus ¢ — X is a tautology.

The argument for p — ¥ is similar.

Since tautologies are closed under substitution for their variables, we see
that

¢7I' — wa

is a tautology for all # € Il and ¢ € ¥. Thus A — p follows by several uses of
the tautologies

(a=NAB-7)—(aVvB—9)
and
(@=MA(a—8) = (a—>vA0b).
(b) Similarly, if
p—0 , 09
are tautologies with 6 depending only on @), then so are

-6 , 0-9°

for all 7 and o. Hence the required results follow from the above tautologies.



250 APPENDIX B. SOME SOLUTIONS TO THE EXERCISES

B.2 Chapter 2

2.1 (b)
¢ Pos*(¢) Neg*(¢)
4, T Var Var
P Var {P}
-0 Neg*(6) Pos*(9)

0 Ay | Post(8) N Pos*(¥) Neg*(6) N Negt(v)

OV | Post(6) N Post(y) Neg*(0)U Neg*(v)

6 — ¥ | Neg*(0) N Post(¢) Pos™(6) N Neg™ (1))
[]¢ Pos™(¢) Neg*(6)

2.2 Trivially ¢1[P := ¢;) is ¢; and ¢;[P := ¢1] is ¢;. Also we have:

¢2[P = ¢2] is --P

P =6 s ~(~P — P)

$2[P = ¢4] is —(P — ~P)

¢3[P = ¢2] is - P — -P

$alP = g5] is (<P — P) = (<P = P)
B5lP =64 35 (P — <P) — (P — ~P)
G4[P :=¢p] is -P — =P

G4[P:=¢3] 18 (WP — P)— ~(~P — P)
D4[P :=¢4] is (P — =P)— =(P — —P).

2.3 (a) We have
€=0lP=0Q=6=¢—0=Q—P
so that
P =9,Q:=0Q:=pP:=0] = (QR:=pP:=0] = p—o.
(b) Similarly

A=9Y[Q:=p,P=0]l=p , p=0Q:=p,P:=0] =0

so that
PP=XQ:=p = A—>p=p—o

as required.
2.4 This is proved by induction on the complexity of ¢.

2.5 (a) This follows by induction on the complexity of ¢. The two constant
base cases are trivial and the variable case is just the definition of 7 e . The
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induction steps are equally easy. For instance, when ¢ = @ * ¢ for some
formulas # and v and binary connective %, we have
(¢7) = ((@x9))
= (00 * wa)‘r
— (00)7’ * (wo)'r
— 07’00 * wﬂ'oa — (9 % ,l/})‘roa

where the penultimate equality uses the Induction Hypothesis. Similarly for
¢ = [i]¢ we have
(¢7) (Glv)y)
(Gl
C1(yo)"
I = ([Jv)™*

o

as required.

(b) For each variable P we have, using (a),

((rea)ep)(P) = (p(P)™
(o(P))
((cep)(P)" = (re(aep)(P)

o

as required.

2.6 (a) The construction tree of L(P) is

L o
972 p
T ) p
(O — (O
1) oF )
L(P)

and then I'(L(P)) is the set of formulas occurring at the nodes of this tree.
Thus

I'(L(P)) = {p, JP,T(P), LUT(P),L(P)}.

(b) This is proved by a simple induction on the complexity of ¢. For
instance, for the case ¢ := ¢; * ¢y, if

Y € T(¢) = I'(¢1) UT(42) U {6}
then
weT(¢) or Yel(d) or v=¢
so that the Induction Hypothesis gives
[($) CT(¢) or D(®)CT(ds) or T(¥)CI(9)
and hence I'(¢) C I'(¢), as required.
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B.3 Chapter 3

3.1 To define a transition relation on A = {u, v} there are four alternatives to
be decided between:

e whether or not v« — u
e whether or not v — v
e whether or not v — u
e whether or not v — v.

Thus there are 2¢ different such relations as listed.
With U = {u}, for each a € A we have a € [_JU precisely when

Vee A)fa—z = z=u] ie. (VzE€A)z#u = -(a — z)|

so that
a€ [JU & -fa— ).

This enables us to compute [ JU, and similar arguments enable us to compute

[(JV and []0.

3.2 With A = {u,v,w} there are 9 ordered pairs of elements taken from A.
Each of these pairs may or may not be part of a transition relation so there
are 2° different transition relations on A.

3.3 These follow from the corresponding results for []. Thus

XCY = YC-X
= D—|Yg D"'X
= -O-Yc-O-X = OXxc oV

Similarly
<>m=—|D—|w=—|DA:—|A=@
and O(XUY) = =[J~(XuY)
-OJFXn-Y)
~(O-XxnO-Y)
-O-xu-0-Y = OXuldY

as required.

3.4 (a)(i) Since the relation — is reflexive we have []JX C X. In particular
[OJ-X € =X so that X C - [J-X = X. This gives

OxcxcOx
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and particular cases of these give

OxcoOx , OOXxc OX

Now consider any a € <> [JX. Then there is some b € 4 with a — b
and b€ [JX, ie.
b— 2z =>2€eX

for all z € A. Since — is symmetric we may set £ = a to get a € X. Thus
we have O [JX C X and a dual argument gives X C [(JOX.
(ii)) We now have

COxcxcOoOx

The monotonicity of [] on the first inclusion gives [J<>[JX C [JX and
a particular case of the second inclusion gives (JX C [J<> [JX, hence the
required equality.

(b) The operation [] is idempotent precisely when it is nearly inflationary,
i.e. when — is transitive. There are reflexive, symmetric relations which are
not transitive.

3.5 (i) Suppose a € [¢]X. Then
a—z > z€X

holds for all x € A, so that ¢« € [JX.
(ii) An easy computation shows that

On+ =N0x

for all ¥ C PA. Hence if [J] = [¢] then [+] also has this intersection
preserving property.
Conversely, suppose that [¢] has this property. For each X € PA we have

X = N{~{y}lye-Xx}
so that
(1X = ([~ {y} v e ~X}

Now suppose that a € [JX. Then for each y € ~X we have ~[a — y] so
there is some Z € PA with

a€ ]2 , ye-Z

Using the previous observation (with Z for X) this gives some a € []-{y}
and hence
y€-X = a€ [*J-{y}.

Thus
ac(WlI~{y}lye-X}=[1X
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which is enough to show that [[] = [¢].

(iii) Let R be the set of real numbers and consider the operation [+] on PR
given by
a€ [()JX & (3L,reR)ae(,r)CX]

(This is the metric interior operation.) In particular

(] [Ov 1] = (0,1).
We easily check that the induced relation — is just equality, and hence
OX=Xforal X eR.
B.4 Chapter 4

4.1 The completed table is as follows.

DTB45PQRGLM
DIx x x v v x v v vV x x
2)iv v v Vv X ¥V x ¥ vV x X
4)|x v v x v vV vV x x x ¥
(B) {x x v vV X x X ¥ X X X
(M|x v x v x v x ¥ X X X
8) |x x X x v x x ¥ x x V
(1)jv v v v v x x v x x ¢
Wlv v v v v x v vV x v V
(14)|x x v x x vV x vV x x X
16)[v v vV v X X X X X X X

These entries can be verified by rather tedious arguments. However, all the
columns except M can be verified much more easily using the results of corre-
spondence theory which is the subject of Chapter 5. I suggest you wait until
you have learned this technique before you do too many of the computations.
To deal with the shape M, note that a structure .4 models M(¢) if and only

if
alb SOV O O-e (B1)

for each a € A and valuation on A. In particular, if .A does model M then no
element is blind. (See Exercise 4.6 for this notion.) Thus none of (1),(2),(5),
and (7) models M.

To show that the structures (4),(8),(11), and (13) do model M show (by
considering each case separately) that for each element a there is some element
b such that

alk O & bk ¢



B.4. CHAPTER 4 255

(for all formulas ¢ and valuations on the structure). The table

la=u a=v
4 U v
8 v v
11 U v
13 U U

gives the appropriate elements b for a.
Finally, for (14) and (16), check that

vk OO & ulk gandv - ¢

which (by making ¢ true at u and false at v) is enough to show that M is not
modelled by these structures.

4.2 Consider the two structures
U v w

O <€«<—>0—>o0

where © may or may not be reflexive, but v and w are definitely not reflexive.

43

ID TB 45 PQRGLM
(@|v x x v X x x x v x X
B|v v x v x x x v v X X
(©)|x x x vV x x x x x ¢ V
d|v v x v X x x v ¥V x ¥

4.4 (i-iv) For A= N, Z, any valuation on A, any a € A, and any formula

¢, suppose that
alb OOé ek [OX(9)
where X(¢) is
[J¢—¢ or [¢— ) —¢
as appropriate. We require that a I+ [ ]¢.

There is some b > a with b I [ ]¢. We take the least such b. Note that
b IF X(¢), and a simple argument shows that

bl (¢ and b Ik [J(¢ — [19)

so that b I ¢. This gives b— 1 I []¢ so that (by the minimality of b) we
have a = b — 1, and hence a I+ [ ]¢, as required.

(v - viii) For A = Q,R consider any subset D C A such that for each
a,b € A with a < b, there are d € D and e € A — D with

a<d<b , a<e<hb
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(For instance, D may be the dyadic rationals.) Consider any valuation on A
where
P& zxeDorl<z

(for z € A). Clearly
o SOHP , 0[P
so it suffices to show that
ol JT(P) , 0IF JU(P).
To this end we show that
alF T(P) , alkU(P)

for all a € A.

Consider any a € A with ¢ I+ -P. Then a € A — D and a < 1. Take any
e€ A— D witha <e <1 Thene Ik =P, so that a I+ = [ ]P, and hence
a |+ T(P). Similarly, take any d € D with a <d <e. Thend IF PA-[]P
so that ¢ I+ = [J(P — [JP), and hence a I+ U(P).

4.5 The implication
O — O¢

is universally valid in all transitive structures, hence so is

1O — 1O

Conversely suppose that
alb OO

(for some a € A, valuation on A, and formula ¢) and consider any a — 5. We
require that b I+ (>%¢. But the position of a gives b I+ (>¢, which provides
some ¢ with

a—b—ec

Transitivity gives a — ¢ so that ¢ IF <>¢ and hence there is some d with
a—b—c—d

, dlF ¢.

Transitivity now gives b — d so that b It {>¢, as required.
The second required equivalence follows by a similar, but more involved,
argument.

46 (c)

) UL (i) OOT
@) J(OLv OOT) iv) HOTAOOD
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4.7 (b)If a 5 z for some = € A, then either
k k
r——borzxz—c
for some k # 0, hence z I+ <>T. There is no z € A with a %3 1.
(c) The element ¢ witnesses that

o b OmRT

whereas b witnesses that
alF =™ OT
and hence a IF “W(m). By (b), for each k # m, either

alk O*2%L or a Ik (JFPOT
hence a I+ W(k).

4.8 (b) Only the shapes D,T,R, and G are modelled by N.

(c) (i) Modelled by N.

(ii) Modelled by A. For instance, consider X C N of type (2) with the
given a. Then we may check that

OX = la+2,00

%X = [a+3,00]

BX = [a+4,00)
Ox - O°X = {a+2}
02X - %X {a+3}

Il

O@x - O°x)

hence the required result.

[@a+3,0] C {a+2}

(iil) If X is neither finite nor cofinite then
Ox =O0*xx=DPx=0x=90
and

O0Ox-0x-0=00Xx=[0ON=N

which shows that the formula is not modelled by N.
4.9 (a)(ii) For a given valued structure (A, &) and element a € A, let
B = A(a)

be the set of all elements b € A for which @ —— b for some compound label i,
i.e. for which there is a chain

i(1)

a=a0-—>a1ﬂ-~i@+an=b
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for some labels i(1),4(2),...,i(n). Let B = A(a) be the substructure of A
based on A(a). Let 3 be the restriction of « to B.

(b) This is proved by induction on ¢. Only the induction step across modal
operators is non-trivial. The equivalence

(B,3,0) F [ « (Aa,b) Ik ¢

is proved as follows. Suppose the LHS holds and consider any a € A with
b — a. Then, by genericity, a € B so that (B,3,b) I ¢ and we may use
the Induction Hypothesis. This gives the implication = and the converse
implication is trivial.

(c) Suppose first that
(A, a,a) IF? {#}* i.e. that (A ,a,a) IF? [i]¢

for all compound labels i. For each element b of B we have a — b for some
compound label i so that

(A, a,b) IF? ¢

and hence part (b) gives (B, 3,b) IF? ¢. Since this holds for arbitrary elements
b of B, this gives (B, ) IF* ¢, as required.
The required converse follows by a similar, but dual, argument.

4.10 (a) Unravelling the definition we see that

a’ ~5 bV (B.2)
holds precisely when
(VX e PA)ae [(JX = be X]. (B.3)
Recall also that
ae ()X & (Vze Az = zeX] (B.4)

Suppose that (B.2) holds and consider the set
X ={ze€Ala-z}
Then a € [:]z, so that b € X, and hence a —— b. Conversely, if a — b, then

(B.3) follows by taking z = b in (B.4).

(b) This is proved by induction on the complexity of ¢. Only the induction
step

plt [io & [[Je] ep
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is non-trivial, and even here the implication < follows immediately from the
definition of — in AY. For the converse, consider the family

{X ePA| [1X ep}u{[el'}

If this has the f.i.p. then it extends to some ¢ € AV which then witnesses that
p Ik G>-¢@. If it does not have the f.i.p. then there is some X € PA with

(l1Xep , Xnlg]' =0

The second of these gives X C [¢] so that

(11X < Cllel = [ (4]
and hence [ [:14} € p.
(c) (i) Consider the case p = a" in (b).

(ii) The implication = holds by (i). Conversely, if =[(A4, )Y IF* @] then,
by (b), there is some p € AY with [¢] & p. This gives [¢] # A.

(iii) By (i).
4.11 (a) Observe that
a€ X & [a+1,00]C X

and recall that no member of AV contains @.
(b) Each non-principal ultrafilter contains all cofinite sets.
(c) Each non-principal ultrafilter is a reflexive point.

(d) There are many formulas ¢ such that for all transitive structures .4 we
have
A F* ¢ < A has no reflexive points

and many of these are modelled by A. One such formula is L(P) (for any
variable P).

4.12 (a) Trivially, NV is transitive and serial but has no reflexive elements.
An easy argument shows that AV is transitive. Also, by Exercise 4.11, for
each p,q € NV with ¢ non-principal, we have

Pp—q—4

which shows that AV is good.

(b) If T' captures any class of good structures which contains NV, then
NY Ik T so that, by Exercise 4.10(c)(iii), we have N IF* I", which would
mean that N is good.
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B.5 Chapter 5

5.1 For all cases the implication
A has (p) = A models (s)

is straight forward. For the converse, replace ¢ by a variable P, fix the elements

a and b with a — b, and consider a valuation § with 3(P) = {b}. For instance
case (g) is proved as follows.
Suppose first that .A has (p) and, for an arbitrary valuation « and element

a, that a I+ <i>¢. This gives some b with ¢ — b and b I+ ¢. We require that
a b [F]< [1e.

To this end consider any ¢ with a —2, ¢. This wedge with (p) gives a particular
d with
d#x:x:b#wll—q&

so that d - [1]¢. Thus c IF <&> [1]¢ which gives the required result.
Conversely, suppose that .4 models

P — [{]<e [p.
For a given wedge
)
a——=b
J
c

consider the valuation § as above. Then a IF (P so that ¢ - [5] <> [1]P
and hence ¢ IF <& [t]P. This provides the required element d.

5.2 For all cases the implication
A has (p) = A models (s)
is straight forward. For the converse suppose that A models
&> [i]P — RHS(P)
for some variable P, and for a given transition
a—b

consider any valuation on A such that

tlFP o by
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(for all z € A). Then a I+ <> [i]P so that a I+ RHS(P) which, by a simple
argument, gives the required result.

5.3 Assume the structural property and suppose first that for some valuation
and elements a, b, c we have

[ n
a—b—c¢

and
alb GI(Gle— [ky) , bIF [m¢.

The structural property supplies an element d for which we may check that

dir Gl¢— kv , dIF [F]o.

and hence get ¢ IF .

Secondly, replace ¢ and ¥ by distinct variables P and @ and suppose .4
models this formula. For given elements a,b, ¢ consider any valuation such
that

thFPesb-Sz , z2I-Q & z#ec.
Observe that
b Ik ~([P— [r]Q)
so that
a b =[](MP— Q)

which produces the required element d.

5.4 Property (ii) follows from (i) by setting ¢ := T and remembering that
[T is universally valid. Property (iii) is just a reformulation of (ii).
To show that (iii) = (i) consider any a € A and formula ¢ with

ok OFOOe

(for some valuation). Then, for each b with a %, b we have b I+ e, in
particular no such b is blind. Thus, using (iii), we see there is also no blind

with @ — b. Consider any such b. We must show that b I+ <> [J¢. Since bis
not blind, there is at least one z with b — z, furthermore (using transitivity)

b—z = a -z = zis not blind.

By iteration this allows us to obtain some ¢ with

! k
a—b-—c¢c , a—c

and hence ¢ I <> {T]¢. This gives some d with
, dIF []¢

b—c—d
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which, again using transitivity, gives b IF <> []¢, as required.

5.5 The implication (i) = (ii) holds since <> [J¢ — <>¢ is universally valid
in all transitive structures. Condition (iii) follows from (ii) by setting ¢ := T,
and (iv) is a simple reformulation of (iii).

To show (iv) = (i) consider any a € A and formula ¢ with a IF [J* ¢
{for some valuation). In particular we have

k . .
a — z = z is not blind

for each z € A. Thus (iv) gives some b € A with a — b and

b5 2 = zis not blind.

With this b we show that b IF [] <>¢.
To this end consider any ¢ with & — ¢, This ¢ is not blind and, by
transitivity,
c— & = b— x = zis not blind.

Thus, by iteration, we obtain some d with

! k
a—b—c—d , a—d.

But then d I+ <>¢ hence, by transitivity, ¢ I+ &, which gives the required
result.

5.6 (b) This follows easily by induction on M. For instance
a—{[{IM}=b
holds precisely when, for each z,
oz = z—{MPb
which, by the Induction Hypothesis, is equivalent to
a1z = z - MP

i.e. when a IF [{]MP.

(c) Fix a valuation and element b and for each modal operator M consider
the property

((M))  For each element a with a —{M}— b,
bIF¢ = alF Mg

holds.
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We verify ((M)) by induction on M. For instance, to prove the Induction Step
(M) = (([:IM))

consider an element a with a —{ [{]M}— b and suppose that b I+ ¢ for some
formula . We require that a I+ [:]JM¢. To this end consider any element

z with a — 2. Then £ —{M}— b and so the Induction Hypothesis gives
z I+ M¢, which is the desired result.

(d) Suppose first that .
e M
and that a IF <i>¢ (for some formula ¢, valuation on A and element a). This

gives us some element b with @ — b and b I ¢. The structural property now
gives ¢ —{M}— b so that, by (c), we have a I+ M@, as required.
Conversely, suppose that .4 models

<GO>P — MP

(for some variable P), and consider any pair a =5 b Using a valuation §
with B(P) = {b}, we have a IF <>P, so that ¢ - MP, and hence (b) gives
a —{M}- b, as required.

(e) For instance .
- C {Fw ]

holds precisely when for each wedge
4 —rb
J
c

we have ¢ —{ <> [(]}— b, i.e. when there is some d with

e d—{[b
as required.

5.7 (b) (i, ii) Since
(z,i) —u & u=(x,1)

holds for all z € S,i € 2, and u € A(F).

(iii) f z IF <> [J¢ then (z,i) IF <>¢ for both i = 0, 1, so that (z,7) I+ ¢
and hence (z,7) I+ [J¢.

(iv) By tightening the argument of (iii).

(W If f I [J O then (o, f(z)) B O forall x € S, so that (z, f(z)) IF
[J¢ for each such z, and hence f IF <> []¢.
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(vi) By tightening the argument of (v).

(c) (i) For each x € S we have (z,g(x)) I P so that 2 I+ <>P. For each
f € F we have f # —g which gives some z € S with

f(z) = g(z)

and hence f I+ <OP. Thusa I+ [JOP.
(i) If .A models M(P) then a I > [P so that either

zI [JP or fIF [P

for some x € S or f € F. The first of these gives g(z) = ¢ for both ¢ = 0,1
which is impossible. The second gives f(z) = g(z) foreach x € S,ie. g=f €
F as required.

(d) Suppose first that F = [S — 2]. It suffices to show that a I+ M(¢).
Thus suppose that a I+ [ ] <{>¢. This gives

gl $O¢ o, FIF Oo
for all z € S and f € F. The first of these gives some f € F' with
(z,f(z)) Ik ¢

for all z € S, and hence f IF [J]¢. Thus e I+ <> )¢, as required.
For the converse, if A(F) models M(P) then the —(-)-closure with part (c)
gives, for each g € [S — 2]

g¢F = —g¢F and —g¢F = g€eF
ie.geF.

5.8 (a) Suppose first that .4 has the structural property and that a I- []<>¢
(for some element a, valuation, and formula ¢). The property gives us some b
with a — b and

blFk ¢ and b—z = z=0b
(for all x € A). These give
blF¢ and b— 2 = 2z IF ¢

so that b I [J¢, and hence a IF <> [J¢. (Note that this does not use the
transitivity of the structure A.)
Conversely, suppose that A models

OorP—- 0P
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for some variable P. Given any a € A let
X ={z€A|a— 1z}
We wish to show that
(Fre X)(Vye X)fr —y = z=y)

If this doesn’t hold then, using the given choice principle (*), we obtain a
certain partition Y, Z of X. Consider any valuation on .4 such that for each
zeX

tFP & zeY , zlF-P & x€Z

Then
z Ik OPA O-P

for each z € X, so that

alr JOPA P

which contradicts the given McKinsey axiom.
(b) Consider the set P of all disjoint pairs ¥, Z C X satisfying

VyeY)3zeZly —2 , (VzeZ)FyeY)z— gy

P is non-empty since the pair (@,8) € P. Consider any pair (Y, Z) € P and
suppose there is some a € X—(Y U Z). The given property of the relation —
on X ensures the existence of a sequence

Aa=ay — A — Qg —> *+* —> Qp —> ***

where a, # a,41 for all appropriate r. Note also that a, — a; whenever
r < s. We continue this sequence indefinitely unless either

repeat there is some n such that a,4; is an earlier term,
or
capture there is some n such that a,4; € Y U Z.
If either of these occur, we take the first such n and consider only
agy A, -« -y Qn.
Now split this sequence into two parts
U :— ag,a9,ay,... , V 11— a,a3,as,...

and set either
Yt=YUuU , Zt=2ZuV
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or
Yt=YUuV , Z*=ZuUU.

One of these pairs is in P. Only in the ‘capture’ case do we have to be careful
about which pair we take. In this case we note the parity of n and whether
Gnt1 €Y Or a,1 € 2.

The set P is partially ordered by pairwise inclusion. By the Axiom of
Choice there is a maximal pair in P. The above construction shows that such
a maximal pair covers X. is good.

B.6 Chapter 6

6.1 In each case there are two possible formulas where one is the contrapositive
of the other.

(a) <D lg— DG>g (] []e — [ <>e
(b) <&>[le — wé (k] — []<de
(0 [JlUlg—o ¢ — <GP

(d) <G>kl — ¢ ¢ — (][] <wé
(&) <GP — <k (kl¢ — [ [F]e

(f) DG WP — > (] e — [ 5] (ko

6.2 (a) [J(<> [ — [k] &>e)
(b) <> [kJp — [F1(pA &>T)
(¢) (<> [ A <G> [mY) — &P AY)
(<> e A < [n]y) — [ e (dAY)

6.3 The appropriate structural property is as follows.

For all elements a, b, ¢(1),¢(2),...,d with

a—5b-5d and 2% c(p) (B.5)

for p=1,2,..., there are elements e and f with

d=ve—"5f and c(p)f(ij-)»e—'—l—»f

forp=1,2,....

Showing that this property ensures the modelling of the axiom is straight
forward. Conversely, suppose that Py, P,, ... are distinct variables and suppose
that the structure A models

N PP p=1,2,..} = [ (®TAANP p=1,2,...}))
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(which, of course, is an instance of the axiom). Suppose also that we are given
elements a, b, c(1),¢(2), ..., d of A satisfying (B.5). We may define a valuation

on A such that

z I+ P,,@c(p)Ma:

forallz € Aand p=1,2,.... In particular
c(p) I+ [k]P, where k = k(p)

and hence
bIF A{@ PR p=12,...}.
The instance of the axiom now gives

biF [D@(@WTANP p=12,...})

and hence
Ak @(@DTANPB | p=1,2,..}).

This produces an element e with
d"e , el BT |, el B,

which leads to the required result.
B.7 Chapter 7

7.2 (iii)=(i) Suppose that (iii) holds and consider any valued pointed model
(A, a,a) of ®*. Let B = A(a) be the substructure generated by a and let §
be the restriction of @ to B. By Exercise (4.9(c)) we have (B,3) IF* @ and
hence, by (iii), we have (B,8) IF* ¢, which gives (B, 3,b) IF* ¢ and hence
(A, a,a) IF? ¢, as required.

B.8 Chapter 8

8.1 (i) Since
=W —0AY)

is an instance of a tautology, use of (EN) and (K) give
F 60— (Uy - L@ Ay)

and hence

F(OeA Uv) — L6 Ay).
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Also 8 A ¢ — 0 is an instance of a tautology so that (EN) gives
FO@Ay) - [16

and a similar argument gives
FLOAY) = Ly

which gives the required result.
(ii) Set 9 := -9 in (i) and take the contrapositive of the «— implication.
(iii) Set 8 := ¢ and ¥ := ¢ in (ii).
(iv) This follows from the tautology

=0 (0 — )

using (EN).
(v) ¢ — (0 — ¢) is a tautology.
(vi) Combine (iv) and (v) using the tautology

(ma—7) = ((B—7) = (a— B) = 7).

(vil) By (vi) and (K).
(viii) Set 8 := =¢ and ¢ := -8 in (vii) and take the contrapositives of the
hypothesis and conclusion.

(ix) Since
F Oe— (8 — [¢)
we may combine this with (viii) to get
F ¢ = (O8 = )
which is easily transformed into the required result.

8.2 Let I be k4.
(i) By the 4 axiom in contrapostive form we have

O = O
so that an application of (EN) gives
F OO — O

An instance of 8.1(ix) is

FO¢— (Oy — Ov)
so that (EN) and (K) give

FOOe = (O% — OO
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and hence a use of axiom 4 gives

FOOe— (Oy -~ OO
which may be rewritten as
F OOeA Ov — OOy (B.6)
Setting 9 ;= <>¢ gives
FOOe— OO,
(ii) Setting ¥ := []<>¢ in (B.6) gives
FOOeA 2O = (OO
50 that a use of axiom 4 gives
F OOe = (OO) e
For the converse, an instance of 8.1(ix) gives
Fe (O A [v) = Ov
so that a couple of uses of (N) and axiom K gives
Fe (oA D) = OO
An instance of this is
Fe (OO A [PO9) = (OO
so that the required result follows by the 4 axiom
8.3 (a) The required inclusions follow from
KD < KT < KDB4

both of which are proved in the chapter.
(b) It is easy to produce:

(i) a one element structure which is symmetric and transitive but not
reflexive;

(ii) a two element structure which is reflexive and transitive but not
symmetric;

(iii) a three element structure which is reflexive and symmetric but not
transitive.
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These witness that the inclusions (i,ii,iii) in the diagram

KTB (i) S5
\u‘) \)
(iv) kr ) S4
(i) (%)
KDB (v)
\z‘z‘)
(2) KD (it KD4
KB @9 kea (3)
(Zk (ii)\
K K4
(i41)

are distinct. For instance, the models of KB4 are precisely the symmetric,
transitive relations and the models of KT are precisely the reflexive relations
so that KT £ KB4. Simliarly, KDB # KB otherwise

KT < S5 = KDB4 = KB4

etc.
(iv) The structure
c€e—>o0
is serial and symmetric but not reflexive. Hence KT £ KDB and neither of the
two edges (iv) collapse.
(v) The structure
o— >0

is serial and transitive but not reflexive. Hence KT ¢« KD4 and the edge (v)
does not collapse.

8.4 By Lemmas 8.11 and 8.12 we have KB4 = KB5 so that
KB45 = KB4 , KDB5 = KDB4 =55

and
KT5 = KTB5 = KT45 = KTB45 = S5.



B.8. CHAPTER 8

This leaves just four new systems, as named, arranged as

S5

|

KD —— KD5 —— KD45

]

K K5 K45

with K4 < K45 < KB4.

8.5 (a) For each formula ¢ the axiom T and its contrapositive gives
@ [Oeé—¢ , Fo—Od

and then

() F OOOe—»C0e , F OOe-> OUOS

are particular cases of these. Uses of (EN) on (i,ii) now gives

F OO — O , F0Oe—- OO

and then

) FOCOe~ OO , F OO OO0
by a second use of (EN). Two instances of (iii) are
(vii) F [JOs— O¢ , F e O0e
so that
ix) FOOOCe—-O% D% -> 000
follow by (EN). But axioms T and 4 give
F D%~ Do , F O e O

and so we obtain (xi, xii).
(b) Setting ¢ := <>¢ in (xii) and (v) gives

FOOe— (OO , (OO - OO

which since “{>? = " gives the required equivalences.

271

(vi)

(viii)
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Now consider any sequence of modal operators

004

where each suit is either [ ] or <>. (The more observant among you will not
need to be told that ‘¢’ and ‘<>’ are different symbols.) In this sequence,
either two consecutive symbols are the same or the symbols alternate. In all
cases there is a collapse to a sequence of three or fewer symbols. Thus the
diagram exhibits all modal variants of ¢.

{c) Consider the case where ¢ is a variable P. We must show that there
is no further collapse in the diagram. The models of S4 are precisely the
pre-orders i.e. the reflexive transitive relations.

Consider the two element structure

a—a—b—b

with indicated transition (and no others). Consider also a valuation with
alF ~Pand b IF P. Then

a lF "-(D<>DP—>P)

so that

not[- (1<> P — P).

Thus there is no collapse of (ii) or (xii).
On the same structure consider a valuation with ¢ |+ P and b I =P. This

shows that
not(- P — > [J P

so there is no collapse of (i) or (xi).
Adjoin to the above structure a new element ¢ with transitions

a—c—¢
(and no others) and consider a valuation with
alFkP |, bIFP | ciF P

Then
alr ~(OOP— OOP)

so that there is no collapse of (iii) or (iv).
Finally consider the relation — on N where

a—b & a>b
(for a,b € N) and consider a valuation where

z IF P & xis even.
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Then
01 ~(Op— OOP)

and there is no collapse of (v) or (vi).

8.6 (a) The axiom 5 gives us

0 FO¢— O
(r) FOOe— Ue

and Exercise 8.1(viii,ix) gives

() F (8~ [¢) = (O — >¢)
(0) F (8= o) — (00 = O¢)

We now proceed as follows.

(i) From (7). (ii) By (EN) on (i).
(iii) By (EN) on (i). (iv) An instance of (I).
(v) An instance of (r). (vi) By (iv) and (ii).

(vii) By (EN) on (vi). (vili) By (iv) and (vii).
(ix) By (iv) and (p). (xii) By (v) and (X).
(xili) By (viii) and (p). (xiv) By (viii) and (A).

{b) Consider the case where ¢ is a variable P. We show that there is no
further collapse of the diagram. Recall that the K& models are precisely the
euclidean relations.

Consider first the three element set {a, b, c} structured by the relation

a—b—c—c¢ a—c—b—b

)

together with a valuation such that

bIFP , cl =P

Then
alk OGP, ek (P
so that
not[- Op — [JP]
and hence

not{+ (J<OP— [JP] , not[r OP— OP).
Next consider the same three element set structured by

a—b—b—c—c
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with a valuation such that
bIFkP , ¢l P

Then
el (JP , alt=[%P

so that
not{- [JP — [J?P] , not[F PP — OP).
To show that
not[- [J?°P — OP) , not[- JOP — OP).

consider the empty relation on a l-element set.
Finally, two different valuations on an appropriate 2-element structure
shows that

not[- <>O[JP—P) , not[F P— [JOP).

8.7 Since S5 is S4 extended by the addition of axiom 5, the S5 diagram is a
collapsed version of the S4 diagram. The 5 axiom gives

OO0, OO0 — O

(where t is s5) and these cause the implications (iv),(xi),(iii), and (xii) of
the S4 diagram to collapse to equivalences. Thus we obtain the diagram

O — 6 — O
These can be shown to be strict using a suitable (small) equivalence relation.

8.8 The first of these follows easily by induction using the T axiom.
For the second consider

A=1{01,...,n+1}
structured by the relation — given by
r—y &|lr—y|LL

This relation is reflexive and symmetric and so provides a model of KTB.
Taking the variable P true at 0,1,...,n and false at n + 1 gives

0 [J"P, O™H-P

so that not[ []"P — []™*1P], as required.
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8.9 Since K5 < K45 and K5 < KB4, in both cases we require a certain collapse
of the K5 diagram. The appropriate diagrams are as follows.

0P &P

8.10 The temporal structure (N, <) models none of (ii,iii,iv,vi). The three
element temporal structure

models none of (i,v,vii,viii).

8.11 All of these are confluence properties and only (iii) and (iv) are modelled
by all temporal structures.

8.12 (b) (i) = (ii). Given a wedge

and a variable P, consider a valuation such that
zlF P & b~z

(for x € A). Thus b I [~]P and hence, using (i), b I+ [-] [+]P so that ¢ I+ P.
(i} = (iii) Using the same set up observe that a I+ &> []P.
The implication (ii) = (i) and (ili) = (i) are proved using similar argu-
ments.
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(c) By definition, the relation =~ is always reflexive and symmetric. To
show transitivity consider any elements a, b, ¢ with

cra=b

We require b = ¢. To show this consider the 9 possible cases. As an example
of a non-trivial case, note that if

c—a-b

then the wedge property immediately gives b = c.

This shows that ~ is an equivalence relation, and, trivially, it includes both
-+, and —. Conversely, suppose = is any equivalence relation which includes
—*,. Then, for each a,b € 4,

ax~b = a—bora=bora-5b
= b5 aora=bora-Hb
= b~aora=boraxb = a=b

as required.
(d) Immediate.

8.13 (a) T

do=HHL , vi=T

(©) Ry

(d) There is no such formula. The easiest way to see this is to consider the
associated modal algebras of @ and R.

8.14 (a) (i)=(ii) Suppose that there is some function next. Then for each
element a and formula ¢, we have

alk [J¢ © next(a) IF ¢ & alF o

which gives (ii).

(ii)=(i) Conversely, for each element a we have a I [JT, so that (ii)
gives a I {>OT, and hence there is at least one b with a — b. Suppose there
are distinct b and ¢ with a — b and ¢ — ¢. Consider any valuation o such
that

bIwP , clk =P

(for a variable P). Then b witnesses that a IF <>P, so that (ii) gives a I+
(1P, and hence c I+ P. This is contradictory.

(b) The verification of these shape is mostly routine. For instance, to verify
the last shape suppose that

alr [J(¢—O¢) , alF ¢
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The first of these gives
next"(a) IF ¢ = next™(a) I+ ¢
for all r € N, and hence, using the second, induction gives
next’(a) I+ ¢
for all r € N. Thisis a I+ [+]¢.

8.15 Suppose that s € o N 7. Since (s, .5) € A, this gives a wedge

(Sy o)
(s,5)
(s,7)
so that, since A models the confluence shape, we obtain a wedge
(s,0)
(s,0)
(s,7)

which provides the required p with s € p C 0 N 7. The proof of the converse
is similar.

8.16 (a) For each formula ¢ and compound label i, sufficiently many applica-
tions of the (N) rules give
¢ ks [ilg.

The first and last implications hold since ® C ®*. For the central impli-
cation, if & +¥ ¢ then ks [1]6 A--- A [n]8, — ¢ for some 6,...,0, € ®
and composite labels i(1),...,i(n). (For convenience, only the index of the
compound label has been shown in the corresponding box.) But then, by the

first part, we have
@ ks [1J0iA--A [n]6,

so that ® +g ¢ follows by MP.
For each @ we have []6 € {8}~ so that

{6y Fs' (e
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However, 8 ¥ []@ holds (in general) only if S is pathetic. Thus the left hand
implication is not reversible.

(b) The implication
 Fs o= @ HY 9

is proved by induction on the size of the hypothesis set ®. The induction step
relies on the fact that if
d*u {8} s @ (B.7)

then there is some compound label i with
P s [i] — ¢

This is proved by induction on the length of the given witnessing deduction.
The crucial induction step is the one across the use of the (N) rule.
To verify this step suppose that

¢= [y
for some label j and formula 1, suppose that (B.7) is obtained from
d*u {0}* s ¢

by an application of rule (Nj). The Induction Hypothesis gives us some com-
pound label i with
ks [[10 -

so that (ENj) gives
& ks 18— o
as required.
(c) This holds since

Utg e YUSES

and 8* = S (where & is the set of axioms of S).
B.9 Chapter 9

9.1 For instance since s is closed under implication we have

- YeEs
= YEs
fes
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i.e.
f—oyYeEs = Bd¢sory€s.

Conversely, if (§ — ) ¢ s then there is some conjunction o of finitely
many members of s with
Fs 0 — (0 — )

i.e.
l_S o—0A ﬂ’l[)
so that # € s and -9 € s.

9.2 (a) Only one implication is non-trivial. For a given s € S(®), label 7, and
formula ¢, suppose that

s—>t = get
holds for all £ € S(®). Let ¥ be the set of all formulas given by
YeTr & [yY€s.
Then, for each t € §
PUTCt = teS@ands—t = ¢et
so that Lemma 9.5 gives
UV Y .
Thus there are 6,,...,60,, € ®* and ¥y,...,9¥, € ¥ with
Fs WA O AULA--- A, — @
so that
Fs [0 A~ [0m A [ A A [i9 — [0
But for each of these § we have
[(]6ed*Cs
so that
[(J0A---A[i]0, €5
and a similar argument shows that
Cln A A lYn €5
and hence [i]¢ € s.

(b) This is proved by induction on the complexity of ¢. For the induction
step across [i] we argue

s I+ [iJ¢ <« For each t € S(D),
s—t =t ¢

& For each t € S(®),
s—t => ¢t & [iJpes
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where the second equivalence follows by the Induction Hypothesis and the
third by (a).

(c) Since SU ®* C s for all s € S(®).
(d) The two implications
(i)y= (il = (il
hold by Exercise 8.16(a). The two implications
(l)= Gir) , (iil)=> (iir)
are standard soundness results, and the implication (ii r)=>(iii r) is trivial
(since @ C ®*). The implication (iii r)=-(iv) holds by (c).

Finally,to prove the implication (iv)=(i), if (&(®), o) models ¢ then ¢ is
in every member of S(®) so that Lemma 9.5 gives (i).

B.10 Chapter 10

10.1 If (S, 0) models any sentence, then & itself also models that sentence.
10.2 For the shape E the corresponding structural property is that
a—b=>a—a

holds for all elements a and b. To see that the canonical structure & has this
property consider any s,t € S with

s —t.
Since T € T, this gives <>T € s. Hence, for each formula ¢,

(ees = OTA[Jpes = g€

as required.
For the shape F the corresponding structural property is that

a—b=>5b—1b

holds for all elements a and b. To see that the canonical structure & has this
property consider any s,t € S with

s — t.
Since [ ]((J¢ — ¢) € s, this means that ([_]¢ — @) € t and hence
Oeet = get
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so that (since ¢ is arbitrary) ¢ — ¢, as required.

10.3 Let S = K(4, 5, k,!1,m,n). We refer to the corresponding structural prop-
erty as given in Exercise 5.3. Thus consider any r,s,t € § with

l n
r— 8§ —>

and set

E:={0| (l0eryu{[ie]| Meoecsiu{my|pet}.

We show that = is S-consistent.
If = is not S-consistent then there are finite sets ©, ®, ¥ of formulas taken
from the appropriate places where

Fs AOAA GIRAA T — L.

Since box operators commute with A we may reduce © and ® to single formulas
0 and ¢ to get

Fs 8 — ([i¢ =V []-¥)
which gives
Fs 0 — (¢ — 1V 9)
and hence
Fs (160 — [1([¢ — [V -0).
Since, by choice, we have [:]0 € r, this gives

(J(Gle— VP er

hence, using the axiom,

[1(fg > PV -¥) e

From this we have
("¢ — FIV-¥)es

so that, by choice of ¢, we have
FV-Yes

and hence
V -V €t

This produces some ¢ € ¥ C ¢ with ~ € ¢, which is the required contradic-
tion.
The consistency of = gives us some # € S with = C u, and hence

[{(j6er =>60cu , Mmoes=> locu , Yvet=> &YeEu
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(for all 6, #,v). The first and third of these ensure that

i k
r — u — {.

Also, for any v € § with
U ——v

the second gives
meopes = [Hlopcu = dpev

so that
§——

as required.

10.4 Consider any r,s,t € S with

r——5
S[s — t].
t

We must show that t — s.
Note first that there is a formula ¢ with

(Jves , -ypet.

Now consider the set of formulas

¢ =su{p| [pet}

If this is not S-consistent, then there are

fes , [Joet
with
Fs 6Adp— L.
But then [ ]¢, ~ € t so that
(e —v) ¢r
and hence, using the axiom
[y —o€s

which gives ¢ € s, and (since 8 € s) this leads to a contradiction.
Since ® is consistent, the maximality of s gives ® = s, and hence ¢t — s.
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10.5 This shape corresponds to the structural property of Exercise 6.2(d) of
Chapter 6. We must show that the canonical structure & has this property.
Thus consider 7, s,t,u € § with

and let

E={¢| [oestu{d| Moectiu{y]| [*lv € u}.

It suffices to show that = is S-consistent.
If = is not S-consistent then (remembering that box operators commute
with A) there are formulas ¢, 6, ¢ with

Fs ¢AOAY — L

and
Llpes , [bet , [[yeun
The assumed configuration gives

Gy []eer , whiyer

so that, using the axiom, we have

Gled(ony) er
and hence
(P AY) EL.
But
Fs oA — -0
so that

ks <m>(¢ A 1/)) — -

and hence &>—f € t. This contradicts the original choice of 6.

10.6 We use the correspondence result given in Exercise 6.3. Thus we must
show that the canonical structure & has this property.
To this end consider points a, b, ¢(1),¢(2),...,d of & with

a—b-5d and bL('?)»c(p) forp=1,2,...
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(where, of course, p varies over a finite set). For each p =1,2,... let

®(p) = {¢| (K]p € c(p)} (where k is k(p))
and let
¥ = {¢| [y € d}.

These sets are closed under conjunction.
It suffices to show that

VU{®TIUIHUR2)U---
is consistent. (The consistency of
YUP(LUd2)U---

ensures the existence of the required point e, and the extra component <»>T
ensures the existence of the required f).
If this set is not consistent then there are ¥ € ¥, ¢; € ®(1), ¢, € ®(2),...
with
Fs yADTAAS - L

where

® = {¢,]p=1,2,...}.
This gives

Fs WTAN® -
and hence

Fs @ (T AN®) - @y
which, by the choice of 9, gives
(T ANS) €d

We now produce a contradiction of this.
For each p=1,2,... we have

[k]¢ € c(p) (where k is k(p))

so that
P> [rlp, €b

and hence

A< [Plé | p=1,2,..} €b.

Since @ — b the assumed axiom gives

[ (DTAAD) b
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and hence
a(<DT A /\ ®)ed

which is the required contradiction.
10.7 (a) The relation — of N is transitive and well founded, so N models

L_(¢). To show that A models L (¢) consider any valuation on A, formula
¢ and m € N with

mik SHFe , mik F([Heo— ).

We require that m I+ [+]¢.
We know there is some n € N with

m+n b [+]¢.

Take the least such n. We show that this n = 0. To do this note that if n # 0
then we also have
m+nlk [¥l¢p — ¢

so that m + n I+ ¢. Thus, with n = k + 1 we have
m+k - [+]¢

which contradicts the minimality of n.

(b) (i) By way of contradiction suppose there is some b € A such that for
eachz € A
bz = (Jy)y =

This enables us to produce an infinite chain
b=1by— by — by —» -+ (B.8)

which contradicts the characteristic property associated with L_.
For uniqueness note that if a;,as € I(A) satisfy a; ~ as, then

Gy — Gy OF @] = Gy OF @] — Q9

and the first and last of these are prevented by the defining property of I(A).

(ii) By way of contradiction, if there is no such function, then there is some
a € A such that
oz = (Fye b5y
Taking any element b with a — b this enables us to produce an infinite chain
(B.8) where

@by o,

for all r < w. This contradicts L_.



286 APPENDIX B. SOME SOLUTIONS TO THE EXERCISES

(iii) Consider a,b € A with
next(a) = next(b) = ¢ (say).

Then a ~ ¢ ~ b so that a ~ b and hence either a = b (which is what we want)
or

a-5b | sothat b= next(a) or next(a) = b

or

b—5a , sothata = next(b) or next(d) = a.

In both the latter two cases we find that ¢ —— ¢ which is a contradiction since,
by L_ both the relations — and — are irreflexive.

(c) (i) Note first that for each x € A,
zlFP =zl &P

(for if m € N witnesses the left hand side then m + 1 witnesses the right hand
side). Thus z IF [+]-P — =P, and in particular

a b FI(E]=P — =P).
The axiom base on L, now gives
IF & F]-P — [#]-P

which, since a |F &SP, gives the required result.
(ii) For each b € A there is a unique ¢ € A with a ~ b, But then either

a = b (and we may take k = 0) or « = b. By (ii) the second of these gives
the required m € N. Uniqueness follows by the injectivity of next.

B.11 Chapter 11

11.1 (a) Easy.

(b) Suppose that

Af%BL>C

is a pair of p-morphisms, and consider any label ¢, elements a € A, z € C with

9(f(@)) - .

Since g is a p-morphism, this produces some y € B with

fla)->y , gly) ==
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and then, since f is a p-morphism, there is some x € A with

, f@)=y.

Since ¢g(f(z)) = g(y) = z, this shows that gf is a p-morphism.
The proof of the extra condition for zigzag morphisms is similar.

i
a— T

11.2 (a) Since the relation on R is full, for each a,b € A we have g(a) — g¢(b),
so that ¢ is a morphism.

Suppose that A is serial and consider any a € A,y € {0} with g(a) — y.
Seriality gives us some z € A with a — z, and then g(z) = 0 =y, so that g
is a p-morphism.

Conversely, suppose that g is p-morphism and consider any a € A. Since
g(a) — 0, there is some z € A with @ — z and g(z) = 0. Thus A is serial.

(b) For each a € A let f, be the assignment 0 — a. These are all the
functions {0} — A, and since —[0 — 0] in £, each one is a morphism.
The assignment f, is a p-morphism precisely when for each y € A with a =
fa(0) — y, there is some z € {0} with 0 — = and f,(z) = y, i.e. when
0 — 0 and y = f.(0) = a. Thus f, is a p-morphism precisely when there is
no y € A with a — y, i.e. when a is blind.

(c) The unique assignment —— {0} is a morphism precisely when the
relation of A is empty. Such a morphism is always a p-morphism.

The assignment f, : {0} — A provides a morphism R — A precisely
when the element a of A is reflexive. Such a morphism is a p-morphism
precisely when a is isolated, i.e. when

a—x > xrx=a
holds for all z € A.
11.3 These two valuations are given by
beAP) & (Faca(P)[f@=t , bep(P) & (Vaca(P)f(a)=0
for all b € B and variables P.

11.4 (b) Suppose first that A C, B and consider any @ € A and y € B with
f(a) =~ y, i.e. such that a — y holds in B. Then, in fact, we have y € A, so
we may set x = y to verify that f is a p-morphism.

Conversely, suppose that f is a p-morphism, and consider any a € A4,b € B

with @ —— b. Then f(a) —— b so there is some z € A with a —— z and
b= f(z) = z. Thus b € A, and hence 4 C, B.

11.5 (a) Suppose that both R and S are back-and-forth relations, and consider
any a € A and ¢ € C with aR;Sc¢. This gives some b € B with

aRbSec.
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Consider any z € C with ¢ 2 Then, using S, there is some y € B with
b y , ySz

and then, using R, there is some x € A with
a -z , TRy

Since
zRySz

this shows that R : S has the back property, and a similar argument shows
that it has the forth property.
The required extension to bisimulations is easy.

(b) For a € A and ¢ € C we have

aFGe & (3b € B)[aFGbG(]
& (FeB)[f(a)=band g(b)=c] & g(fla))=c

as required.
11.6 (a) We know that a ~¢ b holds for all a,b € N. Thus
a~1 b
holds precisely when for each
z €N or y€N

with
a=z+1 or b=y+1

there is some
y€N or z€N

with
b=y+1 or a=z+1

and
T~ yY.

In other words, a ~g b holds if either a = b = 0 or both a, b are non-zero.
This proves the base case r = 0 of the required induction.
To prove the induction step r +— r + 1 suppose first that

a ~rygg b
Then, by the definition of ~, .5 as (~r4+1)Y, we have

a ~py1 b
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together with a certain back-and-forth property. Suppose also that a <r +1
(so that we require ¢ = b). If a < r then the Induction Hypothesis gives a = b
as required. If @ = r + 1 then the forth property gives some y with

T~y and b=y +1

so that b =r + 1 = a as required.
The required converse is proved in a similar manner.

(b) An easy exercise shows that
alr OFL & a<k

so that the sentence ¢ := <OF1L A [J*¥T will do.
B.12 Chapter 12

12.1 The left-most filtration of this structure maps it onto a 4 element structure

as follows.
[o]

2.

L2
o

\o——o———»o

NN

o —0

\

[o]

ol

3 2 1 0

To see this first rank the elements into four levels 3,2,1,0 as shown. Observe
that for each a,b € A,

the substructures generated by

a, b have the same rank & . .
a and b are isomorphic
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and hence
a,b have the same rank = a ~ b.

Note also that

ahasrank0 & a 't []L

ahasrank1l & ok OOL
ahastank 2 & alb OF(]L
ahasrank 3 & alF O3L

and hence
a, b have the same rank < a ~ b.

The required result is now straight forward.
To show that this is also the right-most filtration, consider any 0 < m,n < 3
and suppose that for each a of rank m and each b of rank n we have

alk (o = bl o.

for all sentences 0. We require m = n + 1.
But m # 0, otherwise there is some a of rank 0 with @ I [ ]JL. Let
m =k + 1 and consider the sentence o where

zhasrank k & z Ik o

holds for all z € A. Then a I+ [ Jo for some a of rank m, so that b I+ ¢ of
rank n, ie. n =k.

12.2 (a) For each m,n € N, the two substructures of N'* generated by m and
n are isomorphic, hence m ~ n.

(b) For each k € N, there is a sentence & such that
milko & m=k
holds for all elements m of A/~.

12.3 Divide the nodes into four types as follows.

2 1/(2) 1/(0
3/
\1 2 1 2
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Note that nodes a and b have the same type if and only if their generated
substructures are isomorphic. Thus

a,b have the same type = a ~b.

Observe also that for each node a,

ahasrank 0 & alF [JL

ahasrank1l & ol OOL

ahasrank 2 & o lr JOOL

eahastank 3 & o !IF (OOL A (O O)2L).

Thus
a,b have the same type & a~b

and we see that 5

3\\1
AN

0
is the leftmost filtration.

12.4 Each isomorphism is a filtration.

12.5 For distinct a,b € A there is some P € ' with ¢ I P and b I+ —P.
Thus the induced equivalence relation ~ is just equality, and hence the left-
most I'-filtration is the identity map

(A, @) —> (A, a).
For b,y € A, the right-most transition
b—y

holds precisely when for each formula ¢ with [ J¢ € I',.. .. Since there are no
such ¢, this condition is vacuously satisfied, and hence the right-most filtration
is the complete graph on A.

12.6 (a) Suppose a # z. Then, since (A4, ¢) is separated, we have a % z, which
gives the required formula &, ;.

(b) Since A is finite we may set

pa = N{éos |z € A—{a}}
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to obtain the required p,.
(¢) x = V{pa|a€ X}

(d) The case when ¢ := P follows by (c), and then the result for a general
¢ follows by a routine induction.

12.7 Both zigzag morphism and I-filtrations satisfy (Val®™), so it suffices to
connect (Rel~) with (Fil).

(a) Consider any a,z € A with
f(a) = f(x)

and any formula ¢ with a I+ [i]¢. We use (Rel™) to show that z I+ ¢. Thus
(Rel™) gives us some u € A with

a>u , fu)=f()
The zigzag preservation property gives
vk o fuylFo & flz) P & k¢

so that
albk [{l¢ = ulk¢ = zlk o

as required.

(b) Consider any a € A and b € B with
fla) =5 b.
Since B is finite and separated, there is some formula p, such that
ylbpp, & y=>

holds for all y € B. In particular, f(a) IF <{>p, so that the filtration preser-
vation property gives a I <i>py, which produces some = € A with

a5z , zlFp
The filtration preservation property also gives f(x) I+ py, and hence f(x) = b,
which verifies (Rel”).
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B.13 Chapter 13

13.1 Let o be the sentence which axiomatizes S, and let M be the class of
finite models of S. Let ¢ be a formula which is modelled by every member of
M. We must show that s ¢.

Consider any (valued) model (A, ) of S. It suffices to show that (A, o) IF*
o.

To this end let I' = I'(¢ A o) be the set of subformulas of ¢ A 0. Let

4,0) L5 (8,5)

be a -filtration (so that B is finite). Since (A, @) IF* o, we have (B, 8) IF° o,
so that (since o is variable-free) B ¥ ¢, and hence B € M. But then, by
hypothesis, B IF* ¢, so that (B, §) -’ ¢, as required.

13.2 Given a transition & — y in the target, there are a € b and = € y with
@ — z. But then a = x so that b=y.

13.3 The composition property is that
a—b2se = a0t

(for all elements a, b, c). In particular the given 4-element structure A vacu-
ously has this property.
Let ' = {P,@} where P,Q are distinct variables. Consider the valuation
a on A indicated by
(o] -—l—) [e] o L) ]
p P P -P
Q Q@ Q@ Q

The I induced equivalence on (A4, ) coalesces the two central nodes. Thus

i 3
0o — 0 —> o0

gives the left-most filtration. This structure does not have the composition

property.

13.4 (a)(i) This shape captures the property that: For each element a, there

is some b with @ — b and b —2 b. This property is preserved by all surjective
morphisms.

(ii) This captures the property that: For all @ and b,

a-1b = a-—b
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Consider any elements x, y of the source of the filtration with

f@) L )

(where f is the filtration morphism). Then there are a € f(z),b € f(y) with
a -5 b, the assumed property gives a — b hence, by the morphism property

fz) = fla) = £(b) = f(y)

as required.
(iii) This captures the property that: For all a and b,

a-1b = b-sa

(for all elements a and b). An argument similar to the one for (ii) shows the
required preservation.

(iv) This captures the property that: For each configuration
a-1sb
there is some element ¢ with
a-b-5c
Again a similar argument to the one for (ii) gives the required preservation.

(b) To use this argument we need to consider models of both
(J¢— [il¢ and [i)¢ — [][:]e.
But this second shape is not preserved by left-most filtrations.
13.5 (a) We know that a structure .4 models KE precisely when
a — b = a is reflexive

holds for all a,b € A. We show that this property is preserved by left-most
filtrations.
Thus, consider any such filtration
f
(A’ C!) — (B ’ IB )
where 4 models KE. Consider any b;,b, € B with
b1 h— bg.

Then there are a; € b, and a, € by with

ay — a2
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and hence a; — @, so that the morphism property gives by — by, as required.

(b) These two results follow by Lemmas 13.7 and 13.8. Note, however, that
KDE = KT.
(c) For a model A of KE4 and a valuation « on A, consider the usual set
up
f
A——>B
induced by a set I" of formulas. Let — be the transition relation on B defined
by
For all a) € bla a; € b2 and
formulas ¢ with [ J¢ € T,
by — by & a; IF D(béalli-d)
and
a; lF (J¢ = ay Ik oA [0
Consider the usual valuation # on this constructed transition structure B.
We show first that f provides a morphism

f
(A, a) —> (B, B).
Thus, consider any 3,12 € A with
Ty — T2

(so that z; is automatically reflexive) and any a, € f(x1),as € f(z2). For each
formula ¢ with [ ]¢ € T we have

alk (¢ = I+ o

= I |- ¢/\ L__\¢
z Ik ¢ a k¢
= {and = {and
zy IF oA o ax I oA Lo

where these implications follow
o using the I" induced equivalence,
e since z; is reflexive,
¢ by the transition z; — x, and transitivity,
¢ using the I’ induced equivalence.

Thus we have
f(z1) — f(22)

as required.
The remaining filtration properties are easy to verify.



296 APPENDIX B. SOME SOLUTIONS TO THE EXERCISES

Finally we need to check that B model KE4.
Transitivity follows in the same way as for the Lemmon filtration. For the
characteristic property consider any b, b, € B with

b1 b b2.
Then, for each a; € by, ay € by, and each formula ¢ with [ ]¢ € I, we have
oy lk [J¢ = a1 IF pand ---

so that
b [ = a koA [

which is enough to verify that b, — b;, as required.
13.6 (a) We know that a structure .4 models KF precisely when
a — b = bis reflexive

holds for all a,b € A. Using an argument similar to that of Solution B.13 it is
easy to check that this property is preserved by left-most filtrations.

(b) For a valued structure (A, @) where .A models KF4, consider the usual
set up

f

A——>B
induced by a set I of formulas. Let — be the transition relation on B defined
by
For all a; € b;,ay € b, and
formulas ¢ with [ ¢ € T,
b1—>b2<=> a1||" |:\¢=>a2|l- D¢
and
(53 ”" Dd) = Qg “‘ ¢)/\ D¢
Consider the usual valuation 8 on this constructed transition structure B.
We show first that f provides a morphism

f
(A, o) —> (B, 5).
Thus, consider any z;, 1, € A with
Ty — T2

(so that x, is automatically reflexive) and any a; € f(z;), a2 € f(x2). For each
formula ¢ with [ J¢ € I we have

ay I+ D¢ = I I+ Dd)
= I Ik D2¢
= 1, IF D¢ = ay Ik D¢

where these implications follow
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o using the I' induced equivalence,

e by axiom 4,

e by the transition r; — 9,

o using the I' induced equivalence.
Also for each formula ¢ with [ J¢ € I we have

az b [J¢ = 2ok [J¢p = 22l ¢ = ap IF ¢

where these implications follow

o using the I" induced equivalence,

e since I, is reflexive,

o using the I' induced equivalence.

Thus we have
fxy) — f(x2)

as required.

The remaining filtration properties are easy to verify.

Finally we need to check that B model KE4.

Transitivity follows in the same way as for the Lemmon filtration. For the
characteristic property consider any b,,b; € B with

b1 — bg.

Then, for each a; € by,a; € by, and each formula ¢ with [ 1¢ € ', we have,
by the construction of B

az b (] = ay IF oA [0
which shows that b, — bs, as required.

13.7 (a) Consider any valued structure (A4, o) where A is euclidean and has
the E property. Consider also the usual finite set of formulas I'. We need to
construct a [-filtration of (4, a) where the target is finite and has the two
required properties.

Since we may work over K5 we can consider the virtual modal closure I'**
of I', which is also finite. Consider the usual set up

f

A——> B
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given by the I'**-equivalence. Consider also the relation — on B given by

For all a; € b,,a, € by and
formulas ¢ with [ J¢p € T,
oyl [J¢ = ay Ik ¢
bh— b, & ana

a I+ D¢=>0,1H'¢
and

ay |- <>¢ <= ag I+ ¢

This gives a structure B which we furnish with the usual valuation. We have
to check the usual properties.
To verify the morphism property consider any z;,z; € A with

Ty — T2

consider also a; € f(x1),a2 € f(z2) and a formula ¢ € I'**. We know that
(up to K5-equivalence) both []@, <>¢ € I'**. We need to check the three
implications.

For the first we have

a IF D¢:>CC1”‘ D¢=>CII2”’¢:>(12“‘¢

using the properties of the I'**-induced equivalence, and the transition £, —
z,. For the second, since x; is reflexive, we have

alr =k Qo = oIk ¢ = a ko

The third follows by a similar argument.
This, with some straight forward arguments, shows that f is a filtration.
Finally we need to check that B models KE5. But again this is straight
forward.

13.8 (a) Since A is transitive and serial, so is B. The structure B is also finite.
Consider any element b of B. Using seriality there is a chain

b=by —s by — by —> - -

where, by transitivity, we have b, — b, for all r < s. Since B is finite this
chain eventually repeats, i.e. there are r < s with b, = b, = ¢ (say). Then
b — ¢ — ¢, as required.

(b) If ¢ captures goodness, then applying (a) to I’ = I'(¢), we have B IF* ¢,
so that A IF* ¢, which need not be so.
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B.14 Chapter 14

14.1 An instance of (x3) gives
P [2)([s]¢ — [1[e1¢) — ([J¢ — []9)
and the rule (N) on (x1) gives
Fsue [=J( [ — [ []¢)
hence the required result follows by (MP).

14.2 (a) We show first that the assignment a(-) is a morphism.
For each m,n € N we have

m—mn = n=m+l
= a(n) = next(a(m)) = a(m) — a(n)

and

m-——n = (IreN)n=m+r]
= (3Ir € N)[a(n) = next"(a(m))] = a(m) — a(n)

which shows that a(-) is an unadorned morphism. Also, by construction,
(Val™) holds, so that a(-) is a valued morphism.

It remains to check (Rel™).

Thus, consider any m € N and b € A with

a(m) — b or a(m)—b.
Then either
b=next(a(m)) =a(m+1) or b=next (a(m))=a(lm+r)
for some r € N. This produces

n=m+1 or n=m+r7r

with
m-—mn o m——n
and hence
a(n) =54
as required.

(b) The first equivalence is a direct consequence of the zigzag preservation
property. For the second we have

NIF ¢ = (W)[N,v,0) IFP ¢)]
= (Va,d)[(A,a,a) F? ¢] = A I ¢
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(c) Consider A = {a}, a singleton set, with the identity function on A.
This gives a structure .4 with

next(a) = a
and hence
AlIF Op o ¢
for all formulas ¢. This doesn’t hold in A"
(d) Exactly as in Theorem 14.3.

14.3 (a) Note first that if r = ¢ < m then
next(f(r)) = next(a;) = aiy1 = f(r+1)
and if r = m + kn + j where 0 < j < n then
next(f(r)) = next(d;) = biy1 = f(r+1)
so that
next(f(r)) = f(r+1)

for all 7 € N. The required result now follows by induction.

(b) The result of (a) shows that f is a morphism. Consider any r € N and
y € A such that
fr)—y or f(r)—y.
We need to produce some s € N such that f(s) = y and
rT—s5 oOr r—s.
respectively. To do this simply consider the various possibilities as follows.
(1) r<m , y=a; (some i)
(2) r<m , y=b; (some j)
(3) r>m , y=a; (some 1)
4 r>m , y=b; (some j)
For instance, if
fr) —y
and (3) holds, then we must have y = a,, (i =m)and r=m+kn+n—1 for

some k. We then take s = m + (k + 1)n. Similarly, if (2) holds, then we set
s=m+j.

(c) Suppose first that A/ IF* ¢. Consider any spoon A and valuation o on
A. Consider also the p-morphism

wLs 4
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constructed above, and let v be the valuation on A given by
m € v(P) & f(m) € aP)

(for all variables P). Then, by construction, f is a zigzag morphism. But
(N,v,7) Ik ¢ forall r € N, hence (A, a, f(r)) I+ ¢ so that (A, a) IF* ¢. Since
« is arbitrary, this shows that A IF* ¢.
Conversely, suppose that =[N IF* @], so there is some valuation v on N
and r € N with
(N, v,7) Ik .

By replacing —¢ by <*>—¢ or (O"—¢ we may assume that r = 0. Now take the
modified valuation p with

(N, 1,0) IF —.

Consider the (m,n)-spoon .4 with the canonical p-morphism f. The choice of
u allows us to define a valnation o on A by

f(r) € a(P) & r € u(P)

(for all 7 € N and variables P from ¢). But then f is a zigzag morphism

W) 1> (4,0)

for this set of variables, so that (A, «, f(0)) IF —¢ and hence -[.A IF* ¢] as
required.

14.4 (a) By (x1) we have [*]J2X C [*]JX. By (»2) we have
(X - 0OCX = 4

so that
CIEX-00X) = 4
and hence (#3) gives [*]JX C [*]%X, as required.
(b) Suppose [:] and [/] are both S-companions of []. By (1) applied to
[:] we have
BxX-0OKlx = 4
so that
L)X - 0OC)x) = 4
and hence (*3) and (x1) applied to [4] give
(1x ¢ (I0)x ¢ [)x.
Similarly, [(]JX C []X, so that [i] = [5].

(c) These follow by the monotone and N-preserving properties of [].
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(d) Let Y be the set of all Y C X with DY = Y. Note that 0 € ).
Consider Y = |J Y. For each Z € Y we have Z C Y, so that Z = DZ C DY,
and hence Y = JY C DY. This shows that Y € ).

(e) A simple calculation shows that [¢] is a box operation. Also

lx = OCX = CIXn 0OC)X € X0 OLIX

which gives axioms (x1, 2).
For axiom (*3) consider

Y = (J(X - OX).

Then
YnX cX-0O0JX)nX ¢ OIx.

By construction we have DY =Y, and hence
DYNnX)y=DYnDX =YnXn[OJX =YnX
so that, (since Y N X C X), we have
YNnX C [JX

which gives
Y € (X — []X)
as required.

(f) A simple induction shows that
[(JX C D*X

for all @ €Ord. For some sufficiently large o we have D**'X = D*X then,
with 0o = a, we have
DX = D*X

for all § > oo, so that D®X = []X.

(g) Suppose that [] is obtained from the transition relation —. For each
T <wlet

There is some sequence
a=q—a — - —a =2I.

T <, a mean {
We then find that
a€ [JX & (Vz<.a)z € X]

Also
DX =Xn[OXn---n[X
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so that
a€D*X & (Vr<w)(Vz <, a)[z € X] & (Vz <+a)|z € X]
which gives the required result.
14.5 (a) Suppose that A models
LIOP - [P

and, for a € A, let
X ={z€A|la>z}

We wish to show that
(FreX)Vye X))z —y = z=y]

If this doesn’t hold then, modifying the argument of Solution to 5.8(b), there
is a partition Y, Z of X with

(VyeY)3ze€Z)y— 2] and (Vze€ Z) Iy eY)[z — v
Consider any valuation on A such that for each z € X
zlFP e xz€Y , 2P & €’

Then
yl- P, 2z OP
for each y € Y and z € Z, so that
z Ik (P— <>—|P) , zlF (-P— <>P)
for each r € X. Since — is reflexive (and hence ¢ — <>¢ holds in .A) this
gives
z Ik OPAOAP

for all x € X, and hence

a b LTOPA [ OAP

which is the required contradiction.
The converse is easy.

(b) If A = (A, —) is reflexive and transitive then — and — agree and
the formula considered reduces to the McKinsey formula. However, Exercise
5.8 applies to all (not necessarily reflexive) transitive structures.
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B.15 Chapter 15

15.1 (a) The rule (EN) gives
Fe UJS(6) —» LI(Le — )

and hence
Fu [JS(0) — o
follows immediately.

{(b) Consider any characteristic valued model (A, @) for S, and let (B, 3)
be the structure as constructed in section 15.3. It suffices to show that

(B,B,b) I+ [1S(¢) — o

for then (B, ) models S.
To this end suppose

b I+ []S(e).

Then
b S(¢) and hence a b [J¢p — ¢

for all @ € A. In particular
a Il [1S(4)
for all a € A, so that, since (A, &) models S, we have a I ¢. This gives

bk ¢

as required.
(c) Exactly as in Lemma 15.5.

(d) No. Indeed, with
S(¢) = ¢
we see that S is just K, which is canonical.
15.2 (a) (i) The displayed formula is an instance of a tautology.
(ii) Since 9 — ¢ is a tautology, this follows by (EN).
(iit) Set £ := [ in (i) and use (ii).
(iv) By (iii), (EN), and K.
(v) By (iv).
(b) Using (EN) on (v) we have

Fk ¢ — QU(W) and hence +s [Jo— o

which gives the two required results.
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15.3 (a) By the previous Exercise we have

Fke T(9) , Fke 4(9)-

The second of these gives

ke [JU(¢) = [J*U(9).
Also, an application of (EN) to Grz(¢) gives

Fke [1°U(¢) — (o
so that
‘_KG HI‘Z(¢)

This shows that KHT < KG.
The converse, KG < KHT, is immediate.

(b) Consider any characteristic valued model (A, &) of KH and let (B, 3)
be the rooted structure as constructed in Section 15.3. It suffices to show that

b - H(¢)
for then (B, §) models KH.
To this end suppose that
b Ik [JU(e).
Then A (- U(¢) and in particular
A+ [JU(g)

for all a € A. Since (A, o) models KH, this gives a IF []¢, for all a, and in
particular a IF []%¢. But this gives

alk [J(¢— [¢)

so that, using U(¢), we have a I+ ¢, and hence b I []¢, as required.

(c) As usual, consider any characteristic model (A, a) of KG. Let (B, 8) be
the rooted structure as constructed in Section 15.3 but modified to make the
root b reflexive. (This means that equivalence (15.6) is no longer automatic.)
It suffices to show that

b IF Grz(¢).

To this end, suppose thai
b IF [JU(4).

Then
bk U(¢) and a Ik U(g)
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for all a € A. Since (A, &) models KG, the second of these gives

alkod , alk ¢
for all a € A. Thus, remembering that

b— 1z © rz=borzxecA

we have
biFo— []o.
Also,
alk¢— []o.
for all a € A, so that
bI- (e — o).

Since b I+ U(¢), this gives b I+ ¢, as required to complete the argument.

(d) Let ¢ := [JP — P. We know that kg ¢, so it suffices to produce a
non-reflexive structure which models KH.
Let N = (N, —) where

m-—n & nm
This is irreflexive. Consider any valuation on A" and m € N with

m ik [JU(¢).

We require that m I+ []o.

If this doesn’t hold then there is some n < m with n I+ —¢. We take the
least such n and derive a contradiction.

Since n < m we have n |- U(¢) so that

nlk =[(¢— [1¢)

(otherwise n I+ ¢). This gives us some ! < k < n with

klIF oA <>—|¢ , LIk =g

which contradicts the minimality of n.

B.16 Chapter 16

16.1 For each pair of formulas ¢ and v, the axioms 4, K, and T give
Fsa (Do — (%0 , ks (%0 — [P0

Fso (J([3%0 — Ov) — (0% - O%)
Fsa (%% — v , ks %0 — O
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and hence a tautology gives sy (x).

16.2 (a) R(i, 4, k,!) is an instance of S(3, j, k, ).

(b) Using the T axiom, the given comparisons ensure that for all formulas
0, ®, v we have

ber (J0— (070, Fer [P¢— [P0

Fer O — ¥, ker (090 — [0
so that ' ) )
Fer (P — Of) = (¢ — 5 )

and hence, eventually

}_KT S(i/;jla klvll) - S(l’])kal)

(c) Let A be a finite model of R(z, , k,1). Then, since [] is deflationary,
for each X C A we have a descending chain

XoOxo@x2o..20x2--
which (since A is finite) must eventually stabilize. Observe that we have
O'x =0 = Ox=0%x
Consider any r € N with
072X = [J7X.

Then
Dr+2X — Dr+3X — Dr+4X — ...

in particular

Dr+jX — Dr+kX
so that

Dr+lX = Dr+2X-

Thus, by induction

DT+1X — Dr+2X = DX — DZX
as required.
(d) This follows from Exercise 10.3.

(e) Using the structural property for K(, 7, k,1,1,2) we need to show that
for each a,b,c € N with

! 2
a—b-—">c¢
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there is some d € N with

i k J
a-—d—c , d5bz o5 b—z

(for each = € N). Here the affix on the arrows indicates the number of steps.
For z,y € N we have

-y & rly+r

so we have
a<b+1l , b<c+2.

Since 2 < j we may set
d=b+j-1

Then, since | + 1 < ¢ + 7, we have
a<b+l<b+i+j—-1=d+1

so that )
(3
a—d,

and, since j < k, we have

d=b+j—1<c+j+1<c+k

so that
d-*s e
Finally .
d2sz = d<z+j =>b<z4+1 = b—z
as required.

(f) All finite models of R(%, j, k, ) are transitive, but S(3, 4, k,!) has a non-
transitive infinite model.

B.17 Chapter 17

17.1 (a)(i) By induction we find that [[]J"*'1} ={0,...,r}.
(i) [ <O4] = Oe{o}

(iii, iv) The two computations of similar.

(O OT] (OO O]
= O a = 0-0¢
= OO{0} = [J-{0}
= O-0H1,...,00} = [O{1,...,00}
= [O{1,...,w} = {0,00}

{0, 00}
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(v) For all 8 we have
0[] and ococ€e[[19] & weld]

so that
A ifweld]

-{oo} ifw¢[f].
(vi) Consider U =[f]. N C U orw ¢ U then [JU C [J*U, so that

[z = {

[4(6)} = A.
Otherwise we have
Ou = {0,...,n,00} , OY = {0,...,n+1}

for some n € N, so that

[4(6)] = ~{oo}.
(b) (JAand NU{w}  (ii)~{0,00} (iii)0
(c) Let U, = [J70, so that
Uo =@ , U,-+1{O,...,T}.

With this family & we have Ul = N, so that [(JUU = N U {w}, whereas
U c U, so that U [JU = N.

17.2 No. Suppose that the finite valued structure (A, a) models KY. For each
valuation 4 on A there is a substitution P ~ pu(P) such that

(A, p) IF ¢ & (A a) H ¢*
holds for all formulas ¢. Since Y(¢)* = Y (¢*) this means that
(A ) IF Y(¢#") , (Aa) IF" Y(@) , (An) Ik Y(8)
hold so that A IF* Y (¢). Thus .4 models KY and hence also models KZ.

17.3 (a) Consider any temporal structure A = (A, <=, ) (so that -, —
are converse transitive relations). Suppose that .A models M. Then, by
Exercise 5.8, for each a € A there is some b € A with a = b and such that

b = x=0b

(for all z € A). Take such a b € A. The first part of the property, this time

applied to b, gives some ¢ with b —*, ¢, and hence b = b. But now we have
an infinite chain
b b —ph—...
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which, by Theorem 5.7, obstructs A from modelling L_.
(b)(i) N is transitive and well founded in the (—)-direction.

(ii) For each X C N and a € 4 we have
a€ [z & (Yy>a)(3z > y)r € X].

In particular, if [¥] <¢>X is non-empty then X can not have a maximum mem-
ber, and so X is infinite. But then the right hand condition is satisfied by any
a € N.

(iii) Let A be the family of finite/cofinite subsets of N. Modifying the
previous argument we see that

X finite = [HX =0
X cofinite = [¥]X = cofinite.

Thus X is closed under the boolean operations and the box operation [+].
This shows that [¢], € X for all formulas ¢. Finally, with X = [¢]., one of
X,-X is finite and the other is cofinite so, by (ii), one of

H®X , H®O-X
is @ and the other is N. Thus
F&X = OHX

and hence [M(¢#)}, = N.

(c) If S is Kripke-complete then, by (a), we have s L. This is prevented
by the existence of at least one valued model.
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